Laplacian in one minute

Smooth scalar field f

Laplacian in one minute

- Gradient $\nabla f(x)=$ 'direction of the steepest increase of f at x^{\prime}

Laplacian in one minute

- Gradient $\nabla f(x)=$ 'direction of the steepest increase of f at x^{\prime}
- Divergence $\operatorname{div}(F(x))=$ 'density of an outward flux of F from an infinitesimal volume around x^{\prime}

Smooth vector field F

Laplacian in one minute

- Gradient $\nabla f(x)=$ 'direction of the steepest increase of f at x^{\prime}
- Divergence $\operatorname{div}(F(x))=$ 'density of an outward flux of F from an infinitesimal volume around x^{\prime}
Divergence theorem:

$$
\begin{aligned}
& \int_{V} \operatorname{div}(\mathrm{~F}) d V=\int_{\partial V}\langle F, \hat{n}\rangle d S \\
& \cdot \sum \text { sources }+ \text { sinks }=\text { net flow' }
\end{aligned}
$$

Smooth vector field F

Laplacian in one minute

- Gradient $\nabla f(x)=$ 'direction of the steepest increase of f at x^{\prime}
- Divergence $\operatorname{div}(F(x))=$ 'density of an outward flux of F from an infinitesimal volume around x '
Divergence theorem:

$$
\int_{V} \operatorname{div}(\mathrm{~F}) d V=\int_{\partial V}\langle F, \hat{n}\rangle d S
$$

' \sum sources + sinks $=$ net flow'

- Laplacian $\Delta f(x)=-\operatorname{div}(\nabla f(x))$ 'difference between $f(x)$ and the average of f on an infinitesimal sphere around x^{\prime} (consequence of the Divergence theorem)

Physical application: heat equation

$$
f_{t}=-c \Delta f
$$

Newton's law of cooling: rate of change of the temperature of an object is proportional to the difference between its own temperature and the temperature of the surrounding
$c\left[\mathrm{~m}^{2} / \mathrm{sec}\right]=$ thermal diffusivity constant (assumed $=1$)

Riemannian geometry in one minute

- Tangent plane $T_{x} X=$ local Euclidean representation of manifold (surface) X around x

Riemannian geometry in one minute

- Tangent plane $T_{x} X=$ local Euclidean representation of manifold (surface) X around x
- Riemannian metric

$$
\langle\cdot, \cdot\rangle_{T_{x} X}: T_{x} X \times T_{x} X \rightarrow \mathbb{R}
$$

depending smoothly on x

Riemannian geometry in one minute

- Tangent plane $T_{x} X=$ local Euclidean representation of manifold (surface) X around x
- Riemannian metric

$$
\langle\cdot, \cdot\rangle_{T_{x} X}: T_{x} X \times T_{x} X \rightarrow \mathbb{R}
$$

depending smoothly on x
Isometry = metric-preserving shape deformation

Riemannian geometry in one minute

- Tangent plane $T_{x} X=$ local Euclidean representation of manifold (surface) X around x
- Riemannian metric

$$
\langle\cdot, \cdot\rangle_{T_{x} X}: T_{x} X \times T_{x} X \rightarrow \mathbb{R}
$$

depending smoothly on x
Isometry = metric-preserving shape deformation

- Exponential map

$$
\exp _{x}: T_{x} X \rightarrow X
$$

'unit step along geodesic'

Riemannian geometry in one minute

- Tangent plane $T_{x} X=$ local Euclidean representation of manifold (surface) X around x
- Riemannian metric

$$
\langle\cdot, \cdot\rangle_{T_{x} X}: T_{x} X \times T_{x} X \rightarrow \mathbb{R}
$$

depending smoothly on x
Isometry = metric-preserving shape deformation

- Exponential map

$$
\exp _{x}: T_{x} X \rightarrow X
$$

'unit step along geodesic'

- Geodesic $=$ shortest path on X between x and x^{\prime}

Laplace-Beltrami operator

Smooth field $f: X \rightarrow \mathbb{R}$

Laplace-Beltrami operator

Smooth field $f \circ \exp _{x}: T_{x} X \rightarrow \mathbb{R}$

Laplace-Beltrami operator

- Intrinsic gradient

$$
\nabla_{X} f(x)=\nabla\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Taylor expansion

$$
\begin{aligned}
& \left(f \circ \exp _{x}\right)(\mathbf{v}) \approx \\
& \quad f(x)+\left\langle\nabla_{X} f(x), \mathbf{v}\right\rangle_{T_{x} X}
\end{aligned}
$$

Laplace-Beltrami operator

- Intrinsic gradient

$$
\nabla_{X} f(x)=\nabla\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Taylor expansion

$$
\begin{aligned}
& \left(f \circ \exp _{x}\right)(\mathbf{v}) \approx \\
& \quad f(x)+\left\langle\nabla_{X} f(x), \mathbf{v}\right\rangle_{T_{x} X}
\end{aligned}
$$

- Laplace-Beltrami operator

$$
\Delta_{X} f(x)=\Delta\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Laplace-Beltrami operator

- Intrinsic gradient

$$
\nabla_{X} f(x)=\nabla\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Taylor expansion

$$
\begin{aligned}
& \left(f \circ \exp _{x}\right)(\mathbf{v}) \approx \\
& \quad f(x)+\left\langle\nabla_{X} f(x), \mathbf{v}\right\rangle_{T_{x} X}
\end{aligned}
$$

- Laplace-Beltrami operator

$$
\Delta_{X} f(x)=\Delta\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

- Intrinsic (expressed solely in terms of the Riemannian metric)

Laplace-Beltrami operator

- Intrinsic gradient

$$
\nabla_{X} f(x)=\nabla\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Taylor expansion

$$
\begin{aligned}
& \left(f \circ \exp _{x}\right)(\mathbf{v}) \approx \\
& \quad f(x)+\left\langle\nabla_{X} f(x), \mathbf{v}\right\rangle_{T_{x} X}
\end{aligned}
$$

- Laplace-Beltrami operator

$$
\Delta_{X} f(x)=\Delta\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant

Laplace-Beltrami operator

- Intrinsic gradient

$$
\nabla_{X} f(x)=\nabla\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Taylor expansion

$$
\begin{aligned}
& \left(f \circ \exp _{x}\right)(\mathbf{v}) \approx \\
& \quad f(x)+\left\langle\nabla_{X} f(x), \mathbf{v}\right\rangle_{T_{x} X}
\end{aligned}
$$

- Laplace-Beltrami operator

$$
\Delta_{X} f(x)=\Delta\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant
- Self-adjoint $\left\langle\Delta_{X} f, g\right\rangle_{L^{2}(X)}=\left\langle f, \Delta_{X} g\right\rangle_{L^{2}(X)}$

Laplace-Beltrami operator

- Intrinsic gradient

$$
\nabla_{X} f(x)=\nabla\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Taylor expansion

$$
\begin{aligned}
& \left(f \circ \exp _{x}\right)(\mathbf{v}) \approx \\
& \quad f(x)+\left\langle\nabla_{X} f(x), \mathbf{v}\right\rangle_{T_{x} X}
\end{aligned}
$$

- Laplace-Beltrami operator

$$
\Delta_{X} f(x)=\Delta\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant
- Self-adjoint $\left\langle\Delta_{X} f, g\right\rangle_{L^{2}(X)}=\left\langle f, \Delta_{X} g\right\rangle_{L^{2}(X)} \Rightarrow$ orthogonal eigenfunctions

Laplace-Beltrami operator

- Intrinsic gradient

$$
\nabla_{X} f(x)=\nabla\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

Taylor expansion

$$
\begin{aligned}
& \left(f \circ \exp _{x}\right)(\mathbf{v}) \approx \\
& \quad f(x)+\left\langle\nabla_{X} f(x), \mathbf{v}\right\rangle_{T_{x} X}
\end{aligned}
$$

- Laplace-Beltrami operator

$$
\Delta_{X} f(x)=\Delta\left(f \circ \exp _{x}\right)(\mathbf{0})
$$

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant
- Self-adjoint $\left\langle\Delta_{X} f, g\right\rangle_{L^{2}(X)}=\left\langle f, \Delta_{X} g\right\rangle_{L^{2}(X)} \Rightarrow$ orthogonal eigenfunctions
- Positive semidefinite \Rightarrow non-negative eigenvalues

Discrete Laplacian (Euclidean)

$(\Delta f)_{i} \approx 2 f_{i}-f_{i-1}-f_{i+1}$

Two-dimensional
$(\Delta f)_{i j} \approx 4 f_{i j}-f_{i-1, j}-f_{i+1, j}$
$-f_{i, j-1}-f_{i, j+1}$

Discrete Laplacian (non-Euclidean)

Undirected graph (V, E)

$$
(\Delta f)_{i} \approx \sum_{(i, j) \in E} w_{i j}\left(f_{i}-f_{j}\right) \quad(\Delta f)_{i} \approx \frac{1}{a_{i}} \sum_{(i, j) \in E} \frac{\cot \alpha_{i j}+\cot \beta_{i j}}{2}\left(f_{i}-f_{j}\right)
$$

Triangular mesh (V, E, F)
$a_{i}=$ local area element

Physical application: heat equation

$$
f_{t}=-c \Delta f
$$

Newton's law of cooling: rate of change of the temperature of an object is proportional to the difference between its own temperature and the temperature of the surrounding
$c\left[\mathrm{~m}^{2} / \mathrm{sec}\right]=$ thermal diffusivity constant (assumed $=1$)

Fourier analysis (Euclidean spaces)

A function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ can be written as Fourier series

$$
f(x)=\sum_{\omega} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\xi) e^{i \omega \xi} d \xi \quad e^{-i \omega x}
$$

Fourier analysis (Euclidean spaces)

A function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ can be written as Fourier series

$$
f(x)=\sum_{\omega} \underbrace{\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\xi) e^{i \omega \xi} d \xi}_{\hat{f}(\omega)=\left\langle f, e^{-i \omega x}\right\rangle_{L^{2}([-\pi, \pi])}} e^{-i \omega x}
$$

Fourier analysis (Euclidean spaces)

A function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ can be written as Fourier series

$$
f(x)=\sum_{\omega} \underbrace{\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\xi) e^{i \omega \xi} d \xi}_{\hat{f}(\omega)=\left\langle f, e^{-i \omega x}\right\rangle_{L^{2}([-\pi, \pi])}} e^{-i \omega x}
$$

Fourier basis $=$ Laplacian eigenfunctions: $\Delta e^{-i \omega x}=\omega^{2} e^{-i \omega x}$

Fourier analysis (non-Euclidean spaces)

A function $f: X \rightarrow \mathbb{R}$ can be written as Fourier series

$$
f(x)=\sum_{k \geq 1} \underbrace{\int_{X} f(\xi) \phi_{k}(\xi) d \xi}_{\hat{f}_{k}=\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}} \phi_{k}(x)
$$

ϕ_{2}

Fourier basis $=$ Laplacian eigenfunctions: $\Delta_{X} \phi_{k}(x)=\lambda_{k} \phi_{k}(x)$

Convolution (Euclidean spaces)

Given two functions $f, g:[-\pi, \pi] \rightarrow \mathbb{R}$ their convolution is a function

$$
(f \star g)(x)=\int_{-\pi}^{\pi} f(\xi) g(x-\xi) d \xi
$$

Convolution (Euclidean spaces)

Given two functions $f, g:[-\pi, \pi] \rightarrow \mathbb{R}$ their convolution is a function

$$
(f \star g)(x)=\int_{-\pi}^{\pi} f(\xi) g(x-\xi) d \xi
$$

Convolution Theorem: Fourier transform diagonalizes the convolution operator

Convolution (Euclidean spaces)

Given two functions $f, g:[-\pi, \pi] \rightarrow \mathbb{R}$ their convolution is a function

$$
(f \star g)(x)=\int_{-\pi}^{\pi} f(\xi) g(x-\xi) d \xi
$$

Convolution Theorem: Fourier transform diagonalizes the convolution operator \Rightarrow convolution can be computed in the Fourier domain as

$$
f \star g=\mathcal{F}^{-1}(\mathcal{F} f \cdot \mathcal{F} g)
$$

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^{2}(X)$ can be defined by analogy

$$
(f \star g)(x)=\sum_{k \geq 1}\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}\left\langle g, \phi_{k}\right\rangle_{L^{2}(X)} \phi_{k}(x)
$$

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^{2}(X)$ can be defined by analogy

$$
(f \star g)(x)=\sum_{k \geq 1} \underbrace{\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}\left\langle g, \phi_{k}\right\rangle_{L^{2}(X)}}_{\text {product in the Fourier domain }} \phi_{k}(x)
$$

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^{2}(X)$ can be defined by analogy

$$
(f \star g)(x)=\underbrace{\sum_{k \geq 1} \underbrace{\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}\left\langle g, \phi_{k}\right\rangle_{L^{2}(X)}}_{\text {product in the Fourier domain }} \phi_{k}(x)}_{\text {inverse Fourier transform }}
$$

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^{2}(X)$ can be defined by analogy

$$
(f \star g)(x)=\underbrace{\sum_{k \geq 1} \underbrace{\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}\left\langle g, \phi_{k}\right\rangle_{L^{2}(X)} \phi_{k}(x)}_{\text {product in the Fourier domain }}}_{\text {inverse Fourier transform }}
$$

- Not shift-invariant!

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^{2}(X)$ can be defined by analogy

$$
(f \star g)(x)=\underbrace{\sum_{k \geq 1} \underbrace{\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}\left\langle g, \phi_{k}\right\rangle_{L^{2}(X)} \phi_{k}(x)}_{\text {product in the Fourier domain }}}_{\text {inverse Fourier transform }}
$$

- Not shift-invariant!
- Represent filter in the Fourier domain

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^{2}(X)$ can be defined by analogy

$$
(f \star g)(x)=\underbrace{\sum_{k \geq 1} \underbrace{\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}\left\langle g, \phi_{k}\right\rangle_{L^{2}(X)} \phi_{k}(x)}_{\text {product in the Fourier domain }}}_{\text {inverse Fourier transform }}
$$

- Not shift-invariant!
- Represent filter in the Fourier domain
- Problem: Filter coefficients depend on basis $\left\{\phi_{k}\right\}_{k \geq 1}$

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^{2}(X)$ can be defined by analogy

$$
(f \star g)(x)=\underbrace{\sum_{k \geq 1} \underbrace{\left\langle f, \phi_{k}\right\rangle_{L^{2}(X)}\left\langle g, \phi_{k}\right\rangle_{L^{2}(X)} \phi_{k}(x)}_{\text {product in the Fourier domain }}}_{\text {inverse Fourier transform }}
$$

- Not shift-invariant!
- Represent filter in the Fourier domain
- Problem: Filter coefficients depend on basis $\left\{\phi_{k}\right\}_{k \geq 1}$ \Rightarrow does not generalize to other domains!

Convolution (non-Euclidean spaces)

Function f

Filtered function \tilde{f}

Convolution (non-Euclidean spaces)

Heat diffusion on manifolds

$$
\left\{\begin{array}{l}
f_{t}(x, t)=-\Delta_{X} f(x, t) \\
f(x, 0)=f_{0}(x)
\end{array}\right.
$$

- $f(x, t)=$ amount of heat at point x at time t
- $f_{0}(x)=$ initial heat distribution

Heat diffusion on manifolds

$$
\left\{\begin{array}{l}
f_{t}(x, t)=-\Delta_{X} f(x, t) \\
f(x, 0)=f_{0}(x)
\end{array}\right.
$$

- $f(x, t)=$ amount of heat at point x at time t
- $f_{0}(x)=$ initial heat distribution

Solution of the heat equation expressed through the heat operator

$$
f(x, t)=e^{-t \Delta_{X}} f_{0}(x)
$$

Heat diffusion on manifolds

$$
\left\{\begin{array}{l}
f_{t}(x, t)=-\Delta_{X} f(x, t) \\
f(x, 0)=f_{0}(x)
\end{array}\right.
$$

- $f(x, t)=$ amount of heat at point x at time t
- $f_{0}(x)=$ initial heat distribution

Solution of the heat equation expressed through the heat operator

$$
f(x, t)=e^{-t \Delta_{X}} f_{0}(x)=\sum_{k \geq 1}\left\langle f_{0}, \phi_{k}\right\rangle_{L^{2}(X)} e^{-t \lambda_{k}} \phi_{k}(x)
$$

Heat diffusion on manifolds

$$
\left\{\begin{array}{l}
f_{t}(x, t)=-\Delta_{X} f(x, t) \\
f(x, 0)=f_{0}(x)
\end{array}\right.
$$

- $f(x, t)=$ amount of heat at point x at time t
- $f_{0}(x)=$ initial heat distribution

Solution of the heat equation expressed through the heat operator

$$
\begin{aligned}
f(x, t) & =e^{-t \Delta_{X}} f_{0}(x)=\sum_{k \geq 1}\left\langle f_{0}, \phi_{k}\right\rangle_{L^{2}(X)} e^{-t \lambda_{k}} \phi_{k}(x) \\
& =\int_{X} f_{0}(\xi) \sum_{k \geq 1} e^{-t \lambda_{k}} \phi_{k}(x) \phi_{k}(\xi) d \xi
\end{aligned}
$$

Heat diffusion on manifolds

$$
\left\{\begin{array}{l}
f_{t}(x, t)=-\Delta_{X} f(x, t) \\
f(x, 0)=f_{0}(x)
\end{array}\right.
$$

- $f(x, t)=$ amount of heat at point x at time t
- $f_{0}(x)=$ initial heat distribution

Solution of the heat equation expressed through the heat operator

$$
\begin{aligned}
f(x, t) & =e^{-t \Delta_{X}} f_{0}(x)=\sum_{k \geq 1}\left\langle f_{0}, \phi_{k}\right\rangle_{L^{2}(X)} e^{-t \lambda_{k}} \phi_{k}(x) \\
& =\int_{X} f_{0}(\xi) \underbrace{\sum_{k \geq 1} e^{-t \lambda_{k}} \phi_{k}(x) \phi_{k}(\xi)}_{\text {heat kernel } h_{t}(x, \xi)} d \xi
\end{aligned}
$$

Heat diffusion on manifolds

$$
\left\{\begin{array}{l}
f_{t}(x, t)=-\Delta_{X} f(x, t) \\
f(x, 0)=f_{0}(x)
\end{array}\right.
$$

- $f(x, t)=$ amount of heat at point x at time t
- $f_{0}(x)=$ initial heat distribution

Solution of the heat equation expressed through the heat operator

$$
\begin{aligned}
f(x, t) & =e^{-t \Delta_{X}} f_{0}(x)=\sum_{k \geq 1}\left\langle f_{0}, \phi_{k}\right\rangle_{L^{2}(X)} e^{-t \lambda_{k}} \phi_{k}(x) \\
& =\int_{X} f_{0}(\xi) \underbrace{\sum_{k \geq 1} e^{-t \lambda_{k}} \phi_{k}(x) \phi_{k}(\xi)}_{\text {heat kernel } h_{t}(x, \xi)} d \xi
\end{aligned}
$$

- "impulse response" to a delta-function at ξ

Heat diffusion on manifolds

$$
\left\{\begin{array}{l}
f_{t}(x, t)=-\Delta_{X} f(x, t) \\
f(x, 0)=f_{0}(x)
\end{array}\right.
$$

- $f(x, t)=$ amount of heat at point x at time t
- $f_{0}(x)=$ initial heat distribution

Solution of the heat equation expressed through the heat operator

$$
\begin{aligned}
f(x, t) & =e^{-t \Delta_{X}} f_{0}(x)=\sum_{k \geq 1}\left\langle f_{0}, \phi_{k}\right\rangle_{L^{2}(X)} e^{-t \lambda_{k}} \phi_{k}(x) \\
& =\int_{X} f_{0}(\xi) \underbrace{\sum_{k \geq 1} e^{-t \lambda_{k}} \phi_{k}(x) \phi_{k}(\xi)}_{\text {heat kernel } h_{t}(x, \xi)} d \xi
\end{aligned}
$$

- "impulse response" to a delta-function at ξ
- "how much heat is transferred from point x to ξ in time t "

$$
\pi T
$$

Autodiffusivity

Autodiffusivity $=$ diagonal of matrix $e^{-t \Delta_{X}}$
Related to Gaussian curvature by virtue of the Taylor expansion

$$
h_{t}(x, x) \approx \frac{1}{4 \pi t}+\frac{K(x)}{12 \pi}+\mathcal{O}(t)
$$

Spectral descriptors

$$
\mathbf{f}(x)=\sum_{k \geq 1}\left(\begin{array}{c}
\tau_{1}\left(\lambda_{k}\right) \\
\vdots \\
\tau_{Q}\left(\lambda_{k}\right)
\end{array}\right) \phi_{k}^{2}(x)
$$

Heat Kernel Signature (HKS)

Low-pass filter bank

$$
\tau_{i}(\lambda)=\exp \left(-\lambda t_{i}\right)
$$

Heat autodiffusivity

Wave Kernel Signature (WKS)

Band-pass filter bank
$\tau_{i}(\lambda)=\exp \left(-\frac{\left(\log e_{i}-\log \lambda\right)^{2}}{\sigma^{2}}\right)$
Probability of a quantum particle

