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Laplacian in one minute

Gradient ∇f(x) = ‘direction of the
steepest increase of f at x’

Divergence div(F (x)) = ‘density of
an outward flux of F from an
infinitesimal volume around x’

Divergence theorem:∫
V

div(F)dV =

∫
∂V

〈F, n̂〉dS

‘
∑

sources + sinks = net flow’

Laplacian ∆f(x) = −div(∇f(x))

Smooth scalar field f

‘difference between f(x) and the average of f on an infinitesimal sphere
around x’ (consequence of the Divergence theorem)

?We define Laplacian with negative sign
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Physical application: heat equation

ft = −c∆f

Newton’s law of cooling: rate of change of the temperature of an object
is proportional to the difference between its own temperature and the
temperature of the surrounding

c [m2/sec] = thermal diffusivity constant (assumed = 1)
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Riemannian geometry in one minute

Tangent plane TxX = local
Euclidean representation of
manifold (surface) X around x

Riemannian metric

〈·, ·〉TxX : TxX × TxX → R

depending smoothly on x

Exponential map

expx : TxX → X

‘unit step along geodesic’

Geodesic = shortest path on X
between x and x′

xTxX

X
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〈·, ·〉TxX : TxX × TxX → R

depending smoothly on x

Isometry = metric-preserving shape
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Exponential map
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‘unit step along geodesic’
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Laplace-Beltrami operator

Intrinsic gradient

∇Xf(x) = ∇(f ◦ expx)(0)

Taylor expansion

(f ◦ expx)(v) ≈
f(x) + 〈∇Xf(x),v〉TxX

Laplace-Beltrami operator

∆Xf(x) = ∆(f ◦ expx)(0)

x

f

Smooth field f : X → R

Intrinsic (expressed solely in terms of the Riemannian metric)

Isometry-invariant

Self-adjoint 〈∆Xf, g〉L2(X) = 〈f,∆Xg〉L2(X)

Positive semidefinite ⇒ non-negative eigenvalues
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Discrete Laplacian (Euclidean)

i− 1 i+ 1i

i j

One-dimensional

(∆f)i ≈ 2fi − fi−1 − fi+1

Two-dimensional

(∆f)ij ≈ 4fij − fi−1,j − fi+1,j

− fi,j−1 − fi,j+1
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Discrete Laplacian (non-Euclidean)

j

i

wij

j

i

αij

βij

ai

Undirected graph (V,E)

(∆f)i ≈
∑

(i,j)∈E

wij(fi − fj)

Triangular mesh (V,E, F )

(∆f)i ≈
1

ai

∑
(i,j)∈E

cotαij+cot βij
2 (fi − fj)

ai = local area element

Tutte 1963; MacNeal 1949; Duffin 1959; Pinkall, Polthier 1993
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Physical application: heat equation

ft = −c∆f

Newton’s law of cooling: rate of change of the temperature of an object
is proportional to the difference between its own temperature and the
temperature of the surrounding

c [m2/sec] = thermal diffusivity constant (assumed = 1)
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Fourier analysis (Euclidean spaces)

A function f : [−π, π]→ R can be written as Fourier series

f(x) =
∑
ω

1

2π

∫ π

−π
f(ξ)eiωξdξ

︸ ︷︷ ︸
f̂(ω)=〈f,e−iωx〉L2([−π,π])

e−iωx

α1 α2 α3= + + + . . .

Fourier basis = Laplacian eigenfunctions: ∆e−iωx = ω2e−iωx
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Fourier analysis (non-Euclidean spaces)

A function f : X → R can be written as Fourier series

f(x) =
∑
k≥1

∫
X

f(ξ)φk(ξ)dξ︸ ︷︷ ︸
f̂k=〈f,φk〉L2(X)

φk(x)

= α1 + α2 + α3 + . . .

f φ1 φ2 φ3

Fourier basis = Laplacian eigenfunctions: ∆Xφk(x) = λkφk(x)
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Convolution (Euclidean spaces)

Given two functions f, g : [−π, π]→ R their convolution is a function

(f ? g)(x) =

∫ π

−π
f(ξ)g(x− ξ)dξ

Convolution Theorem: Fourier transform diagonalizes the convolution
operator ⇒ convolution can be computed in the Fourier domain as

f ? g = F−1(Ff · Fg)

d’Alembert 1754

; Borel 1899
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Convolution (non-Euclidean spaces)

Generalized convolution of f, g ∈ L2(X) can be defined by analogy

(f ? g)(x) =
∑
k≥1

〈f, φk〉L2(X)〈g, φk〉L2(X)

︸ ︷︷ ︸
product in the Fourier domain

φk(x)

︸ ︷︷ ︸
inverse Fourier transform

Not shift-invariant!

Represent filter in the Fourier domain

Problem: Filter coefficients depend on basis {φk}k≥1

⇒ does not generalize to other domains!

Shuman et al. 2013

; Henaff, Bruna, LeCun 2015
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Convolution (non-Euclidean spaces)

Function f Filtered function f̃

Henaff, Bruna, LeCun 2015
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Convolution (non-Euclidean spaces)

Function f Filtered function f Same filter
another shape

Henaff, Bruna, LeCun 2015
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Heat diffusion on manifolds

{
ft(x, t) = −∆Xf(x, t)

f(x, 0) = f0(x)

f(x, t) = amount of heat at point x at time t

f0(x) = initial heat distribution

Solution of the heat equation expressed through the heat operator

f(x, t) = e−t∆Xf0(x)

=
∑
k≥1

〈f0, φk〉L2(X)e
−tλkφk(x)

=

∫
X

f0(ξ)
∑
k≥1

e−tλkφk(x)φk(ξ)

︸ ︷︷ ︸
heat kernel ht(x,ξ)

dξ

“impulse response” to a delta-function at ξ

“how much heat is transferred from point x to ξ in time t”
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Heat kernel

Heat kernels at different points
(rows/columns of matrix e−t∆X )
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Autodiffusivity

Autodiffusivity = diagonal of matrix e−t∆X

Related to Gaussian curvature by virtue of the Taylor expansion

ht(x, x) ≈ 1

4πt
+
K(x)

12π
+O(t)

Sun, Ovsjanikov, Guibas 2009
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Spectral descriptors

f(x) =
∑
k≥1

 τ1(λk)
...

τQ(λk)

φ2
k(x)

Heat Kernel Signature (HKS)
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Low-pass filter bank

τi(λ) = exp(−λti)

Heat autodiffusivity

Wave Kernel Signature (WKS)
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Band-pass filter bank

τi(λ) = exp

(
− (log ei − log λ)2

σ2

)
Probability of a quantum particle

Sun, Ovsjanikov, Guibas 2009; Aubry, Schlickewei, Cremers 2011


