Machine Learning in Real-time

Unity Labs - Barracuda team

Florent Guinier
Unity Labs

Mission: Explore how real-time 3D (RT3D) will be created and played in the future.

Area of interest:

- RT3D authoring
- AI, deep learning
- Computer Visualization
- XR
- Storytelling
Barracuda

Lightweight inference library

- Cross platform
- CPU and GPU

Delivered as Unity package

Source is available on github

Why do we do it?

We believe the ML and RT3D communities are extremely powerful together!
Agenda

- Real-time ML/DL inference use cases for RT3D (9 mins)
- Barracuda pipeline (5 mins)
- Optimizations (15 mins)
- Practical example (8 mins)

Bonus slides: ONNX & ONNX Runtime
Real-time inference for RT3D

- Medium computational intensity
 - CPU
 - Complex architecture
 - Small input size

- High computational intensity
 - Better suited GPU
 - Convolution
 - Large input size
Real-time inference for RT3D

- **Medium computational intensity**
 - Decision making / agent behavior
 - Animation synthesis
Medium computational intensity

Decision making / agent behavior
Medium computational intensity

Animation authoring
Real-time inference for RT3D

- **High computational intensity**
 - Super resolution
 - Style transfer
 - XR object detection, tracking & segmentation
 - XR pose estimation
High computational intensity

Super resolution

NVidia DLSS

No DLSS
High computational intensity

Denoising
High computational intensity

Style transfer
High computational intensity

XR tracking & segmentation
High computational intensity

XR object detection / tracking
High computational intensity

XR object tracking
At loading or authoring time

- Texture upscaling/generation
- Baked lighting denoising
- Smart authoring
- And much more!
At loading or authoring time

Terrain Authoring
Barracuda pipeline

Python

ONNX

Unity Editor

Runtime

Keras

PyTorch

TensorFlow
Barracuda pipeline

Python

- Keras
- TensorFlow
- PyTorch
- ...

...
Barracuda pipeline

Python

Keras
TensorFlow
PyTorch
...
Barracuda pipeline

Python

Keras
TensorFlow
PyTorch
...

Unity Editor import

ONNX

Barracuda IR & Optimizations
Barracuda pipeline

Python

Keras
TensorFlow
PyTorch
...

Unity Editor import

ONNX

Barracuda IR & Optimizations

Barracuda runtime

Barracuda Worker
Barracuda pipeline

Keras
TensorFlow
PyTorch
...

Python
Unity Editor import

ONNX
Barracuda IR & Optimizations

Barracuda runtime

Barracuda Worker

Backends
Unity Burst
HPC#
Unity Compute
Unity Pixel
DirectML

SSE
AVX
NEON
DXIL
GLSL
METAL
SPIR-V

Unity Editor
import Barracuda runtime

Python

import Barracuda runtime

SSE
AVX
NEON
DXIL
GLSL
METAL
SPIR-V
Optimizations

- **Graph simplification/reordering**
 import time, backend agnostic

- **Subgraph kernel/layout selection**
 Import time, backend specific

- **Online**
 runtime, kernels implementation
Graph simplification

- Fold constant sub-networks
- Fuse linear operations
- Remove Transpose ops
- Fuse activations
Graph simplification

— Fold constant sub-networks
Graph simplification

- Fuse linear operations
Graph simplification

- Remove Transpose ops
Graph simplification

- Fuse activations
Graph simplification

- Fuse activations
Graph simplification

- Input
- MatMul
- Convolution+Relu
- Reduce
- Output
- Constants
Graph simplification

Input
- MatMul
- MatMul
- Convolution
- Transpose
- Relu
- Reduce
- Transpose
- Output

Constants

MatMul

Output
- Reduce
- Output

Reduce

Convolution+Relu

MatMul

Input

Constants
Graph simplification

Graph Simplification win

- EfficientNet: 1.13%
- InceptionNet: 3.02%
- YoloV4: 6.06%
- ResNet: 6.09%
- DenseNet: 8.52%
- GoogleNet: 10.77%
- MobileNet: 26.89%
Subgraph kernel/layout selection

We can select best the kernels in advance for given hardware and model.

- Reduce scheduling cost
- Allow to prebake temporary data structure

For best performance some kernel require specific memory layout.

- Up to Barracuda 3: internal memory layout can be select for graph.
- Upcoming: automatic subgraph memory layout per backend/hardware.
Optimizations : online

Convolution and Dense/MatMul are often responsible for most of the latency at inference.

— Deserve high amount of optimization love!
— Hardware and backend dependant.
Optimization: online

CPU – Matrix Multiply

Parallel Block Matrix-Multiply

- Block size and inner loop are determined based on the architecture
- Parallelized on the leading dimension

\[C = A \times B \]
Typically, convolution are implemented via the im2col algorithm + a MatMul.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

2x2 kernel
Optimization: online

CPU - Convolution

im2col algorithm:

Input tensor: \([H \times W, C]\)

2x2 kernel is slid along the input image. These values are flattened and concatenated to form the matrix on the right.
Optimization: online

CPU - Convolution

im2col algorithm:

Input tensor: \([H \times W, C]\)
Optimization: online

CPU - Convolution

im2col algorithm:

Input tensor: \([H \times W, C]\)
Optimization: online

CPU - Convolution

im2col algorithm:

Input tensor: \([H \times W, C]\)
Optimization: online

CPU - Convolution

im2col algorithm:

\[
\begin{array}{cccc}
1 & 2 & 4 & 5 \\
2 & 3 & 5 & 6 \\
4 & 5 & 7 & 8 \\
5 & 6 & 8 & 9 \\
\end{array}
\]

\[
\begin{array}{cccc}
10 & 11 & 12 \\
11 & 12 & 14 & 15 \\
13 & 14 & 16 & 16 \\
14 & 15 & 17 & 18 \\
\end{array}
\]

MatMul

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 \\
\end{array}
\]

\[
\begin{array}{cccc}
KxK*C \\
KxK \times C \\
KxK \times C \\
\end{array}
\]

\[
\begin{array}{cccc}
F \\
\end{array}
\]
Optimization: online

CPU - Convolution

KxK kernel
Optimizations - online

CPU - Convolutions

- We use a custom variation of the im2col algorithm:
 - Fast
 - **Very good peak memory**

 We implement convolution as a KxK matrix multiplications which reduces memory consumption by KxK times comparing to standard im2col algorithm.

 Our approach trades fraction of performance for significant memory use
Optimization: online

CPU - Convolution

KxK independent matrix multiplication
Optimization: online

CPU - Convolution

KxK independent matrix multiplication
Optimization: online

CPU - Convolution

KxK independent matrix multiplication
Optimization: online

CPU - Convolution

KxK independent matrix multiplication

\[
\begin{pmatrix}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18 \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
4 & 4 \\
8 & 8 \\
\end{pmatrix}
\]
Optimizations: online

C# is compiled via Burst to highly optimized vectorized assembly code.
Optimizations: online

CPU backend is by design heavily threaded (and thus asynchronous)
Optimizations: online

GPU - Convolution

- GPUs have awesome raw power, however they differ greatly:
 - On-chip memory VS DDR (dedicated VS mobile)
 - Scalar register? (dedicated VS mobile)
 - On-chip memory bandwidth VS FLOPS ratio
 - Number of threads to saturate GPU (and/or to hide latency efficiently)
 - ...

- This mean many implementations, all of them carefully crafted for a specific purpose.
Optimizations : online

GPU - Tidbits

- Dedicated GPUs often have a warp size of 64 (or 32).
 - Map nicely to convolutions with multiple of 64 kernels, hence the popularity of those sizes.
- First/last convolution of the NN with large input and 3 or 4 channels?
 - Different algo + probably harder to reach great GPU utilization
- For 3×3 kernel winograd is a generally a win
 - For larger kernel size it is harder because of LDS constraint
Optimizations - online

Tensor Memory layout

Memory layout is critical for performance bound applications.

NCHW [1,4,1,2]

NCHWC2 [1,2,1,2,2]

NHWC [1,1,2,4]
Optimizations - online

Tensor Memory layout

- HW/kernels combination have different preferred memory layouts
- Issues:
 - Memory shuffling around operator is suboptimal
 - Can’t alter model weights as they are shared to all worker/backend
- Solution:
 - Subgraph meta-data defined by backend optimisation pass.
 - Reoptimize the graph around the added memory shuffling.
Practical example

Style transfer

Goal: 30fps on desktop and console (PS4Pro)
Style transfer

Previous work: Research from Unity Labs Grenoble team
Style transfer

Initial exploration and plan

Initial model profiling
- Upsample: 2.8%
- Activations: 6.7%
- Broadcasts: 13.6%
- Instance: 20.7%

Convolutions: 56.2%
Style transfer

Book of dead with style transfer early tests
Some nice bugs/learning

- Models was hallucinating weird colors.
 - Model was trained with sRGB color space while we were feeding it in linear.
 - We converted to/from sRGB before/after the NN to avoid retraining it.

→ Check python texture import code!

- Initially, model was trained with point filtering Upsample creating artifacts.
 - Retraining would take too long.
 - We ended up forcing bilinear interpolation at inference while iterating.

→ Try to uncouple iterations from NN training!
Style transfer

Final architecture

Final model profiling
- Upsample: 7.9%
- Broadcasts: 4.5%
- Instance: 27.7%
- Convolutions: 59.9%
Style transfer

With temporal reprojection on PS4Pro
Thanks for listening!

We hope the ML and RT3D communities will achieve great things together!
Thanks to

<table>
<thead>
<tr>
<th>The Barracuda team</th>
<th>The Grenoble Style transfer team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandre Ribard</td>
<td>Kenneth Vanhoey</td>
</tr>
<tr>
<td>Aurimas Petrovas</td>
<td>Thomas Deliot</td>
</tr>
<tr>
<td>Tracy Sharpe</td>
<td>Adele Saint-Denis</td>
</tr>
<tr>
<td>Mantas Puida</td>
<td></td>
</tr>
<tr>
<td>Renaldas Zioma</td>
<td></td>
</tr>
<tr>
<td>Florent Guinier</td>
<td></td>
</tr>
</tbody>
</table>
Bonus slides
ONNX

— Gaining traction inside of the ML/DL ecosystem
 — Easy to find exporters for the most popular frameworks
 — Well maintained and updated
— Easy to read and ingest into custom ML implementation
 — Encapsulates both network structure and weights in a single file
ONNX

— From pytorch

```python
# network
net = ...

# Input to the model
x = torch.randn(1, 3, 256, 256)

# Export the model
torch.onnx.export(net,
                  x,
                  "example.onnx",
                  export_params=True,
                  opset_version=9,
                  do_constant_folding=False,
                  input_names=['X'],
                  output_names=['Y'])
```

model being run
model input (or a tuple for multiple inputs)
where to save the model (can be a file or file-like object)
store the trained parameter weights inside the model file
the ONNX version to export the model to
whether to execute constant folding for optimization
the model's input names
the model's output names
ONNX

— From TensorFlow

First export tf model to .pb

```python
# network
net = ...

# Export the model
tf.saved_model.save(net, "saved_model")
# or

tf.train.write_graph(sess.graph_def, directory, 
'saved_model.pb', as_text=False)
```

Then using tf2onnx (pip install tf2onnx) convert the .pb to ONNX

```bash
python -m tf2onnx.convert --graphdef model.pb --inputs=input:0 --outputs=output:0 --output_model model.onnx
```
ONNX

— From Keras

First you need keras2onnx (pip install keras2onnx)

Then it is quite similar to the pytorch exporter

```python
# network
net = ...

# convert model to ONNX
onnx_model = keras2onnx.convert_keras(net,
                                        name="example",
                                        target_opset=9,
                                        channel_first_inputs=None)

# keras model
# the converted ONNX model internal name
# the ONNX version to export the model to
# which inputs to transpose from NHWC to NCHW

onnx.save_model(onnx_model, "example.onnx")
```
ONNX Runtime

— ONNX Runtime follow closely the ONNX specifications. We use it as a reference implementation for our integration tests.

— Support various execution context:
 - CPU
 - GPU (Cuda)
 - DirectML
 - and more!

Great to compare inference speed against our own implementations.