

Topology Optimization for Computational Fabrication

Jun Wu, Niels Aage, Sylvain Lefebvre, Charlie Wang

Part One: Advanced Manufacturing

Charlie C. L. Wang

Delft University of Technology

April 24, 2017

Conventional Manufacturing Processes

Net Shape Processes

- Forging, drawing, extrusion, rolling
- Sheet metal forming, bending
- Die casting, investment casting
- Injection modeling

Subtractive Processes

- Lathing, milling, grinding, drilling,
- Water jetting, laser cutting, etc.

Challenges for Designers (An Example)

Challenges for Designers (Cont.)

- Conventional Mouse produced by Injection Molding
- Problems:
 - Complex shape? No
 - Moldability? Important
 - Flexibility? No
 - Customization? No

http://www.imould.com

http://mold-technology4all.blogspot.nl/

- Process to make a mold
 - Mold design (professional)
 - CNC machining (expensive)

Challenges for Designers

Design a product

- Cannot be fabricated
- Shape limitation
- Cannot have too many parts
- Otherwise, having a high cost

Design for manufacturing [1]

- ▶ Rule I: Reduce the total number of parts
- Rule 2: Design for easy-to-fabrication
- Rule 3: Use of standard components

Main Problem:

Conventional manufacturing lacks of flexibility

Additive Manufacturing

- Defined by ASTM as:
 - Process of joining materials to make objects from 3D model data, usually layer upon layer
- Six Different Types of AM:
 - Lasers: Stereolithography Apparatus (SLA), Selective Laser Sintering (SLS)
 - Nozzles: Fused Deposition Modeling (FDM)
 - Print-heads: Multi-jet Modeling (MJM), Binder-jet Printing (3DP)
 - Cutters: Laminated Object Modeling (LOM)
- Mainly used for Rapid Prototyping (Past)
- More and More used for 'Mass'-Production (Present)

Benefit of Additive Manufacturing

- Very flexible: direct digital fabrication from CAD models
- Rapid fabrication
- Excellent for customization
- ▶ Manufacturing is responsible for 33% of the world's carbon footprint AM has minimal material waste

Subtractive Machining:

Limitations / Challenges

- Limited part sizes
- Limited fabrication speed
- Limited materials (20k vs. 200 materials)
- Poor surface finish / low accuracy
- Inconsistent part quality
- High cost (machine, material, pre- and post-processing)

General functional principle of laser-sintering

Break-even Analysis of Conventional Manufacturing and 3D Printing

Source: Mark Cotteleer and Jim Joyce, 3D opportunity: Additive manufacturing paths to performance, innovation, and growth, Deloitte University Press, http://dupress.com/articles/dr14-3d-opportunity/, accessed March 17, 2015.

Graphic: Deloitte University Press | DUPress.com

Main Computation Steps in AM

Numerical Robustness

- Computation in IEEE arithmetic
 - Limited precision of floating-point arithmetic
- Geometry becomes inexact after intersection
- Geometric predicates
 - Correct?
 - Self-intersected models?

Orientation

Does c lie on, to the left of, or to the right of ab?

$$\begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} = \begin{vmatrix} a_x - c_x & a_y - c_y \\ b_x - c_x & b_y - c_y \end{vmatrix}$$

Problem of Inexact B-rep

Problem of Inexact B-rep (Cont.)

Robust Computation in Image Space

Voxel representation

Yuen-Shan Leung, and Charlie C.L. Wang, "Conservative sampling of solids in image space", IEEE Computer Graphics and Applications, vol.33, no.1, pp.14-25, January/February, 2013.

Supporting Structure?

Difference? Why and how?

Multi-Materials: Resolvable materials for supporting structure

Single Material: Using structures to support

Support Structure Generation

Direct slicing and support generation resultant contour

Fabricated part with support

Fabricated part after removing support

GPU-based Implementation

2.5D vs 3D Printing

CNC accumulation for build-insert-around

X. Zhao, Y. Pan, C. Zhou, Y. Chen, and C.C.L. Wang, "An integrated CNC accumulation system for automatic building-around-inserts", Journal of Manufacturing Processes, vol. 15, no.4, pp. 432-443, 2013.

Robot-Assisted Additive Manufacturing

- Using robot arms as device for motion control in AM
- Collaborative operations on two arms More DoFs to fabricate curved regions / layers
- Challenges:
 - Model decomposition
 - Collision-free tool path generation
 - Configurations in joint-angle space

https://youtu.be/mrR7IKpHo9k

https://youtu.be/5B37oz4cw9s

From 3D to 4D Printing

- ▶ 3D Printed Self-Assembly Structures
- ▶ How to predict the shape of fabricated model?
- Pattern Design / Process Optimization / New Triggers

https://youtu.be/vQB49vNFu14

Summary Remarks

- Conventional Manufacturing vs. Additive Manufacturing
- ▶ Reduce the challenges for designers
- Slicing and support generation
- Numerical robustness
- Multi-axis 3D printing
- Robot-assisted 3D printing
- 3D printed self-assembly structures (4D printing)

Thanks for Your Questions

Charlie C. L. Wang

Professor and Chair of Advanced Manufacturing
Department of Design Engineering
Delft University of Technology

Landbergstraat 15 2628 CE Delft The Netherlands

Email: c.c.wang@tudelft.nl

URL: http://www.io.tudelft.nl/en/organisation/personal-profiles/professors/wang-ccl/