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Visual attention

@ Visual attention
» Presentation
» Overt vs covert
» Bottom-Up vs Top-Down
» Bottom-Up overt attention




Introduction to visual attention (1/5)

Natural visual scenes are cluttered

and contain many different objects

that cannot all be processed
simultaneously.

Where is Waldo, the young boy
wearing the red-striped shirt...

Amount of information coming
down the optic nerve 108 — 10°
bits per second

e

Far exceeds what the brain is
capable of processing...



YouTube link: www.youtube.com/watch?v=ubNFOQNEQLA



www.youtube.com/watch?v=ubNF9QNEQLA

Introduction to visual attention (3/5)

Visual attention

Posner proposed the following definition (Posner, 1980). Visual atten-
tion is used:

" to select important areas of our visual field (alerting);

= to search for a target in cluttered scenes (searching).

There are several kinds of visual attention:
= Qvert visual attention: involving eye movements;

w Covert visual attention: without eye movements (Covert
fixations are not observable).
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Introduction to visual attention (4/5)

Bottom-Up vs Top-Down

»= Bottom-Up: some things draw attention reflexively, in a
task-independent way (Involuntary; Very quick; Unconscious);




Introduction to visual attention (4/5)

Bottom-Up vs Top-Down

»= Bottom-Up: some things draw attention reflexively, in a
task-independent way (Involuntary; Very quick; Unconscious);

» Top-Down: some things draw volitional attention, in a
task-dependent way (Voluntary; Very slow; Conscious).



Introduction to visual attention (5/5)

Computational models of visual attention aim at predicting
where we look within a scene.

In this presentation, we are focusing on Bottom-Up models of overt
attention:

= Low-level visual features (color, luminance, texture, motion,...)

= Mid-level visual features (face, text,...).



% Computational models of visual attention

® Computational models of visual attention
» Main hypothesis

Computational » Taxonomy

models of visual

B » Information theoretic model
» Cognitive model




Computational models of Bottom-up visual
attention (1/2)

Most of the computational models of visual attention have been
motivated by the seminal work of Koch and Ullmann (Koch and
Ullman, 1985).

Central Representation

w3 plausible computational
architecture to predict our
gaze;

WTA

= 3 set of feature maps
processed in a massively
parallel manner;

Feature Maps

" a single topographic saliency
map.
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Computational models of Bottom-up visual
attention (2/2)

ﬁ//éﬁay map /f;}ﬁfi%fe/ map foat map



Taxonomy

= |nformation Theoretic

=

s

s

=

=S

attention (1/1)

Taxonomy of models:

models;
Cognitive models;
Graphical models;

Spectral analysis
models;

Pattern classification

models;

Bayesian models.

Information Theoretic Models

Computational models of Bottom-up visual

Cognitive models

Bruce and Tatsos, 2005 (Spatial)
Rosennoltz, 1998

Bruceand  Houand  Mancas, 2007
T50i505.  Zhang, 2008 Seo and Mianfar,
2008 2003
(spatiotemporal) Wangetal 2011

YinLietal, 2009

Graphical Models

Selah et al, 2002
Harel etal, 2006
Pangetal, 2008

Liv etal, 2007

Achanta et al. 2008|

Awraham and
Lindenbaum, 2010
Rao et al, 2005 —— Chikkerur et al. 2010

Spectral Analysis Models

Hou and Zhang, 2007

| Achanta etal, 2009
Guo et ol 2008

Cwegl,gop  anandZhang 2008

Feature Integration Theory (FIT), Triesman and Gelade, 1980

Koch and Ullman, 1985

/ \\ Niebur

Mianse, 1083 o =
Pamerieau, 1995
Imiet al, 1998 1994
AN
K itiet al, 2003
& Le Meur et al. 2007
Marat et al, 2009
15,2005 Jalietal 2010

VOCUS, Frintrop, 2008

STB, Walther et al, 2006 Navalpakkam

and I, 2005
Le Meur et o1, 2008
Murray et al, 2011 / \ Borjietal
2010
Frrtrop g
2008 15,2010

Heidemann et al, 2004 —— Kootstra et al, 2008 [symmetry model]

Pattern Classification Models

Bayesian Models

Kienzie et al, 2003 T

P
Peters and Ict, 2007
Judd et al, 2009

Ehingeretal, 2008 Borj etal, 2011

Torralba, 2003

Zhang etal, 2008
Oliva et al, 2003 o

Iti and Baldi, 2005 [surprise model)
Zhang etal. 2003

Boceignoe, 2008 (spatiot=mporal]

Other Models

Decision Theoretic Models

Ramstrom and Christiansen, 2002
Ma et al. 2005 [spatiotemporal)

Rzo et 2l 2005
visual search]
Diazetal, 2009

Gao and Vaseoncelos, 2004 (Spatial)

Gao and Vasconcelos, 2009 B ER

Mahadevan and Vasconcelos,
2010 (spatiotemporal)

Extracted from (Borji and ltti, 2013);



Information theoretic model (1/3)

Information Theoretic Models

Bruce and Tsotsos, 2005 [Spatial)

Information Theory / Rosenhaltz, 1998 !

Torralba, 2003
Bruceand  Houand  Mancas, 2007

= Self-information, ! Tsotsos, Zhang, 2008 Seo and Milanfar,
. . : 2008 2009
Iy 1
Mutual information, | (spatiosemporal Wang et al, 2011
s [
Entropy... : Yin Li et al, 2009

Extracted from (Borji and Itti, 2013).

Self-information is a measure of the amount information provided by an
event. For a discrete X r.v defined by A = {z1,...,zn} and by a pdf, the
amount of information of the event X = z; is given by:

I(X = z;) = —logap(X = ), bit/symbol
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Information theoretic model (2/3)
's model (RARE2012) (Extension of

Input Image

Step 1:

& " Features Extraction
Gabor filter

ction
algorithm

Information theoretic
model

Step 2:
Rarity (S Multi-scale Rarity

Step 3:
Intra and Inter-channel Fusion

Output Saliency Map




Information theoretic model (3/3)

's model (RARE2012)

= Good prediction:
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Information theoretic
model

Information theoretic model (3/3)
's model (RARE2012)

= Good prediction: w= Difficult cases:




Cognitive model (1/3)

Cognitive models

Feature Integration Theory [FIT), Triesman and Gelade, 1980

Koch and Ullman, 1985

/ \\ Niebur

Milanze, 1993 Baluja and and Koch,
. Pomerleau, e
the Human Visual System Ieti et al, 1998 L

(HVS) &
‘{‘% Ith et al. 2003

Le Meur et al, 2007 4 = =
T,
Marat et al, 2009
RO

as faithful as possible to

» inspired by cognitive

Ieti, 2005 JiaLietal. 2010
Cognitive model concepts; VOCUS, Frintrop, 2008
Navalpakkam
STB. Walther et al. 2008
= based on the HVS e es and Ieti, 2005

Le Meur et al, 2006 4 = =

properties. Murray et al, 2011 / \\ Borji et al.

2010

Frintrop, Elazary and
2008 Iets, 2010

Heidemann et al. 2004 == Kootstra et al., 2008 [symmetry model]

Extracted from (Borji and Itti, 2013).
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Cognitive model (2/3)

's cognitive model

In (Le Meur et al., 2006), we designed a
computational model of bottom-up visual
attention.

INPUT

@ Input color image;

Cognitive model
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Cognitive model (2/3)

's cognitive model

In (Le Meur et al., 2006), we designed a

computational model of bottom-up visual 4
attention. Sy
INPUT
2«
55 ¢
o Input Color image; OPPONENT COLOR SPACE

@® Projection into a perceptual color space;

Cognitive model
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Cognitive model (2/3)

's cognitive model

In (Le Meur et al., 2006), we designed a
computational model of bottom-up visual
attention.

INPUT

@ Input color image;
® Projection into a perceptual color space;

© Subband decomposition in the Fourier
domain;

Cognitive model
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Cognitive model (2/3)

's cognitive model

In (Le Meur et al., 2006), we designed a
computational model of bottom-up visual
attention.

INPUT

@ Input color image;
® Projection into a perceptual color space;

© Subband decomposition in the Fourier
domain;

@ CSF and Visual Masking; 2
s 3 PO
@ Difference of Gaussians;
CSF & Visual Masking




Cognitive model (2/3)

's cognitive model

In (Le Meur et al., 2006), we designed a
computational model of bottom-up visual
attention.

INPUT

@ Input color image;
® Projection into a perceptual color space;

© Subband decomposition in the Fourier
domain;

@ CSF and Visual Masking; e
— 37 ERi
@ Difference of Gaussians;

@ Pooling.




Cognitive model (3/3)

's cognitive model

= Good prediction:
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Cognitive model (3/3)

(& 's cognitive model

= Good prediction: w= Difficult cases:

Cognitive model




Saliency model’s
performance

© Saliency model's performance
» Ground truth
» Similarity metrics
» Benchmark
» Limitations and What's next?
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= Eye tracker:

o)

= A panel of
observers;

= An appropriate
protocol.




Ground truth (2/2)

= Discrete fixation map f? for the i*" observer:

M
Fix) = 8(x —xx)
k=1

where M is the number of fixations and x; is
the k™ fixation.

= Continuous saliency map S:

5(x) = (% Zf%x)) + Golx)

where N is the number of observers.
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Similarity metrics (1/2)

For comparing two maps

= The linear correlation coefficient, cc € [-1,1];

» The similarity metric sim uses the normalized probability
distributions of the two maps (Judd et al., 2012). The similarity
is the sum of the minimum values at each point in the
distributions:

sim = Z min (pdfimap1 (%), pdfmapz (X)) (1)

e sim = 1 means tﬁe pdfs are identical, sim = 0 means the pdfs
are completely opposite.
= Earth Mover’'s Distance metric EMD is a measure of the
distance between two probability distributions. It computes the
minimal cost to transform one probability distribution into
another one.
e EMD = 0 means the distributions are identical, i.e. the cost is
null.

Similarity metrics

Matlab software is available on the following webpage:
http://saliency.mit.edu/.
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http://saliency.mit.edu/

Similarity metrics (2/2)

For comparing a map and a set of visual fixations

= Receiver Operating Analysis;

= Normalized Scanpath Saliency (Parkhurst et al., 2002, Peters
et al., 2005);

= Percentile (Peters and Itti, 2008);

» The Kullback-Leibler divergence (Itti and Baldi, 2005).

See the review:

Sy metes mm Le Meur, O. & Baccino, T., Methods for comparing scanpaths
and saliency maps: strengths and weaknesses, Behavior
tﬁé‘ Research Method, 2013.
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Benchmark (1/1)

More recently, two new online benchmarks
(http://saliency.mit.edu/): MIT300 and CAT2000.

Dataset |Citation Images (Observers |Tasks [Durations |[Extra Notes
i:&g:“srz"e:‘eds"“' e [This was the first data set with held-out
Tilke Judd, Fredo Durand, Antonio Torralba. A el 39 oo human eye movements, and is used as a
MIT300 |Benchmark of Computational Models of Saliency to [yc= "8TF PR lages: B8 [3sec |benchmark test set
Predict Human Fixations [MIT tech report 2012] |y 2 5 oY 18-50 leyetracker: ETL 400 ISCAN (240Hz)
. Download 300 test images.
1 dva* ~ 35px
[This dataset contains two sets of images:
train and test. Train images (100 from
24 per leach category) and fixations of 18
: 14000 images from 20 [image observers are shared but 6 observers are
AN E; e i (I P A e S different categories ((120in |firee Iheld-out. Test images are available but
ICAT2000 [Fixation Dataset for Boosting Saliency Research 5sec
[CVPR 2015 workshop on “Future of patasete [S22 1920x1080px tota)  viewing fixations of all 24 observers are held out
1 dva® ~ 38px ages leyetracker: EyeLink1000 (1000Hz)
1827 Download 2000 test images.
Download 2000 train images (with
[fixations of 18 observers).
F— To perform a fair comparison, download the images, run your model

and submit your results...
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% Limitations (1/1)

The picture is much clearer than 10 years ago!

BUT...

Important aspects of our visual system are clearly overlooked
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% Limitations (1/1)

The picture is much clearer than 10 years ago!

BUT...

Important aspects of our visual system are clearly overlooked

© Current models implicitly assume that eyes are equally likely to
move in any direction;

(] Viewing biases are not taken into account;

© The temporal dimension is not considered (static saliency map).

25 /52




O Saccadic model
» Presentation
» Proposed model

Saccadic model
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» Eye movements are composed of fixations and saccades. A
sequence of fixations is called a visual scanpath.

= When looking at visual scenes, we perform in average 4 visual
fixations per second.

Saccadic models are used:

@ to compute plausible visual
scanpaths (stochastic,
saccade amplitudes /
orientations...);

® to infer the scanpath-based
saliency map < to predict
salient areas!!
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Saccadic model to infer the saliency map

The fundamental assumption is that scanpaths can be described by a
Markov process, i.e. each eye fixation only depends on the previous
ones.

= The seminal work of (Ellis and Smith, 1985, Stark and Ellis,
1981) described a probabilistic approach where the eye
movements are modelled as a first-order Markov process.
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% Proposed model (1/7)

O. Le Meur & Z. Liu, Saccadic model of eye
movements for free-viewing condition, Vision

Research, 2015

O. Le Meur & A. Coutrot, Introducing
context-dependent and spatially-variant viewing
biases in saccadic models, Vision Research, 2016.

O. Le Meur & A. Coutrot, How saccadic models

™ | | I help predict where we look during a visual task?
e @ Application to visual quality assessment, SPIE
I I I Electronic Imaging, Image Quality and System
Performance Xlll, 2016.




% Proposed model (2/7)

So, what are the key ingredients to design a saccadic model?

I

The model has to be stochastic: the subsequent fixation cannot be
completely specified (given a set of data).

The model has to generate plausible scanpaths that are similar to
those generated by humans in similar conditions: distribution of
saccade amplitudes and orientations, center bias...

Inhibition of return has to be considered: time-course, spatial decay...

Fixations should be mainly located on salient areas.
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% Proposed model (3/7)

Let T:Q C R? — R? an image and x; a fixation point at time t.

We consider the 2D discrete conditional probability:

P (X[Xi—1,...,%_7) < ppu(X)pp(d, ) prr(X|Xs—1,- -+, X;—7)

"= ppy : Q — [0,1] is the grayscale saliency map;

= pp(d, @) represents the joint probability distribution of saccade
amplitudes and orientations. d is the saccade amplitude between two
fixation points x; and x;—1 (expressed in degree of visual angle), and
¢ is the angle (expressed in degree between these two points);

= py(x|t —1,...,t— T) represents the memory state of the location x
at time t. This time-dependent term simulates the inhibition of
return.

31/52




N P d model (4/7
L \Y Droposed model (4/7)

o Xe—1) < ppu(X)pe(d, @)prr (X|X¢—1, -+, X¢—T)

D (xlxt—17 -

» ppy is the bottom-up saliency map.

e Computed by GBVS model (Harel et al., 2006). According to
(Borji et al., 2012)'s benchmark, this model is among the best
ones and presents a good trade-off between quality and
complexity.

e ppu(x) is constant over time. (Tatler et al., 2005) indeed
demonstrated that bottom-up influences do not vanish over time.
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% Proposed model (5/7)

Viewing biases

p(X|x¢—1,...,%—7) X ppu(X)pr(d, ) prr(X|X—1,- -+, X4_7T)

= pp(d, @) represents the joint probability distribution of saccade
amplitudes and orientations.

d and ¢ represent the distance and the angle between each pair of
successive fixations, respectively.
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N Proposed model (6/7)
(& Memory effect and inhibition of return (loR)

D (X|X¢—1,. -

S Xe—7) X ppu(X)pe(d, ¢)par(X|xi 1, X 7)

v par(X|X¢—1,-+ ,X¢—7) represents the memory effect and loR of
the location x at time ¢. It is composed of two terms: Inhibition
and Recovery.

i i ] H H H
§ ) . . H » H
H 3 3
g H
£ g § g g §
(a) mis (b) mnibie (c) e 4 (d) s 3 (e) ins 3 (f) ing 4

e The spatial loR effect declines as a Gaussian function ®.,(d)
with the Euclidean distance d from the attended
location (Bennett and Pratt, 2001);

e The temporal decline of the loR effect is simulated by a simple

linear model.
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Proposed model (7/7)

Selecting the next fixation point

p(X|xi—1,...,x—7) < ppu(X)pB(d, ®)prr (X|[Xe—1,- -+, Xe— 1)

= Optimal next fixation point (Bayesian ideal searcher proposed
by (Najemnik and Geisler, 2009)):

Xj = argmax p (X|X¢—1, ", X¢—7T) (2)
x€EN

Problem: this approach does not reflect the stochastic behavior of
our visual system and may fail to provide plausible
scanpaths (Najemnik and Geisler, 2008).

= Rather than selecting the best candidate, we generate N. = 5 random
locations according to the 2D discrete conditional probability
D (XlXt71, o ,Xt—T)-
The location with the highest saliency gain is chosen as the next
fixation point xj.
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@ Saccadic model’s performance
» Plausible scanpaths?
» Similarity between human and predicted scanpaths
» Saliency map and randomness
» Limitations (1/1)
» Extensions
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% Results (1/8)

The relevance of the proposed approach is assessed with regard to
the plausibility, the spatial precision of the simulated scanpath
and ability to predict saliency areas.

" Do the generated scanpaths present the same oculomotor biases
as human scanpaths?

= What is the similarity degree between predicted and human
scanpaths?

» Could the predicted scanpaths be used to form relevant saliency
maps?
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Results (2/8)

Are the simulated scanpaths plausible?

= Protocol:

e We assume that the simulated scanpaths are obtained in a
context of purely free viewing =- top-down effects are not taken
into account.

e For each image in Bruce's and Judd’'s datasets, we generate 20
scanpaths, each composed of 10 fixations = 224600 generated
visual fixations.

e We assume that the visual fixation duration is constant. So,
considering an average fixation duration of 300ms, 10 fixations

represent a viewing duration of 3s.

e Bottom-up saliency maps are computed by GBVS model (Harel
et al., 2006).
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Results (3/8)

Are the simulated scanpaths plausible?

Probability

5 10 5
Saccade amplitude (deg)

Probabilty

0 5 70 5 20
Saccade amplitude (deg)

(a)

(b)
Top row: Bruce's dataset. Bottom row:

Judd’s dataset.
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Results (4/8)

Are the simulated scanpaths plausible?

Impact of the oculomotor constraints (spatial and orientation),

0.04
---Human

—WTA+IoR

— Without oculomotor constraint|

=4
o
)

Probability
=)
o
N

0.01fi

- ==Human
—— Without oculomotor constraint

0 5 10 15 20

270
Saccade amplitude (deg.)
(a) (b) (c)

"=+ Model WTA+IoR: pa(x, t) is just composed of the inhibition term,
i.e. re-fixation is not possible. In addition, we pick the location having
the highest probability (deterministic model);

= Model without oculomotor constraint: we replace the joint probability
distribution pg(d, ¢) by a 2D uniform distribution.
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Results (5/8)

What is the similarity degree between predicted and human scanpaths?

There are few methods for comparing scanpaths: string-edit (Privitera
and Stark, 2000), Dynamic Time Warp algorithm (DTW) (Gupta et al.,
1996, Jarodzka et al., 2010). More details in (Le Meur and Baccino, 2013).

= \We use DTW'’s method.

= For a given image, 20 scanpaths each composed of 10 fixations are
generated. The final distance between the predicted scanpath and
human scanpaths is equal to the average of the 20 DTW scores.

The closer to 0 the value DT'W, the more similar the scanpaths.
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Results (6/8)

What is the similarity degree between predicted and human scanpaths?

o GBVS-SM
00 Boccignone & Ferraro (2004)
0o WTA+IoR
150 o Without oculomotor constraint

1] Random

2

A 100 { 91 X

50 +

Bruce Juldd

= Five models are evaluated.

= The error bars correspond to the SEM (Standard Error of the Mean).
= DTW = 0 when there is a perfect similarity between scanpaths.

= There is a significant difference between the performances of the proposed
model and (Boccignone and Ferraro, 2004)’s model (paired t-test,
p << 0.01).

= As expected, the lowest performances are obtained by the random model.
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Results (7/8)

Scanpath-based saliency map

= We compute, for each image, 20 scanpaths, each composed of
10 fixations.

» For each image, we created a saliency map by convolving a
Gaussian function over the fixation locations.

4.

(b) () (d)
(a) original image; (b) human saliency map; (c) GBVS saliency map; (d)
GBVS-SM saliency maps computed from the simulated scanpaths.



Results (8/8)

Scanpath-based saliency map

Table 2
Performance of different models over two datasets using the linear correlation coefficient (CC), KL-divergence (KL),
hit rate (HR) and the normalized scanpath saliency (NSS). The last column indicates the average rank R for the two
tested datasets. The best rank is 1 whereas the lowest is 12. Note that the models proposed by Garcia-Diaz et al.
(2012), Riche et al. (2013) and Harel et al. (2006) are commonly called AWS, RARE2012 and GBVS, respectively.

\ Bruce’s dataset [ Judd’s dataset [ R
‘ Method [ CC ‘ KL ‘ NSS ‘ HR ‘ CC ‘ KL ‘ NSS ‘ HR ‘
Ttti et al. (1998) 0.27 15.74 0.08 0.74 0.22 21.24 0.11 0.75 11.8
Hou and Zhang (2007) 0.30 13.72 0.10 0.76 0.24 19.5 0.13 0.76 9.9
Bruce and Tsotsos (2009) 0.31 16.18 0.09 0.79 0.23 22.15 0.12 0.78 10.6
Le Meur et al. (2006) 0.37 11.42 0.11 0.79 0.31 17.85 0.16 0.79 7.6
Garcia-Diaz et al. (2012) 0.43 13.14 | 0.14 0.80 0.32 18.89 0.17 0.80 6.4
Riche et al. (2013) 0.55 10.39 0.17 0.84 0.37 17.17 0.20 0.83 3.9
Judd et al. (2009) 0.42 14.56 0.13 0.82 0.41 20.24 0.21 | 0.88 5.4
Harel et al. (2006) 0.56 10.97 0.17 0.86 0.40 17.56 0.21 0.86 3.1
Trained with Judd’s dataset Trained with Bruce’s dataset
GBVS-SM 0.59 | 5.08 [ 0.19 | 0.86 | 0.40 | 12.95 | 0.21 | 0.85 | 1.9
Trained with the four eye tracking datasets
GBVS-SM 0.56 5.05 0.19 | 0.87 | 0.40 12.37 | 0.21 | 0.85 -
WTA and ToR 0.47 5.51 0.15 0.88 0.26 17.09 0.14 0.79 4.8
Without oculomotor 0.42 12.51 0.13 0.81 0.32 19.2 0.17 0.81 6.8
constraints
Boccignone and Ferraro (2004) 0.36 7.45 0.13 0.88 0.22 14.49 0.13 0.86 6.0

Bold values represent the highest performance (one bold value per column).
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% Saliency map and randomness (1/2)

= Influence of the saliency map:

Table 3

Performance of different models over Bruce’s datasets using the DTW metric, the
linear correlation coefficient, KL-divergence, hit rate and the normalized scanpath
saliency (NSS). Itti-SM, AWS-SM and Top2-SM represent the saliency maps generated
by the proposed approach when Itti, AWS and Top2 saliency maps are the input of the
proposed saccadic model, respectively.

Method Bruce's dataset

DTW cC KL NSS HitRate
GBVS-SM 73.80 0.59 5.08 0.19 0.86
[tti-SM 95.34 0.28 12.10 0.09 0.75
AWS-SM 91.18 0.45 B8.56 0.14 0.82
Top2-SM 72.57 0.64 437 0.20 0.87

Top2-SM: we aggregated the saliency maps of GBVS and RARE2012 models
through a simple average. (Le Meur and Liu, 2014) demonstrated that a simple
average of the top 2 saliency maps, computed by GBVS and RARE2012 models,
significantly outperforms the best saliency models.
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% Saliency map and randomness (2/2)

eur

(b) Ne =1 (c) No=5 (d) Ne =50

The maximal randomness is obtained when N, = 1.
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m Limitations of the proposed model

Still far from the reality...

= We do not predict the fixation durations. Some models could be
used for this purpose (Nuthmann et al., 2010, Trukenbrod and
Engbert, 2014).

»= Second-order effect. We assume that the memory effect occurs
only in the fixation location. However, are saccades independent
events? No, see (Tatler and Vincent, 2008).

= High-level aspects such as the scene context are not included in
our model.

= Should we recompute the saliency map after every fixations?
Probably yes...

= Randomness (N.) should be adapted to the input image. By
default, N, = 5.

" |s the time course of loR relevant? Is the recovery linear?
» Foveal vs peripheral vision? Cortical magnification...
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O. Le Meur & A. Coutrot, Introducing
context-dependent and spatially-variant viewing
biases in saccadic models, Minor Revision in Vision
Research.

Spatially-variant and context dependent joint distribution ps(d, ¢, x)

Conversational videos Natural scenes
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O. Le Meur & A. Coutrot, Introducing
context-dependent and spatially-variant viewing
biases in saccadic models, Minor Revision in Vision
Research.

Spatially-variant and context dependent joint distribution ps(d, ¢, x)

Landscapes Webpages

@H @
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@ Conclusion
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Two contributions:

= A new saccadic model performing well to:

e produce plausible visual scanpaths;
e detect the most salient regions of visual scenes.

= Signature of viewing tendencies. This signature is
spatially-variant and context-dependent;




Future works:

= Dealing with the limitations of the current implementation;

= Spatio-temporal signature of viewing tendencies:

o for healthy people (according to gender, sex...);
e for visually impaired people (use eye-movement to detect
degenerative diseases).

» |ongitudinal studies from childhood to adulthood.

Better signature of viewing tendencies can be used to screen mental
health... (see (Itti, 2015))
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