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Abstract

In order to better control and prevent the infectious diseases, measures of vulnerability and risk to increased infectious disease
outbreaks have been explored. Research investigating possible links between variations in climate and transmission of infec-
tious diseases has led to a variety of predictive models for estimating the future impact of infectious disease under projected
climate change. Underlying all of these approaches is the connection of multiple data sources and the need for computational
models that can capture the spatio-temporal dynamics of emerging infectious diseases and climate variability, especially as
the impact of climate variability on the land surface is becoming increasingly critical in predicting the geo-temporal evolution
of infectious disease outbreaks. This paper presents an initial visualization prototype that combines data from population and
climate simulations as inputs to a patch-based mosquito spread model for analyzing potential disease spread vectors and their

relationship to climate variability.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications—

1. Introduction

As the world’s urban population increases over the next gener-
ation [Prol2], the coupled effects of population growth and cli-
matic stressors may lead to unprecedented disasters [VMG™10]
[CKR*14]. Current and future climate variability is expected to sig-
nificantly impact ecosystems, water, energy and food security, as
well as human health [PAB*14]. A critical impacted area of human
health is that of vector-borne infectious diseases. For example, the
recent increases in temperature and rainfall in Kenya have corre-
sponded to upsurges in malaria epidemics in the highlands [UND-
PUBI12], increases in leptospirosis were documented in Brazil after
severe flooding [KRD*99], and simulations of drought amplifica-
tion has suggested increased pathways for West Nile transmission
in the United States [EpsO1]. What this means is that as long-term
incremental climatic shifts occur, the population must learn to adapt
to emerging patterns of infectious disease outbreaks.

In order to better control and prevent the infectious diseases,
measures of vulnerability and risk to increased infectious dis-
ease outbreaks need to be explored. Research investigating pos-
sible links between variations in climate and transmission of in-
fectious diseases has led to a variety of predictive models (statisti-
cal, process and landscape based) for estimating the future impact
of infectious disease under projected climate change [PEBB96]
[GNO1]. Statistical models such as CLIMEX [Sut98, Sut01] and
the Malaria-Potential-Occurrence Zone method [ML95] map the
geographical distribution of vector species and relationships to cli-
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mate change using estimates on minimum and maximum tempera-
tures for parasite development. Process based models such as MI-
ASMA [ML95] and MARA/ARMA [HEM*02] link global climate
models (GCMs) and transmission rates of mosquitos to identify the
effects of temperature increases on the vectors of infection, and
landscape based models (e.g., [RRSHO2]) utilize satellite based
imagery to estimate disease vectors and risk based on prevalence
of water and vegetation. Underlying all of these approaches is the
connection of multiple data sources and the need for computational
models that can capture the spatio-temporal dynamics of emerging
infectious diseases and climate variability, especially as the impact
of climate variability on the land surface is becoming increasingly
critical in predicting the geo-temporal evolution of infectious dis-
ease outbreaks.

Despite recent progress, there is still a need for the development
of reliable modeling and visualization frameworks for integrating
climate simulations and infectious disease models. In this paper,
we present an initial prototype visualization system for exploring a
malaria transmission model with climate variable inputs. Here, we
focus on simultaneously exploring precipitation and temperature as
key boundary variables for mosquito growth rates. We discuss the
need to intelligently composite data from a variety of sources, both
measured and simulated, as well as speculate on potential design
futures for exploring cascading uncertainty between models of cli-
mate and disease spread.
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2. Background And Related Work

A myriad of new tools and algorithms have been developed to help
public health professionals analyze and visualize the complex data
used in infectious disease control, and visual analytical tools are
becoming more commonplace in the study of disease spread. Car-
roll et al. [CAD* 14] systematically review many disease visualiza-
tion tools in the context of users’ practical needs and preferences
and identify map views as one of the basic and essential needs of
users. Besides the static map views, a variety of extensions have
been developed. For example, Deodhar et al. [DCW™*15] employ
time-varying heat maps and graphical plots to view the trends in the
disease dynamics. Balcan et al. [BCG*09] employs gravity models
in the epidemic transmission from regions to regions and visual-
izes transmission as a tree-structure graph. Guo [Guo07] proposed
anew graph partitioning method to segment disease network graphs
into several spatially contiguous subgraphs and reorder them to
present the spatial interaction patterns.

Along with geographical representations, a typical visual ana-
lytic tool for scenario modeling also involves elements such as line
charts or parallel coordinates through coordinated multiple views.
For example, work by Maciejewski et al. [MLR*11] presents a vi-
sual analytics toolkit called PanViz for analyzing the effect of deci-
sion measures implemented during a simulated pandemic influenza
scenario. Waser et al. [WFR*10] employs linking and brushing in
the metaphor of time frames to enable comparative analysis of vi-
sual analysis within different parameters in the flooding models.
Bryan et al. [BWMM15] developed a novel visual analytics inter-
face which contains line charts, heat maps, star coordinates and
other techniques for predictive simulations and analysis, and Afzal
et al. [AME11] utilized a spatiotemporal view where users can in-
teractively utilize mitigative response measures and observe the
impact of their decision over time. Based on an analysis of previ-
ous work, our prototype implementation focuses on a geographical
view with linked time series components. While the visual meth-
ods presented are standard, this paper presents an initial example
of linking together multi-source data (climate and population) as
inputs for a disease-spread model.

3. System Design

Our prototype system consists of a data modeling and collection
component and a visual analysis component. In this section we pro-
vide a brief overview of the data collection and integration, intro-
duce the epidemic model being used and describe the visualization
components of the system.

3.1. Data Modeling

To simulate and explore the relationship between climate variabil-
ity and transmission of mosquito borne diseases, we first need to
provide a model with a set of initial conditions. We use the histori-
cal population data as the input for the initial amounts of potential
human hosts, the historical temperature and precipitation data as
the descriptors of climate variability (which future work will re-
place with a downscaled ensemble of climate simulations for pre-
dictive analysis), and an epidemic model of malaria transmission.

Patches in the transmission model are simplified as geographical
rectangles in a region.

Population data is collected from Gridded Population of the
World (GPW) v3 [CfIESINCO05] from the Socioeconomic Data and
Applications Center (SEDAC), Columbia University, which con-
tains the estimations of global population density for 1990, 1995
and 2000 [LLM*15]. As the initial amount of human hosts, we use
the population data in 2000 as our test data. For computational rea-
sons, we aggregate population to the regions of 5° by 5°.

Climatic factors, such as temperature, humidity, and rainfall, are
known to significantly affect the incidence of vector-borne dis-
eases [AGP15]. Extreme weather conditions including high tem-
perature and heavy rainfall generally induce a negative impact on
the survival vectors [AGP15], especially for mosquitoes. We col-
lected monthly air temperature and precipitation data from the Cli-
mate Research Unit of the University of East Anglia. As input to
the model, each patch uses the average precipitation and tempera-
ture value of all pixels contained within a patch. Future work will
explore downscaling methods for increased temporal and spatial
resolutions to improve the model efficacy.

The epidemic model used in our study is based on a meta-
population mathematical model for the transmission dynamics of
malaria in a community consisting of multiple patches, which takes
into account the effect of temperature (air and water) and precipi-
tation variability on the hosts and vectors [AGP15]. The total host
population at time ¢ for each patch i, denoted by N,<;> (t), and is
split into four epidemiological states, namely mutually-exclusive
susceptible Sg) (1), exposed (with no clinical symptoms of malaria)

E 1(_;) (¢), infectious Ig) (t) and recovered individuals R;? (t), where
Ng) (r)= SE_;) (1) +E1(_;> (t) +I,<1’) (1) +R1(,_;) (t). Similarly, the total pop-
ulation for vectors at time ¢ for each patch i, denoted by N‘(,’ ) (1),
is subdivided into three compartments where Lg,” denotes the im-
mature mosquitoes (eggs, larvae and pupae), adult mosquitoes
Sg,’) (1), and infectious mosquitoes I‘<,') (¢). Hence, N‘(,'> (t)= L‘(,l> )+
S‘(/')(t) —Q—I‘(,' )(t). The equations for the patch model considered in
this study take the simplified form of the deterministic system
of non-linear differential equations given in [AGP15] within the
multi-patch framework. Though there is a large number of parame-
ters in this model, we primarily use the values suggested in Agusto
et al. [AGP15] and only tweak the climatic variables based on his-
torical data. Related computations for solving the differential equa-
tions on the web-based system is supported by Parallel Javascript
library [Sav16] and Numeric Javascript library [Loil6].

3.2. Visual Analytical View

Our prototype system consists of two visualization elements: line
charts and map views. Line charts are used for representing the
change of each model variable over the time. Map views are used
for showing the spatial distribution of disease transmission, tem-
perature and precipitation, as shown in Figure 1. In the geographic
views, each patch is a semi-transparent rectangle. In the largest
map, patches in red denote higher volumes of infectious humans
and patches in green denote the lower volumes. Gray patches repre-
sent regions where population data is unavailable, and future work
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Figure 1: Overview of the default system. The top left map shows the spatial distribution of infected humans. The patch highlighted by the
blue rectangle is identified as the center of disease and population diffusion. The lower left two maps show the distribution of temperature
and precipitation which can also be switched to line chart views showing their temporal changes. The right line charts show the changing
amount of seven states in host and vectors by the time. The lower right sliders are used for changing the time by months or by years.

will explore methods for automatically estimating population from
satellite imagery. For the other two maps, the left map shows the
temperature distribution with orange representing higher tempera-
tures and yellow representing lower temperatures. The right map
shows the precipitation with darker blue being larger amounts of
precipitation. To see the temporal trend of the temperature or pre-
cipitation, users may click the radio button above the two maps and
switch between the map view and line chart view.

The right part of our interface, Figure 1, consists of seven line
charts each showing the host and vector states over time (these are
the states previously defined in Section 3.1). The x-axis represents
time and the y-axis represents the amount of the host or vector in
that state. Each line in the line charts represents a patch and is dis-
tinguished by the color. From top to bottom, these states are in-
fectious host, susceptible host, exposed host, recovered host, adult
vector, infected vector and immature vector. Despite the visual clut-
ter in the line charts, users can mouse over the patch on the map to
highlight the corresponding line.

4. Case Study

Our current prototype focuses on the West Africa region near the
Niger basin where temperature and precipitation patterns are regu-
larly affected by latitude and the West African monsoon. What is of
interest is exploring how changes in climate will impact the resul-
tant amount of malaria cases. In the epidemic model, the influence
from the temperature are directly projected onto the natural mor-
tality rate of immature mosquitoes, egg deposition rate and matu-
ration rate, which will further affect the amount of infected vectors
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Figure 2: The left map shows the distribution of infectious host
and the right map shows the population distribution in higher res-
olution. Patch 23 is highlighted with the blue rectangle in the left
map. It is easy to see the similar radial diffusion on both maps.

and the infectious host. Therefore, it is reasonable to expect that the
change of adult and immature vectors, even for the infected host,
may follow the change of temperature or precipitation. Also, due to
the mobility of the population among patches, which is also consid-
ered in the epidemic model, we can make a bold presumption that
the infectious host or infected vectors will also diffuse or transmit
among patches. To validate the above assumptions, the model visu-
alization is explored by modeling experts.

4.1. Parameter Settings

In this model, humans and mosquitoes are considered as the dis-
ease host and vectors respectively. All parameters, except the ini-
tial total of hosts, vectors, initial infectious hosts, infected vectors,
temperature and precipitation, are fixed using the values of Agusto
et al. [AGP15]. The amount of vectors is proportional to the mag-
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Figure 3: Difference maps for the infected mosquitoes in March 2000 among simulations with historical temperature (left), 2°C higher
temperature (middle), and their differences (right). The color in the right map from orange to green represents the changes from the growth
of 1000 mosquitoes to the reduction of 2000 mosquitoes between the two scenarios. Patch 18, 19, 20, and 21 are highlighted by the numbers.

nitude of the total hosts and can be modified as more mosquito col-
lection reports are provided. The amount of initial infectious hosts
and infected mosquitoes are set as ten percent of the total amount
of host and vector separately. The West Africa region is uniformly
split into 24 patches and they are numbered from 1 to 24 for conve-
nience from left to right and from top to bottom. During the compu-
tation, temperature and precipitation are loaded from the collected
historical data directly. The step size during the integration of the
differential equations is taken as 1075,

4.2. Simulation Results And Analysis

Figure 1 shows the default visualization at the beginning of the sim-
ulation. The epidemic map on the top-left shows the distribution of
initial infectious humans. Because this value is assigned propor-
tionally to the total human amount, we can see its distribution is
similar to a radial diffusion within the center at patch 23. A com-
parison between the actual population distribution and infectious
human distribution is shown in Figure 2.

To further study the relationship between climate variability and
disease transmission, users can change the time slice by dragging
the slide bars. It is evident in the line chart of infectious humans,
which is the top line chart in Figure 1, that the infection will eventu-
ally subside. Besides the amount of infectious humans, the amount
of susceptible humans and recovered humans also show a similar
pattern. We can see that the amount of exposed humans reduces
gradually and goes to zero after two years approximately. What is
interesting is that adult mosquitoes only provide the basis popula-
tion for the vector and only the infected mosquitoes have the ability
to transmit the virus to humans or other mosquitoes. As we can see,
the line chart of the infected vector in Figure 1 generally shows a
negative growth rate, which means the chance of the transmission
of the virus becomes less over time from the initial outbreak.

5. Conclusions and Future Work

While our prototype system provides a method for linking multi-
source data with disease transmission models, the goal of this
project is to develop a way to explore the impact of future climate
variability. Thus, future work will explore the creation of disease
risk maps using an ensemble of climate simulations as input to the
model. As an explorative trial, Figure 3 shows a simple first pass
difference map where the user simply compares what happens to

disease transmission if the average temperature increases by 2°C.
The left two maps show the distribution of infected mosquitoes
with historical temperature and 2°C higher temperature. In the
rightmost map, we can see more infected mosquitoes emerging in
some areas such as patch 19 and less infected vectors in other areas
such as patch 18, 20 and 21. What is difficult is trying to assess the
overall “risk” of disease in an area. We can indicate that given a
change in temperature, an area will see more (or less) mosquitoes,
which are the primary vector for disease spread. However, quanti-
fying this into a probability measure is very difficult.

With respect to future designs, the ultimate goal is to create
a visualization that is capable of providing insights into the in-
teraction between the spatial heterogeneity, climate dynamics on
gonotrophic process, larva and plasmodium development and vec-
tor survivability, and spatial disease dynamics (e.g., epidemic size,
prevalence, incidence and probability of epidemics). In the cur-
rent preliminary work, we demonstrate that different geographic
regions will see the mosquito vector vary. As regions become too
hot, mosquitoes die off, but regions that were previously too cold
for mosquitoes to thrive now can become vulnerable. However,
population expansion and migration also need to be considered. As
such, a visual analytics toolkit for exploring climatic variability and
disease spread needs to be able to communicate multiple factors
as well as uncertainties underlying both individual model compo-
nents (models for population, climate and disease) as well as the
uncertainty that results due to the coupling of the model. Future
work will explore a variety of multivariate visualization techniques
coupled with data abstraction to demonstrate changes of the spread
vectors and risk as a function of climatic and population variability.
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