
International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2023)
J.-M. Normand, M. Sugimoto, V. Sundstedt, J. Dingliana, and M. Manzke (Editors)

Real-time self-contact retargeting of avatars down to finger level
Appendix

Mathias DELAHAYE1, Bruno HERBELIN1 and Ronan BOULIC1

1École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Appendix A: Tracking technology

In this paper, we used Vive trackers (Figure 1) to track the body as
this solution is consumer grade and, therefore, widely available.

Figure 1: Vive Tracker 3.0 is a consumer-grade device whose 3D
localization can be retrieved through SteamVR. Those trackers
are well suited for the gaming experience, for tracking limbs (e.g.,
feet, knees, etc.) or objects to interact with (e.g., tracking a dummy
gun). However, their dimensions prevent them from being placed
on each finger.
Picture sourced and edited from
https://www.vive.com/fr/accessory/tracker3/

The finger tracking was performed using gloves on which Phas-
eSpace LEDs [Pha19] were added (Figure 2) to have a fine level of
motion tracking required for the animation of fingers.

Both systems were calibrated to use a common frame of refer-
ence through an abstraction layer (as illustrated in Figure 3), allow-
ing another tracking system to be used for our animation pipeline.

Appendix B: Users’ Body Calibration

The user calibration process starts with the calibration of the user’s
extremities: the hands (with fingers section B) and feet (section B),
and the head (section B). Then, our pipeline computes the CoR
(Center of Rotation) starting from the effectors and tracks back to-
wards the trunk to calibrate the arms and legs. A second pass in-

LED

Wooden
support

Figure 2: The gloves’ black texture helps to reduce light reflections
from the tracking LED to enhance tracking. Each fingertip has an
LED to track its position in the 3D space. The wooden support pro-
vides a rigid body reference to reduce the LED lateral motion due
to the gloves’ flexibility.

volving self-touches is used to increase the accuracy of joint posi-
tions and to measure limb radius. Finally, the trunk (section B) and
its crude mesh envelope are calibrated.

Hands and Fingers calibration

Calibrating the user’s hand is a task that involves measuring many
parameters, and rather than repeating similar poses several times,
we chose to measure multiple parameters simultaneously. The first
pose consists in placing both hands’ palms in contact with each
other (Figure 4) to calibrate:

• the hands’ reference frame as a regular rigid body tracked using
three LEDs to determine its position and rotation in space

• the hands’ surface plans: Each position from each LED of one
hand is averaged with its opposite position from the other hand,
and those averaged points are used to fit a plane that defines each
hand’s palm surface measured in each hand’s frame.

• fingers radius: Knowing the surface plane in each hand’s frame
and the position of the LED on top of the finger, the finger radius

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://www.vive.com/fr/accessory/tracker3/


M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

Hand Tracking Full Body Tracking+ =

+ =

Body Trackers

Figure 3: The setup involves a mix of Vive Trackers 3.0 with home-
made tracking gloves, therefore mixing tracking solutions.

is computed as half the length between the LED position and its
projection on the hand’s palm surface plane.

• fingers extended position: Local extended fingertip positions are
stored in the hands’ reference frame to be used later as a refer-
ence to compute the angular rotation to apply on each finger.

The critical information required in the hand structure for its an-
imation is the location of its joints (i.e., the wrist and the fingers’
proximal root joints). The wrist position is measured by succes-
sively placing the index fingertip from the opposite hand on top
and below the wrist (Figure 5a) to calibrate its position as the mean
of the two measured positions in the hand’s reference frame.

Unlike the method proposed by [Ari18], our approach does not
require precise placement of tracking LEDs on the pinky and index
finger base joints. However, the counterpart is that those finger base
joints must be calibrated.

Our initial tests showed that recording extended finger motion to
calibrate the finger base joint yielded unrealistic data. Therefore,
a manual calibration method was designed to calibrate the finger
base’s joints precisely.

Once the wrist is calibrated, each finger’s base location is mea-
sured by placing the opposite index on each finger’s base joint. The
joint base location is then computed as the measured LED position
projected on the hand’s palm surface, on which the radius of the
finger is added toward the top of the hand. Digits are then initial-
ized as capsules with a radius corresponding to the measured finger
radius and placed in the alignment between the joint base position
and the extended fingertip position (green bones in Figure 5a). As
bones’ motion within the hand is relatively small, a simplified rigid

Computed Le�
Hand P m Plan

Computed Right
Hand P m Plan

Le� Hand
Referen�al

Marker LED

Middle Marker
Posi�on

Finger Diameter

al

al

Figure 4: The middle plan that separates both hands is illustrated
in cyan. Its location is computed locally to both hands´ reference
frames (i.e., computed left-hand palm plan and computed right-
hand palm plan) so that each hand model knows where is its contact
surface. This pose also determines the radius of the fingertips and
the local positions of extended fingers used in the animation stage
to animate fingers’ kinematic chains.

structure is used to attach the fingers’ base joint (i.e., proximal root)
to the wrist.

The last information to identify about the hand is the crude ap-
proximation of its palm surface. This information is measured as
the projection of the other hand’s fingertip on the palm surface (Fig-
ure 5b).

Feet calibration

Similarly to the hands, feet embed a reference frame: the tracker
attached to each foot, a crude mesh representing the contact surface
under the sole of the foot, and an anchor joint.

The local positions of the contact surface are measured as the
fingertip’s projection to the floor and then stored in the foot’s refer-
ence frame (c.f., Figure 7). The ankle’s local position is measured
by placing the fingertip on both sides of the ankle and averaging
the two positions.

Limb calibration

Once the effectors are calibrated, the next step is to retrieve the
user’s skeleton structure by progressing proximally toward the
trunk.

Therefore, the next step is to calibrate the four limbs linking the
effectors to the trunk: the arms and the legs.

Limbs are kinematic chains composed of two bones: one close
to the trunk, which we call the anchored bone, and the other one
chained to it and attached to the effector joint, called here, the in-
termediate bone.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

Upper Wrist
Calibration

Finger Base
Calibration

(a) Finger base calibration

Lower Wrist
Calibration

Crude Mesh
Calibration

(b) Hands’ palm’s crude mesh calibration

Figure 5: To calibrate a point, one must place the other hand’s
fingertips (the index by default) on top of the point of interest (e.g.,
joint) The order in which the user calibrates points is irrelevant, as
all calibration points are first stored. The actual computation can
be triggered later, hence avoiding flipping the hand several times
to calibrate the wrist, surfaces, and finger base joint.

Linear bones are fully constrained once the length, axis direc-
tion, and local right directions are determined (two orthogonal vec-
tors are enough to fully constrain the three degrees of rotations from
the bone’s orientation, and the root point fixes the three remaining
degrees of freedom for the bone’s placement) as illustrated in Fig-
ure 8.

Therefore, the intermediate bone is calibrated by determining the
intermediate joint position (elbow/knee) with its local right.

Based on the methodology from [MGB17], the user performs
gym motion by flexing arms/legs. At the same time, the relative
displacement of the anchored bone tracker is recorded in the inter-
mediate bone’s reference frame (Figure 6).

Intermediate Joint and Bone Calibration Knowing the topol-
ogy of the intermediate joint, the expected shape of the recorded
set of point shapes is a circle in a plan. However, knowing the plan
is insufficient to determine which normal side should be used as the
local right of the limb’s kinematic chain.

Therefore, we rely on the knee and the elbow’s articular limit,

Average marker's

posi�on

Recorded marker's

posi�ons in the

forearm's referen�al

Computed world right

Computed COR

Referen�al origin

(Tracker)

a

b

a bx

+

(a) The tracker’s average position is above the half-plan passing by the
tracker and the computed COR.

Average marker's

posi�on

Recorded marker's

posi�ons in the

crus' referen�al

Computed world right

Computed COR

Referen�al origin

(Tracker)

ab

a bx-

-

(b) The tracker’s average position is below the half-plan passing by the
tracker and the computed COR.

Figure 6: The position of the parent bone’s tracker is recorded on
a time window of 150 frames (this allows a sufficient average for
measurements of the CoR when the user moves the limb). It gen-
erates a cloud of points illustrated in black, covering the history
of the tracker positions, which is used to retrieve the unique nor-
mal corresponding to the joint direction’s local right. N.B. Unity
uses a left-handed coordinate system. Thus, the output of the cross-
product is the opposite of what is expected with a right-handed co-
ordinate system.

which prevents the joint’s angle from exceeding 180 degrees. This
means that the average position of the recorded set is necessarily
on one side of the half-plan passing by the tracker position and the
joint location as illustrated in Figure 6.

A first approximation of the joint location used in this computa-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

Ankle
Calibration

Crude Mesh
Calibration

Figure 7: The foot calibration process expects the user to place
their fingertips on the edges of his foot to calibrate the foot’s planar
surface in contact with the floor, with a projection applied (small
orange arrows) to ensure the measured position is on the floor. The
user also places the fingertip on both sides of the malleolus to cal-
ibrate the ankle’s joint position.

z

x

y

rk

ek

bk

Figure 8: The linear bone bk has a structure containing an origin
(rk) and a bone vector

−→
bk that links the proximal joint to the distal

joint ek. Each bone has its reference frame in which the bone axis is
along the local forward direction −→z . The bone consequently also
has a local right (−→x ) and a local up (−→y ). The local right is set as
the joint flexion axis (right-sided) for limbs. Constraining the axis
direction and its local right (or up) is enough to constrain its world
orientation fully. Setting the origin’s position fixes the remaining
degrees of freedom that fully constrain the bone’s placement.

tion is performed by fitting a plan from the recorded set of points
and then projecting the points on this plan to fit a circle and com-
pute its center.

The plan’s fitting is performed by extracting the average posi-
tions from the dataset constituting the plan’s origin and removing
this computed origin from each dataset point. The two main direc-

tions of the plan are extracted from the two eigenvectors with the
largest eigenvalues of the product of the transposed matrix of the
dataset with itself.

Once the plan is determined, a circular regression retrieves the
circle center and radius. A second pass is applied to remove the
contribution from points whose distance is greater than two times
the standard deviation in terms of distance toward the center.

However, this method can only retrieve the axis on which the
joint is located but not the joint location itself, as this relies on
the radius of the limbs that cannot be inferred from this motion as
only one tracker is placed on the user’s bone, unlike the approach
from [MGB17] where multiple LEDs are placed around the arm
and helps to retrieve the location of the joint.

Therefore, to calibrate more precisely the intermediate joint lo-
cation and the limb radius simultaneously, the user places the fin-
gertip from the other hand on each side of the elbow to calibrate its
position as the average position between both points. The interme-
diate limb radius is computed as the average between the measured
radius at the effector’s joint (c.f., section B, section B) and the cur-
rent measure of the limb’s radius at the joint.

Anchor Joint and Bone Calibration The shoulders and hips are
joints that provide more degrees of freedom than the elbows and
knees. Thus, rather than having a tracker distribution be a circle, the
distribution can now be extended to a sphere that fully constrains
the location of the CoR.

Users, therefore, move their arms, paying attention not to lift the
arm above the horizontal line and not to mobilize the clavicle. The
algorithm records the root’s tracker position in the brachium/thigh
trackers’ frame to locate the joint position.

The CoR is computed as the sphere’s center of the recorded
dataset using spherical regression. The radius is the average dis-
tance between each recorded point and the computed center. The
second pass excludes points whose distance to the center is larger
than two times the standard deviation, and the same process is reap-
plied with the filtered input.

This is followed by measuring two points diametrically opposed
at the anchor joint to average the anchored limb’s radius.

Head Calibration

The jaw’s surface is calibrated with six calibration points located
at the left and right ear, on the upper lip, at the chin, and on the
middle of the left and right side of the jaw, as illustrated in magenta.
The calibration is performed by placing fingertips on the illustrated
locations. This crude mesh is rigidly attached to the HMD’s tracker
reference frame; therefore, it does not consider when users open
their mouths.

The crude mesh topology differs slightly from the one from
[MGB17] as the user does not wear an HMD in their approach;
hence, their crude mesh can also cover the rest of the face, which is
impossible here due to the presence of the HMD.

Also, here, we approximated the back of the head as a sphere
rather than using the crude mesh; the sphere was calibrated by

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

placing the fingertips on the skull’s top, right, left, and back (blue
dots on Figure 9). Those calibration points are stored locally in the
head’s frame: the HMD. The same fitting procedure is used to fit a
sphere passing through those calibration points to approximate the
back of the head surface. Two additional measurements, illustrated
in green, are performed behind the jaw to measure the skull base
where the spine is attached to the head.

(a) Front view (b) Right view

Figure 9: Except for the spine, which might contain a different
number of joints compared to the user’s skeleton model, the cali-
brated avatar contains the same structure as the user’s skeleton.
This means that each surface element has an equivalent in the
source user model.

Trunk Calibration

With all limb anchors and the head calibrated, we can perform
the trunk calibration. When standing straight up, the sacrum bone
width is measured as the distance between both hip joints. Accord-
ing to [LHS∗20], the sacrum height is, on average, 11.4 cm for men
(standard deviation of 1.1 cm) and 10.9 cm, with a standard devi-
ation of 1.0 cm for women. Therefore, given the relatively small
range of scale of this bone compared to the user’s morphology, the
root of the spine is statically set to be 10cm above the defined ori-
gin of the sacrum (the sacrum bone’s model is constructed in a way
that both hips are symmetrically placed from the origin) and 5cm
backward, and its initial rotation along the hips axis is set so that the
spine is vertically aligned as the user stands straight. Then, its po-
sition is stored in the back’s tracker reference frame. Additionally,
the height of the user’s sacrum when standing up is also stored.

Knowing the location of the spine root on the sacrum bone and
the skull’s base joint, we compute the extended spine distance (used
later to compute its flexion) and each vertebra length. Our model
uses a spine composed of 12 vertebras, and the clavicular bones are
calibrated to link the 5th vertebra to each shoulder.

Finally, the user calibrates the torso shape by placing his hand
palm on different key points of the torso marked as yellow spheres
on Figure 11a to measure its body shape. Those crude mesh calibra-
tion points are stored in the closest vertebra reference frame so that
when the user moves, the crude mesh can be deformed accordingly.

Appendix C: Egocentric coordinates

The retargeting pipeline relies on measuring distances toward each
surface element and re-applying those scaled distances onto the tar-

getted avatar. Therefore, the avatar structure must comply with the
one from the user’s skeleton model. Here, the calibration of skele-
ton bones is direct through the skeleton’s rig of the avatar; only the
local right directions for knees, elbows, and fingers must be speci-
fied to know along which axis joints flex.

The evaluation of the body shape uses the same principle as the
user’s body surface calibration, except those surface measurements
are performed using ray cast hit points on the collider mesh of the
avatar. Crude mesh calibration points are stored as the position on
the avatar’s mesh, and the number of vertebrae can differ from the
user’s skeleton model.

It was observed that the simple mesh representation of a char-
acter’s belly in [MGB17], which consists of only seven points on
the front and three on the back, is not suitable for accurately rep-
resenting rounded surfaces, such as an ogre’s large belly. This is
because there may be interpenetration caused by the gap between
the spherical surface and the crude mesh surface that is its chord,
as illustrated in Figure 10.

(a) Illustration of the pose with
interpenetrations

(b) View of the inner structure
used to animate the avatar; the
right hand is correctly placed on
the surface of the crude mesh,
but the latter being within the
belly, the hand is also within the
belly

Figure 10: Example demonstrating the problem that can arise
when the polygon count in the crude mesh is too low. In this case,
the right hand is positioned correctly on the surface of the crude
mesh, but since the crude mesh represents a chord of the belly’s
rounded shape, the hand interpenetrates with the belly.

To mitigate this issue, we have included four additional points
in the center of the crude mesh’s belly to reduce the distance be-
tween the chord and the surface itself (Figure 11a). By default,
these points are interpolated from the four corners that are used
to define the user’s belly unless the user has a large belly that ne-
cessitates more refined calibration. These points remain calibrated
manually once for the targeted avatars. Figure 11 illustrates a cal-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

ibrated avatar with the new topology of the crude mesh and the
whole set of surface elements.

(a) Front view with the new crude mesh topology

(b) Top view

Figure 11: Capsule bones are calibrated to represent the user’s
limb shape and finger digits bones, while the crude mesh represents
the shape of the torso, hand and feet, palm surfaces, jaw, and a
sphere approximates the back of the skull’s surface.

This process generates a configuration file that can be stored for
each avatar; hence, this process needs to be applied only once per
avatar.

Vector contributions

Raw contributions weights computation

The raw Λi, j weights are computed as:

• 1
∥−→vi, j∥2 for spherical coordinates

• 1
∥−→vi, j∥2 ·

∣∣∣sin
(
∠(−→vi, j,

−→
bi )
)∣∣∣ for cylindrical coordinates with

−→
bi the

axis of si cylindrical coordinate system.
• 1

∥−→vi, j∥2 · cos
(
∠(−→vi, j,

−→ni )
)

for crude mesh elements with −→ni the
normal of si’s triangle

• 1
h2

j
for the floor’s height contribution.

Weight contribution normalization

The floor contribution presents a singularity: It only contributes to
the vertical height of p′j but not the lateral location on the ground

pj

x2,j

Projection
on a sphere

Projection on a
triangle surface

Projection on
a cylinder

x0,j

v0,j

v1,j

v2,j

x1,j
s1

s0

(xi,j) kinematic chains

s0

Figure 12: In the egocentric coordinate system, each point position
p j is decomposed into a sum of contributions from each element
surface si. Those surface elements can either be a sphere (on the
left), a mesh triangle (middle), or a cylinder (on the right). The
contribution for each surface element to the jth target is denoted
−→vi, j (in red) and represents the vector between p j and the closest
projection point of p j on si that is noted xi, j (in green). Finally, a
normalization factor τi, j is computed as the sum of the dot product
of each bone’s length and −→vi, j .

plan. Hence, when a target is close to the ground, the weight contri-
bution of the floor λfloor_id, j would tend to 1, erasing all the other
contributions, which are the only ones contributing to the planar lat-
eral position. Ultimately, it would result in a retro-projected point
to the origin of the space rather than just on the floor, not to mention
the precision issues when dealing with vectors with tiny amplitude
to determine a direction.

Consequently, two sets of weights are actually computed (for
both executions):

(
λi, j
)

i∈S and
(
λgi, j

)
i∈S. The last one (

(
λgi, j

)
i∈S)

is computed by normalizing the set of all raw contributions (i.e.,
including the one from the ground) while the former (

(
λi, j
)

i∈S)
skips the contribution of the ground in its normalization process.

The retro-projection formula of p′j is therefore adapted into
Equation 1 to address this singularity (with −→e1 , −→e2 and −→e3 the x
(right), y (up), and z (front) world axis respectively).



p′j ·−→e1 =

(
∑
i∈S

(
x′i, j +

−→vi, j ·
τ
′
i, j

τi, j

)
·λi, j

)
·−→e1

p′j ·−→e2 =

 ∑
i∈S\{floor_id}

(
x′i, j +

−→vi, j ·
τ
′
i, j

τi, j

)
·λgi, j +h j ·λgfloor_id, j

 ·−→e1

p′j ·−→e3 =

(
∑
i∈S

(
x′i, j +

−→vi, j ·
τ
′
i, j

τi, j

)
·λi, j

)
·−→e3

(1)

Kinematic Normalization

The scaling factor for the source kinematic chain linking the target
p j to its projection xi, j on the surface element si is noted τi, j. Those

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

chains are pre-computed and stored so that the tree search is not
performed in every frame.

Let
(−→

bk

)
k∈J0,nK

be the list of n bones axis vectors that comprise

this kinematic chain, with ri the root of the surface element si and
e j the root of the bone to which the target is attached. We have
Equation 2

τi, j =
n

∑
k=0

−→̂
vi, j ·

−→
bk +

−→̂
vi, j ·

−−−−−→
(xi, j − ri)+

−→̂
vi, j ·

−−−−−→
(p j − e j) (2)

This is illustrated in Figure 13 where the contribution vector −→vi, j
is displayed in red, the kinematic chain in black, and the extremity
segments in blue and cyan. The kinematic path computation uses
the trunk’s simplified kinematic chain to accelerate the process.

(a) Kinematic chain with the
whole skeleton structure (without
the crude mesh)

ri

pj ej

vi,j

xi,j

(b) Kinematic chain only with the
surface reference points and ex-
tremity segments detailed

Figure 13: Illustration of the kinematic chain used to compute the
normalization factor τ. The spine model was simplified to reduce
the computational cost.

When the associated lambda for a kinematic chain is null, the
computation of the kinematic chain is skipped, as the associated
vector will not contribute to the reprojection stages. An example of
a normalization process enhancing the final result is illustrated in
Figure 14.

Appendix D: Body animation

Finger motion capture

The inputs from the transformed mocap data combined with the oc-
clusion recovery pipeline from [PDP∗19] are used to provide a set
of ordered points for the animation of the hand’s model structure.
This is used in both the skeleton reconstruction (to acquire the ref-
erence finger poses of the user) and the reconstruction stage of the
avatar’s hands in the retargeting stage.

With the information retrieved from the hand’s calibration

(a) Retargeting animation without kinematic chain normalization

(b) Retargeting animation with kinematic chain normalization

Figure 14: Illustration of the same pose on different avatars with
and without the normalization enabled. The structure on the left is
the modelized user’s skeleton. On top, the non-normalized anima-
tion produces flexions in the characters with long arms (the two
avatars on the right), while for the child, the arm is completely ex-
tended, although this was not the case on the source skeleton. On
the bottom, the normalization of effector positions straightens the
arms of the two characters on the right and reduces the extension
of the child’s arms.

stage, and assuming that the flexion angle is the same between
the intermediate-distal joint and the proximal-intermediate joint
[Ari18], we can compute the flexion angle of each finger based on
the distance between the fingertip and the finger proximal’s joint
location that can later be applied on the finger’s kinematic chain as
illustrated in Figure 15.

The computation firstly computes and caches the coefficients
from Equation 3 and then calculates the flexion angle following
the steps from Equation 3.

a= 4 · l1 · l3, b=−2·(l1+ l3), ·l2 c1 = l2
1 + l2

2 + l2
3 −2· l1 · l3

(3)

c = c1 −d2, ∆ = b2 −4 ·a · c, x1 =
−b−

√
∆

2 ·a

x̂1 =


−0.9999 if x1 ≤−0.9999

x1 if −0.9999 < x1 < 0.9999
0.9999 if 0.9999 ≤ x1

α = π− arccos(x̂1)

(4)

Before its application, the finger is realigned with the artificial
bone linking the wrist to the base joint, the angle α is constrained
not to exceed 90◦, and then finally applied to the finger. For the
thumb, the bone linking the wrist to the base joint is rotated along
its axis by 45◦.

A second pass is then applied to enforce the alignment of fin-
gertips with the expected effectors’ positions. The realignment is

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

Relaxed distance measured at calibra�on

Measured distance

α

d

α

Effector
posi�on

l1 l2 l3

Figure 15: The flexion of a finger is based on the effector-finger
base joint distance. Flexing the finger is insufficient to enforce the
effector’s position to match the finger’s kinematic chain extremity.

performed by measuring the pitch and yaw from the expected ef-
fector position in the metacarpal bone’s reference frame centered
on the proximal’s root (Figure 16) As flexion induces pure pitch in
the finger’s tip location in the bone attached to the wrist’s reference
frame (e.g., metacarpal for the index), we already know that the
current yaw of the flexed finger is zero; therefore, only the pitch of
the animated finger is computed before computing the realignment
rotation.

The differences in yaw and pitch are then applied to the proxi-
mal root joint and forwarded to the rest of the chain (Figure 16). To
prevent impossible positions, the measured targeted yaw and pitch
from the direction of the expected effector’s position is capped
using values from [Ari18] for the base joints: The yaw is con-
strained within [−15◦;15◦] and the pitch within [−85◦;+10◦] for
the index, middle, ring, and pinky fingers, whereas the yaw is con-
strained within [−30◦;40◦] and the pitch within [−15◦;+15◦] for
the thumb.

Limb animation

During the calibration process, joint locations were recorded in
each tracker’s frame; therefore, the computation of joint positions is
done by expressing calibrated joint positions in world coordinates.
Local directions of the bones’ axis and local right are also stored
during the calibration process, allowing for direct placement in the
space of each individual limb bone.

However, trackers’ locations are not perfectly rigidly attached
to the user’s bone, and some offsets may occur, leading to
structural gaps. Therefore, anchored and intermediate limb bones
(brachium/thigh and forearm/crus) are scaled to ensure a junction
of the kinematic chains.

Up

Yaw

Pitch

Right

Front
(Metacarpal bone axis)

Effector
posi�on

0

+90 -90

+90

-90

-180

+180

-180+180

0

Effector
pitch

Effector

yaw

Pitch from

finger's bend

Finger �p

from finger
bend stage

Figure 16: In the realignment process, the algorithm measures the
difference in yaw and pitch between the position of the user’s fin-
gertip and the only flexed finger model. Then, the rotation required
to align the reference axis with the user’s finger is computed as the
rotation that rotates the reference axis by the differences in yaw and
pitch. This rotation is then applied to all the joints of the finger, and
the position of the distal end of each digit segment is computed to
update the origin of the next proximal digit side.

This process is performed by computing the intermediate joint
location in both the intermediate and anchored bones’ trackers and
to average the computed position of the joint. As we gave priority
to the effector over the intermediate joint location, the effector po-
sition is solely determined using the effector’s reference frame and
is not averaged with the intermediate’s bone extremity.

The anchored bone is then scaled and oriented to align it with its
previously computed anchor position and the newly average inter-
mediate joint position. The intermediate bone is scaled and aligned
to make the junction between the intermediate joint position and
the effector’s joint position.

The realignment is performed while maintaining the local right
direction to prevent the twist of bones. This process is illustrated in
Figure 17.

Trunk animation

The last component to animate before animating the trunk is the
head. As a simple rigid body attached to the head tracker (i.e., the
HMD), the head animation is a simple placement of a rigid body in
space. This placement determines the skull base corresponding to
the spine’s targetted effector position IK.

At this point, all four limb anchors’ positions are determined,
and the root trackers’ positions and orientation are known as the
targeted position of the skull base and its local right.

The animation of the trunk is performed in two passes:

• The first places the sacrum as a rigid body attached to the root’s

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

Anchor
Joint

Effector
Joint

(a) Initial limb’s structure

Intermediate
Joint

Anchor
Joint

Effector
Joint

(b) Adapted limb’s structure with continuity enforcement

Figure 17: Illustration of the process of linking bones on a limb

Calibrated
Crude Mesh

Hands Targets
Referential

Figure 18: Three targets are assigned to each effector used as a
rigid body frame that allows the expression of the wrist location in
this coordinate system and to measure a rotation.

tracker. To accommodate the back tracker’s potential lateral dis-
placement compared to the sacrum bone, the sacrum’s bone lat-
eral rotation is averaged with the lateral direction computed from
the hips using the thigh trackers. The same is also applied to the
root position of the sacrum. Once the sacrum is placed, the ap-
proach from [UPBAS08] is used to animate the spine flexion
as illustrated in Figure 19. The spine is then realigned with the
targeted effector position, inducing an unrealistically large joint
rotation between the sacrum and the first vertebra, according to
biomechanics [UPBAS08].

• Therefore, a second pass is applied by rotating the sacrum along
its hip flexion axis to align its upward direction with the first
vertebra’s direction. This changes the root position of the spine,
hence the distance between the anchor (sacrum) and the effector
(skull base); therefore, a second pass is applied to compute the

new flexion and the new realignment of the spine producing the
final position from Figure 19.

Finally, vertebrae are uniformly twisted along their axis to ac-
count for the hips-shoulders and shoulders-head twists.

Once the spine state is determined, the clavicle bones are com-
puted to link the 5th vertebra (for our spine model) to the evaluated
shoulder anchor positions.

For the later stage of kinematic path normalization, shortcut
bones are added, in addition to the bones used to animate the user’s
skeleton (Figure 20), to link: The sacrum root to the left and right
hips links the sacrum to the clavicle root and links the clavicle
root to the head, similarly to what was proposed by the normal-
ized skeleton representation from [KMA05]. Those bones have no
constraints on the twist, as their contribution is only used to com-
pute kinematic path normalization, which only considers the bone’s
axis vector. Those bones can be easily spotted in black down to Fig-
ure 13.

Appendix E: Inverse Kinematics

The IK works as follow: Knowing each bone’s length (l1 and l2),
this information is combined with the measurement of the distance
effector base joint (d) to retrieve the intermediate flexion angle α

(Figure 21a) using the formulas Equation 5 and Equation 6.

cosα = l2
1 + l2

2 −
d2

2 · l1 · l2
(5)

α =


π if cosα ≥ 1
0 if cosα ≤−1

π− arccos(cosα) otherwise
(6)

To finish the limb’s animation, an analytical IK is used with the
newly computed location of the retargeted effector and intermedi-
ate joint position. This is applied to produce the animation of the
four avatar’s limbs.

Once the flexion angle is computed, it is applied to the interme-
diate joint as a rotation along its right (conversely left for the legs)
axis to produce the flexion. The second stage then aligns the pro-
duced effector position with the expected one.

At that stage, the swivel angle along the root-effector axis re-
mains to be determined (Figure 21b); logically, one expects to in-
fer it from the location of the reprojected intermediate joint target
point.

However, this approach becomes unstable the closer the retro-
projected intermediate joint is to the root-effector axis, as three
aligned points cannot constrain a plan.

Therefore, the swivel angle is adjusted using an interpolation be-
tween the source skeleton model limb swivel angle (used for unsta-
ble cases) and the angle to align the limb intermediate joint in the
half-plane determined by the reprojected intermediate joint position
(used when its distance to the swivel axis is sufficient to avoid in-
stabilities). The alignment swivel angle δ is computed using Equa-
tion 7 and Equation 8 with r the radial distance of the reprojected

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix
M

ea
su

re
d

 d
is

ta
n

ce

α

γ

γ

First spine flexion

and realignment

Comu�ng Sacrum

re-alignment angle

Applying the Rota�on

offset on the Sacrum
Final pose

Skull

Base

Sacrum's Posi�on

From Tracker

Rotated Sacrum

on the hips axis

Flexed Spine

Effector Posi�on

Previous Spine

Effector Posi�on

with Sacrum Re-alignment

β

β

Spine

Root

New

Spine Root

Figure 19: The spine animation process comprises a first resolution of the spine using the IK method from [UPBAS08], followed by a
realignment and a second pass.

Figure 20: Illustration, in black, of the shortcut bones used to skip
intermediate bones for the normalization computation process.

intermediate joint target position onto the root-effector axis (Fig-
ure 21b).

t =


0 if r ≤ 0.05

(r−0.05) ·10 if 0.05 < r < 0.15
1 if 0.15 ≤ r

(7)

δ = t ·β+(1− t) · γ (8)

Finally, the angle δ is applied through a rotation along the root-
effector axis to end the process.

Appendix F: Subjective evaluation

Experimental view

Poses used in the evaluation

References

[Ari18] ARISTIDOU A.: Hand tracking with physiological constraints.
The Visual Computer 34, 2 (Feb 2018), 213–228. doi:10.1007/
s00371-016-1327-8. 2, 7, 8

[KMA05] KULPA R., MULTON F., ARNALDI B.: Morphology-
independent representation of motions for interactive human-like anima-
tion. In Eurographics (2005). 9

[LHS∗20] LANGNER I., HENKER C., STEINHAGEN K., BÜLOW R.,
LANGNER S., SCHMIDT C.-O.: Can sacrum height predict body height,
age, and sex? a large population-based mri study. Forensic Imaging
21 (2020), 200379. doi:https://doi.org/10.1016/j.fri.
2020.200379. 5

[MGB17] MOLLA E., GALVAN DEBARBA H., BOULIC R.: Egocen-
tric mapping of body surface constraints. IEEE Transactions on Visual-
ization and Computer Graphics (2017), 1–1. doi:10.1109/TVCG.
2017.2708083. 3, 4, 5

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1007/s00371-016-1327-8
https://doi.org/10.1007/s00371-016-1327-8
https://doi.org/https://doi.org/10.1016/j.fri.2020.200379
https://doi.org/https://doi.org/10.1016/j.fri.2020.200379
https://doi.org/10.1109/TVCG.2017.2708083
https://doi.org/10.1109/TVCG.2017.2708083


M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

Table 1: Illustration of the targeted poses used for the evaluation

[PDP∗19] PAVLLO D., DELAHAYE M., PORSSUT T., HERBELIN B.,
BOULIC R.: Real-time neural network prediction for handling two-
hands mutual occlusions. Computers & Graphics: X 2 (2019), 100011.
doi:https://doi.org/10.1016/j.cagx.2019.100011. 7

[Pha19] PHASESPACE: Phasespace impulse x2. https://
phasespace.com/x2e-motion-capture/, 2019. 1

[UPBAS08] UNZUETA L., PEINADO M., BOULIC R., ÁNGEL SUES-
CUN: Full-body performance animation with sequential inverse kinemat-
ics. Graphical Models 70, 5 (2008), 87–104. doi:https://doi.
org/10.1016/j.gmod.2008.03.002. 9, 10

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/https://doi.org/10.1016/j.cagx.2019.100011
https://phasespace.com/x2e-motion-capture/
https://phasespace.com/x2e-motion-capture/
https://doi.org/https://doi.org/10.1016/j.gmod.2008.03.002
https://doi.org/https://doi.org/10.1016/j.gmod.2008.03.002


M. Delahaye et al. / Real-time self-contact retargeting of avatars down to finger level - Appendix

Measured distance

α

Reprojected
Effector Posi�on

Avatar Anchor
Joint Posi�on

Reprojected
Intermediate Posi�on

Effector posi�on
before realignment

α

l1

d

l2

(a) Limb flexion and realignment computation

β

γ

r

Virtual Target's Swivel

Source Skeleton's Swivel

Current Swivel

(b) Swivel computation

Figure 21: Swivel alignment: The first step of the IK flexes the limb
and aligns it towards the effector, leaving the swivel unconstrained.
Then, based on the miss-alignment (r), the current swivel is re-
aligned as a merged between the user’s skeleton swivel and the
one defined by the half-plane comprising the retro-projected target
point and the root-effector axis.

Figure 22: Screenshot of the displayed interface to the user on the
full right: the original action performed by a person, on the two
middle and right: the animated avatar using either the approach
with the retargeting pipeline enabled or with only raw angles pro-
vided by the user’s skeleton input. The order between the two an-
imation methods is randomized; hence, it is unknown to the par-
ticipant. Two continuous sliders are displayed below the videos to
allow participants to conduct individual video evaluations. Finally,
the participant can replay the videos as much as they want and val-
idate their choice using buttons from the interface.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.


