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Deluge of geometric data

3D sensors Repositories 3D printers
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Applications

Reconstruction Recognition Retrieval

Avatars Virtual dressing Gesture control

Images: Davison et al. 2011; Zaiferiou et al. 2012; Kim et al. 2013; Faceshift;
Fashion3D; Minority report
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Basic problems: shape similarity and correspondence

Isometric
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Basic problems: shape similarity and correspondence

Isometric Non-isometric
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Basic problems: shape similarity and correspondence

Isometric Non-isometric Different
representation
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3D feature descriptors

SIFT1 / MeshHOG2 MSER3 / ShapeMSER4 (Intrinsic6) Shape context5

Spin image7 Heat kernel signature8

1Lowe 2004; 2Zaharescu et al. 2009; 3Matas et al. 2002; 4Litman et al. 2010;
5Belongie et al. 2000; 6Kokkinos et al. 2012; 7Johnson et al. 1999; 8Sun et al. 2009
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Task-specific features

Correspondence

Similarity

...
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Task-specific features

Correspondence Similarity

...
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Deep learning (r)evolution

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

2012
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Convolutional neural networks

Typical CNN architecture

Combination of convolution and pooling layers

Learn hierarchical abstractions from data with little prior knowledge

State-of-the-art performance in a wide range of applications

Fukushima 1980; LeCun et al. 1989; Image: H. Wang
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2D 3D 

Generalize deep learning to non-Euclidean data
in a geometrically meaningful way
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3D shapes vs images

Array of pixels Voxels Level set

Point cloud Mesh
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3D shapes vs images

½ + ½ =
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3D shapes vs images

½ + ½ =

½ + ½ = ?
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Deep learning on 3D data

Su, Maji, Kalogerakis, Learned-Miller 2015
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Deep learning on 3D data

Wu et al. 2015
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Extrinsic vs Intrinsic

Extrinsic Intrinsic
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Outline

Extrinsic methods: volumetric and view-based CNNs

Intrinsic methods: spectral descriptors

Optimal spectral descriptors

Random forests

Intrinsic CNN

Applications: correspondence, similarity, retrieval


