
1

Tutorial 5: Programming Graphics Hardware

GPGPU: Beyond GraphicsGPGPU: Beyond Graphics

Mark J. Harris

Tutorial 5: Programming Graphics Hardware

GPGPU:
General-Purpose Computation on GPUs

The GPU on commodity video cards has evolved
into an extremely flexible and powerful processor

Programmability
Precision
Performance

This talk addresses the basics of harnessing the
GPU for general -purpose computation

Motivation: Computational Power

GPUs are fast…
3 GHz Pentium4 theoretical : 6 GFLOPS

5.96 GB/sec peak

GeForce FX 5900 observed *: 20 GFLOPs
25.6 GB/sec peak

GeForce 6800 Ultra observed*: 40 GFLOPs
35.2 GB/sec peak

*Observed on a synthetic benchmark:
A long pixel shader with nothing but MUL instructions

Courtesy Ian Buck Tutorial 5: Programming Graphics Hardware

GPU performance increasing faster CPU

CPUs: annual growth ~1.5× à decade growth ~ 60×
Moore’s law

GPUs: annual growth > 2.0× à decade growth > 100×
Much faster than Moore’s law

Moore’s Law2?

Graph Courtesy Avneesh Sud, UNC

CPU

GPU

(peak)

GPU floating point power
is following a similar trend!

Tutorial 5: Programming Graphics Hardware

Why are GPUs getting faster so fast?

Arithmetic intensity
Specialized nature of GPUs makes it easier to use
additional transistors for computation not cache

Economics
Multi-billion dollar video game market is a pressure
cooker that drives innovation

http://www.eg.org
http://diglib.eg.org

2

Tutorial 5: Programming Graphics Hardware

Motivation: Flexible and precise

Modern GPUs are programmable
Programmable pixel and vertex engines
High-level language support

Modern GPUs support high precision
32-bit floating point throughout the pipeline
High enough for many (not all) applications

Tutorial 5: Programming Graphics Hardware

Motivation: The Potential of GPGPU

The power and flexibility of GPUs makes them an
attractive platform for general -purpose
computation

Example applications (from www.GPGPU.org)
Advanced Rendering: Global Illumination, Image-based Modeling

Computational Geometry

Computer Vision

Image And Volume Processing

Scientific Computing: physically -based simulation, linear system solution, PDEs

Stream Processing

Database queries

Monte Carlo Methods

Tutorial 5: Programming Graphics Hardware

The Problem: Difficult To Use

GPUs designed for and driven by graphics
Programming model is unusual & tied to graphics
Programming environment is tightly constrained

Underlying architectures are:

Inherently parallel
Rapidly evolving (even in basic feature set!)
Largely secret

Can’t simply “port” code written for the CPU!

Tutorial 5: Programming Graphics Hardware

Mapping Computational
Concepts to GPUs

Rest of the Talk:

Data Parallelism and Stream Processing

Computational Resources Inventory

CPU-GPU Analogies

Flow Control Techniques

Examples and Future Directions

Importance of Data Parallelism

GPU: Each vertex / fragment is independent
Temporary registers are zeroed
No static data
No read -modify-write buffers

Data parallel processing

Best for ALU-heavy architectures: GPUs
Multiple vertex & pixel pipelines

Hide memory latency (with more computation)

GPU is a Stream Processor

Courtesy of Ian Buck

Arithmetic Intensity

Lots of ops per word transferred

Graphics pipeline

Vertex
BW: 1 triangle = 32 bytes;
OP: 100-500 f32-ops / triangle

Rasterization
Create 16-32 fragments per triangle

Fragment
BW: 1 fragment = 10 bytes
OP: 300-1000 i8-ops/fragment

Courtesy of Pat Hanrahan

3

Data Streams & Kernels

Streams
Collection of records requiring similar computation

Vertex positions, Voxels, FEM cells, etc.

Provide data parallelism
Kernels

Functions applied to each element in stream
transforms, PDE, …

Few dependencies between stream elements
Encourage high Arithmetic Intensity

Courtesy of Ian Buck Tutorial 5: Programming Graphics Hardware

Example: Simulation Grid

Common GPGPU computation style
Textures represent computational grids = streams

Many computations map to grids
Matrix algebra
Image & Volume processing
Physical simulation
Global Illumination

ray tracing, photon mapping,
radiosity

Non-grid streams can be mapped
to grids

Tutorial 5: Programming Graphics Hardware

Stream Computation

Grid Simulation algorithm
Made up of steps
Each step updates entire grid
Must complete before next step can begin

Grid is a stream, steps are kernels

Kernel applied to each stream element

Tutorial 5: Programming Graphics Hardware

Scatter vs. Gather

Grid communication (a necessary evil)
Grid cells share information
Two ways:

Tutorial 5: Programming Graphics Hardware

Computational Resources Inventory

Programmable parallel processors
Vertex & Fragment pipelines

Rasterizer
Mostly useful for interpolating addresses (texture
coordinates) and per -vertex constants

Texture unit

Read -only memory interface
Render to texture

Write-only memory interface

Tutorial 5: Programming Graphics Hardware

Vertex Processor

Fully programmable (SIMD / MIMD)

Processes 4-vectors (RGBA / XYZW)

Capable of scatter but not gather

Can change the location of current vertex (scatter)
Cannot read info from other vertices (gather)
Small constant memory

New GeForce 6 Series features:
Pseudo-gather: read textures in the vertex program
MIMD: independent per -vertex branching, early exit

4

Tutorial 5: Programming Graphics Hardware

Fragment Processor

Fully programmable (SIMD)

Processes 4-vectors (RGBA / XYZW)

Capable of gather but not scatter

Random access memory read (textures)
Output address fixed to a specific pixel

Typically more useful than vertex processor
More fragment pipelines than vertex pipelines
RAM read
Direct output

GeForce 6 Series adds SIMD branching
GeForce FX only has conditional writes

Tutorial 5: Programming Graphics Hardware

CPU-GPU Analogies

CPU programming is (assumed) familiar
GPU programming is graphics-centric

Analogies can aid understanding

Tutorial 5: Programming Graphics Hardware

CPU-GPU Analogies

CPU GPU

Stream / Data Array = Texture

Memory Read = Texture Sample

CPU-GPU Analogies

Loop body / kernel / algorithm step = Fragment Program

CPU GPU

Tutorial 5: Programming Graphics Hardware

Feedback

Each algorithm step depend on the
results of previous steps

Each time step depends on the
results of the previous time step

Tutorial 5: Programming Graphics Hardware

CPU-GPU Analogies

.

.

.

Grid[i][j]= x;
.
.
.

Array Write = Render to Texture

CPU GPU

5

Tutorial 5: Programming Graphics Hardware

GPU Simulation Overview

Analogies lead to implementation
Algorithm steps are fragment programs

Computational “kernels”

Current state variables stored in textures
Feedback via render to texture

One question: how do we invoke
computation?

Tutorial 5: Programming Graphics Hardware

Invoking Computation

Must invoke computation at each pixel
Just draw geometry!
Most common GPGPU invocation is a full-screen quad

Tutorial 5: Programming Graphics Hardware

Standard “Grid” Computation

Initialize “view” (so that pixels:texels::1:1)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, gridResX, gridResY);

For each algorithm step:

Activate render-to-texture

Setup input textures, fragment program

Draw a full -screen quad (1 unit x 1 unit)

Example: “Disease”

Chemical reaction-diffusion simulation
Generate dynamic normal
map from the result

Add creepy effects to
characters!

Available at GPGPU.org

[Harris, GDC 2003]

Example: Fluid Simulation

Navier -Stokes fluid simulation on the GPU
Based on Stam’s“Stable Fluids”

Vorticity Confinement step
[Fedkiw et al., 2001]

Interior obstacles
With zero branches!

Available at GPGPU.org

“Fast Fluid Dynamics Simulation on the
GPU”, Mark Harris. In GPU Gems. Tutorial 5: Programming Graphics Hardware

Per-Fragment Flow Control

No true branching on GeForce FX
Simulated with conditional writes: every instruction
is executed, even in branches not taken

GeForce 6 Series has SIMD branching
Deep pipelines make branch incoherence expensive
All pixels “in flight” wait for longest branch
Good to use when large blocks of pixels will take the
same branch

Not good with noise!

6

Tutorial 5: Programming Graphics Hardware

Fragment Flow Control Techniques

Try to move decisions up the pipeline
Replace with math
Occlusion Query
Domain decomposition
Z-cull
Pre-computation

Branching with Occlusion Query

OQ counts the number of fragments written
Use it for iteration termination

Do { // outer loop on CPU
BeginOcclusionQuery {
// Render with fragment program that
// discards fragments that satisfy
// termination criteria

} EndQuery
} While query returns > 0

Can be used for subdivision techniques

Domain Decomposition

Avoid branches where outcome is fixed
One region is always true, another false
Separate Fragment Programs for each region

No branches!

Example:
boundaries

Tutorial 5: Programming Graphics Hardware

Z-Cull

In early pass, modify depth buffer
Write depth=0 for pixels that should not be modified
by later passes
Write depth=1 for rest

Subsequent passes

Enable depth test (GL_LESS)
Draw full-screen quad at z=0.5
Only pixels with previous depth=1 will be processed

Available on GeForce 6 Series
Shader depth replace disables Z-Cull on NV3X

Tutorial 5: Programming Graphics Hardware

Pre-computation

Pre-compute anything that will not change every
iteration!
Example: arbitrary boundaries

When user draws boundaries, compute texture
containing boundary info for cells

e.g. Offsets for applying PDE boundary conditions
Reuse that texture until boundaries modified
GeForce 6 Series: combine with Z-cull for higher
performance!

Tutorial 5: Programming Graphics Hardware

Current GPGPU Limitations

Programming is difficult
Limited memory interface
Usually “invert” algorithms (Scatter à Gather)
Not to mention that you have to use a graphics API…

Limited bandwidth from GPU to CPU
PCI-Express will help

GeForce 6 Quadro boards will support 1

Frame buffer read can cause pipeline flush
Avoid frequent communication to CPU

7

Brook for GPUs

A step in the right direction
Moving away from graphics APIs

Stream programming model
enforce data parallel computing: streams
encourage arithmetic intensity: kernels

C with stream extensions

Cross compiler compiles to HLSL and Cg
GPU becomes a streaming coprocessor

See SIGGRAPH 2004 Paper and
http://graphics.stanford.edu/projects/brook
http://www.sourceforge.net/projects/brook

Tutorial 5: Programming Graphics Hardware

New Functionality Overview

Vertex Programs
Vertex Textures: gather
MIMD processing: full-speed branching

Fragment Programs

Looping, branching, subroutines, indexed input
arrays, explicit texture LOD, facing register

Multiple Render Targets
More outputs from a single shader
Fewer passes, side effects

“Deferred Computation”

Tutorial 5: Programming Graphics Hardware

New Functionality Overview

VBO / PBO & Superbuffers
Feedback texture to vertex input
Render simulation output as geometry
Not as flexible as vertex textures

No random access, no filtering

Demos
PCI-Express

Higher GPUßàCPU bandwidth

Tutorial 5: Programming Graphics Hardware

EXAMPLESEXAMPLES

Tutorial 5: Programming Graphics Hardware

Example: Cloth Simulation

Cloth Simulation
Demo by Simon Green
Simulation in fragment
program
Use PBO/VBO to cast
texture as vertex array
for rendering

Tutorial 5: Programming Graphics Hardware

Example: Particle SimulationExample: Particle Simulation

1 Million Particles at 30 Hz1 Million Particles at 30 Hz
Demo by Simon GreenDemo by Simon Green

8

Tutorial 5: Programming Graphics Hardware

Example: OQ-based subdivision

Used in Coombe et al., “Radiosityon Graphics Hardware”

Example: GPU Radiosity

Greg Coombe, UNC

Progressive-refinement radiosity

Uniform and adaptive solutions

Hemisphere visibility (not hemicube)

Tutorial 5: Programming Graphics Hardware

The Future

Increasing flexibility
Always adding new features
Improved vertex, fragment languages

Easier programming

Non-graphics APIs and languages?
Brook for GPUs

http://graphics.stanford.edu/projects/brookgpu

Tutorial 5: Programming Graphics Hardware

The Future

Increasing performance
More vertex & fragment processors
GFLOPs, GFLOPs, GFLOPs!

Fast approaching TFLOPs!
Supercomputer on a chip

Start planning ways to use it!

Massive multi-GPU Supercomputers / Clusters?
Very low cost per GFLOP.
Today: 40 GFLOPs coprocessor for $500

Tutorial 5: Programming Graphics Hardware

More Information

GPGPU news, research links and forums
www.GPGPU.org

Questions?
mharris@nvidia.com

