EC 2O

Tutorial 5: Programming Graphics Hardware

GPGPU: Beyond Graphics

Mark J. Harris

GPGPU:
General-Purpose Computation on GPUs

< The GPU on commodity video cards has evolved
into an extremely flexible and powerful processor
< Programmability
< Precision
< Performance

< This talk addresses the basics of harnessing the
GPU for general-purpose computation

E: 2 Fdl Tutorials: Programming Graphics Hardware MV A

Motivation: Computational Power

GPU performance increasing faster CPU

< GPUs are fast...
2 3 GHz Pentium4 theoretical : 6 GFLOPS
< 5.96 GB/sec peak
> GeForce FX 5900 observed : 20 GFLOPs
~ 25.6 GB/sec peak
2 GeForce 6800 Ultra observed * 40 GFLOPs
~ 35.2 GB/sec peak

“Observed on a synthetic benchmark:
< A long pixel shader with nothing but MUL instructions

i

< CPUs: annual growth ~1.5x - decade growth ~ 60x

2 Moore’s law
< GPUs: annual growth >2.0x - decade growth > 100x

< Much faster than Moore’s law

G

Courtesy lan Buck HEIDTA, BE 228 tutorials: programming Graphics Hardware WEITT A,
Moore's Law?? Why are GPUs getting faster so fast?
oo o Arithmetic intensity
cpu * < Specialized nature of GPUs makes it easier to use
additional transistors for computation not cache
gf 2 Economics
£z < Multi-billion dollar video game market is a pressure
e CPU i g B
cooker that drives innovation

GPU floating point power
is following a similar trend! |- -

P
1907 1998 1999 2000 2001 2002 T A

=

WEITI A,

et 2 & Tutorial5: Programming Graphics Hardware

Graph Courtesy Avneesh Sud, UNC

delivered by

- = EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Motivation: Flexible and precise

Motivation: The Potential of GPGPU

< Modern GPUs are programmable
< Programmable pixel and vertex engines
< Highevel language support

< Modern GPUs support high precision
< 32-bit floating point throughout the pipeline
< High enough for many (not all) applications

L

e: 2 A Tutorial 5: Programming Graphics Hardware HVIDT A,

< The power and flexibility of GPUs makes them an
attractive platform for general-purpose
computation

< Example applications (from www.GPGPU.org)
© Advanced Rendering: Global lllumination, Image-based Modeling

© Computational Geometry

~ Computer Vision

© Image And Volume Processing

< Scientific C p -based \linear system solution, PDEs
< Stream Processing
 Database queries

© Monte Carlo Methods

L

E: 2 # Tutorial5: Programming Graphics Hardware MV A

The Problem: Difficult To Use

Mapping Computational
Concepts to GPUs

< GPUs designed for and driven by graphics
< Programming model is unusual & tied to graphics
< Programming environment is tightly constrained
< Underlying architectures are:
< Inherently parallel
< Rapidly evolving (even in basic feature set!)
o Largely secret
< Can’t simply “port” code written for the CPU!

L

e¢ 2 4 Tutorial: Programming Graphics Hardware BVITT A,

< Rest of the Talk:

< Data Parallelism and Stream Processing
< Computational Resources Inventory

< CPU-GPU Analogies

< Flow Control Techniques

< Examples and Future Directions

L (S

& 2 & Tutorial5: Programming Graphics Hardware HVITT A,

Importance of Data Parallelism

Arithmetic Intensity

< GPU: Each vertex / fragment is independent
< Temporary registers are zeroed
< No static data
< No read -modify-write buffers
< Data parallel processing
< Best for ALU-heavy architectures: GPUs
< Multiple vertex & pixel pipelines
< Hide memory latency (with more computation)

< GPU is a Stream Processor ‘EL

Courtesy of lan Buck BEIDT A,

< Lots of ops per word transferred
< Graphics pipeline
< Vertex
< BW: 1triangle = 32 bytes;
< OP: 100-500 f32-ops / triangle
o Rasterization
< Create 16-32 fragments per triangle
< Fragment
< BW: 1fragment = 10 bytes
< OP: 300-1000 i8-ops/fragment
@F_-'d-

Courtesy of Pat Hanrahan BT A,

Data Streams & Kernels

Example: Simulation Grid

<~ Streams
< Collection of records requiring similar computation
< Vertex positions, Voxels, FEM cells, etc.
< Provide data parallelism
< Kernels
2 Functions applied to each element in stream
< transforms, PDE, ...
< Few dependencies between stream elements
< Encourage high Arithmetic Intensity

HVITIT A,

Courtesy of lan Buck

EC

< Common GPGPU computation style

< Non-grid streams can be mapped
to grids

2

< Textures represent computational grids = streams
Many computations map to grids
< Matrix algebra

< Image & Volume processing

< Physical simulation

< Global lllumination
<ray tracing, photon mapping,
radiosity

@& Tutorial5: Programming Graphics Hardware

Stream Computation

Scatter vs. Gather

Algorithm < Grid Simulation algorithm
advect 2 Made up of steps
accelerate < Each step updates entire grid
water/thermo <~ Must complete before next step can begin
divergence
:53‘;: < Grid is a stream, steps are kernels
acobi < Kernel applied to each stream element
ac;)bi
Ld
<
e 2B 1uonias: Programming Graphics Hardware QI'F]'];T;\.

< Grid communication (a necessary evil)

2

2 Grid cells share information
< Two ways:

Q
EBE
&

Gather

Q
O0H0
o

Scatter

e

HEIDIA,

-
Y4 Tutorial 5: Programming Graphics Hardware

Computational Resources Inventory

Vertex Processor

< Programmable parallel processors
< Vertex & Fragment pipelines
< Rasterizer

< Mostly useful for interpolating addresses (texture
coordinates) and per vertex constants

< Texture unit

< Read -only memory interface
< Render to texture

<2 Write-only memory interface

et 2 24 Tutorial 5: Programming Graphics Hardware

HFIDTA.

EC

2

Fully programmable (SIMD / MIMD)
Processes 4-vectors (RGBA / XYZW)
Capable of scatter but not gather
< Can change the location of current vertex (scatter)

< Cannot read info from other vertices (gather)
< Small constant memory

New GeForce 6 Series features:
< Pseudo-gather: read textures in the vertex program
< MIMD: independent per vertex branching, early exit

B¥IDIA,

44 Tutorial 5: Programming Graphics Hardware

Fragment Processor

CPU-GPU Analogies

< Fully programmable (SIMD)

< Processes 4-vectors (RGBA / XYZW)

< Capable of gather but not scatter
© Random access memory read (textures)
< Output address fixed to a specific pixel

< Typically more useful than vertex processor
< More fragment pipelines than vertex pipelines
<~ RAM read
< Direct output

< GeForce 6 Series adds SIMD branching

< GeForce FX only has conditional writes -
e: 2 F4 Tutoriais: Programming Graphics Hardware HVIDT A,

< CPU programming is (assumed) familiar
2 GPU programming is graphicscentric

< Analogies can aid understanding

BE 28 1yrias: Programming Graphics Hardware I A,

CPU-GPU Analogies

CPU-GPU Analogies

CPU GPU

For @nt 3 = 173 < Reldht - 17 113 fvoid advect (f1oat2 W WROS,
{ out floatd xNew : COLOR,
for (nt i=1; i< width - 1; ++d)
uniform float dt, // timestep
77 oot valoolty af fiis call uniform float dx, // grid scale

Vec2£ v = grid b,
ec il &, y) uniform samplerRECT u, // velocity

// trace backwards along velocity field uniform samp lerRECT x) // state

float x = (i - §.x * timestep / dx)) ; {
float y = (j - ©.y * timestep / dy)) ; // trace backwards along velocity field
float2 pos = wb - dt * £2texRECT 1, uv) / dx;
}) St 6 xNew = f4texRECTbilerp f, pos) ; Cg
Memory Read = Texture Sample) C+H | '
{E-f_-:" Loop body / kernel / algorithm step = Fragment Program,‘js-fjd_
BE 2284 rutorias: Programming Graphics Hardware ﬁl'l.-']'].Z'AT.ﬂ.. ﬂ"\’I]‘}T.ﬂ.
Feedback CPU-GPU Analogies
Algorithm
™| advect < Each algorithm step depend on the CPU GPU
results of previous steps
accelerate < p p
water/thermo !
o - Each time step depends on the : Texture o Fragment
divergence results of the previous time step Gid[i][j]= x; unit Unit
—Jacor 1€
Jacobi o : ;l
Tacobr |l
I
,j Array Write = Render to Texture
| oy |

et 2 #4 Tutorials: Programming Graphics Hardware BVIDT A,

et 2 44 Tutorial 5: Programming Graphics Hardware BVITIT A,

GPU Simulation Overview

Invoking Computation

Algorithm < Analogies lead to implementation

advect © Algorithm steps are fragment programs
accelerate < Computational “kernels”
o Current state variables stored in textures
< Feedback via render to texture

water/thermo

divergence
acobi

jacobi . A
acobi < One question: how do we invoke

Eei computation?
L3

<

e: 2 A Tutorial 5: Programming Graphics Hardware HVITT A,

< Must invoke computation at each pixel
< Just draw geometry!
< Most common GPGPU invocation is a full-screen quad

L

E: 2 # Tutorial5: Programming Graphics Hardware HVITT A,

Standard “Grid” Computation

Example: “Disease”

< Initialize “view” (so that pixels:texels::1:1)

gl Mat ri xMode(GL_MODELVI EVY;

gl Loadl dentity();

gl Mat ri xMode(GL_PRQJECTI ON) ;

gl Loadl dentity();

glOtho(0, 1, 0, 1, 0, 1);

gl Viewport (0, 0, gridResX gridResY);

< For each algorithm step:
< Activate render-to-texture
< Setup input textures, fragment program
< Draw a full-screen quad (1 unit x 1 unit)

Gz

e 2 A Tutorial 5: Programming Graphics Hardware HVEIDT A,

< Chemical reaction-diffusion simulation

< Generate dynamic normal
map from the result

< Add creepy effects to
characters!

< Available at GPGPU.org

[Harris, GDC 2003]

Example: Fluid Simulation

Per-Fragment Flow Control

< Navier-Stokes fluid simulation on the GPU
< Based on Stam’s“Stable Fluids”

< Vorticity Confinement step
< [Fedkiw et al., 2001]

< Interior obstacles
< With zero branches!

< Available at GPGPU.org

“Fast Fluid Dynamics Simulation on the
GPU", Mark Harris. In GPU Gems.

< No true branching on GeForce FX

< Simulated with conditional writes: every instruction
is executed, even in branches not taken

<~ GeForce 6 Series has SIMD branching
< Deep pipelines make branch incoherence expensive
< All pixels “in flight” wait for longest branch

< Good to use when large blocks of pixels will take the
same branch
< Not good with noise!

P

et 2 & Tutorial5: Programming Graphics Hardware HVITT A,

Fragment Flow Control Techniques

Branching with Occlusion Query

< Try to move decisions up the pipeline
< Replace with math
2 Occlusion Query
<~ Domain decomposition
< Z-cull
< Precomputation

EC 2 & Tutorial5: Programming Graphics Hardware

L

HVIDT A,

< OQ counts the number of fragments written
< Use it for iteration termination

Do { // outer |oop on CPU

Begi nCccl usi onQuery {
/1 Render with fragment programthat
/1 discards fragnents that satisfy
/] termnation criteria

} EndQuery

} Wile query returns >0

L

< Can be used for subdivision techniques HYIDTA,

Domain Decomposition

Z-Cull

< Avoid branches where outcome is fixed
2 One region is always true, another false
o Separate Fragment Programs for each region
< No branches!
0Oo0Do0oo0ODDOOoao
< Example: o000
boundaries

o
o
o
o

OnO O

(

Bloc o o oo o

oooooofd
o o
o o
o o
o
o
o
o

ooo
ooao
ooao

[= = = = = [= = = I
Blc ccooooof@d
Bloc o o o|o

Blo o o oo o

o ppo o ojo o

Bl o

ooao

Interior: A Quad Primitive

[—— Boundaries: Line Primitives’

O = Location of Pixels

< In early pass, modify depth buffer

< Write depth=0 for pixels that should not be modified
by later passes

< Write depth=1 for rest
< Subsequent passes

< Enable depth test (GL_LESS)

< Draw full-screen quad at z=0.5

< Only pixels with previous depth=1 will be processed
< Available on GeForce 6 Series

< Shader depth replace disables Z-Cull on NV3X

i

BT A,

3 s X1
& 2 & Tutorial5: Programming Graphics Hardware

Pre-computation

Current GPGPU Limitations

© Pre-compute anything that will not change every
iteration!
< Example: arbitrary boundaries
< When user draws boundaries, compute texture
containing boundary info for cells
< e.g. Offsets for applying PDE boundary conditions

< Reuse that texture until boundaries modified

2 GeForce 6 Series: combine with Z-cull for higher
performance!

et 2 A Tutorial 5: Programming Graphics Hardware

T

BEIDT A,

< Programming is difficult
< Limited memory interface
< Usually “invert” algorithms (Scatter > Gather)
< Not to mention that you have to use a graphics API...

< Limited bandwidth from GPU to CPU
< PCI-Express will help
< GeForce 6 Quadro boards will support 1
< Frame buffer read can cause pipeline flush
< Avoid frequent communication to CPU

L

BT A,

et 2 & Tutorial5: Programming Graphics Hardware

Brook for GPUs

New Functionality Overview

< A step in the right direction
< Moving away from graphics APIs
< Stream programming model
2 enforce data parallel computing: streams
< encourage arithmetic intensity: kernels
< C with stream extensions
2 Cross compiler compiles to HLSL and Cg
© GPU becomes a streaming coprocessor
<~ See SIGGRAPH 2004 Paper and

< http://graphics.stanford.edu/projects/brook
< http://lwww.sourceforge.net/projects/brook

HVITIT A,

EC :

< Vertex Programs

< Vertex Textures: gather

< MIMD processing: full-speed branching
< Fragment Programs

< Looping, branching, subroutines, indexed input
arrays, explicit texture LOD, facing register

< Multiple Render Targets
< More outputs from a single shader
< Fewer passes, side effects
< "“Deferred Computation”
BVIT1 A,

2 @& Tutorial5: Programming Graphics Hardware

New Functionality Overview

EC .

< VBO / PBO & Superbuffers
< Feedback texture to vertex input
<~ Render simulation output as geometry
< Not as flexible as vertex textures
< No random access, no filtering
© Demos
< PCI-Express
2 Higher GPU €< - CPU bandwidth

-
2 24 Tutorial5: Programming Graphics Hardware

G

WD A,

EC 2,94

Tutorial 5: Programming Graphics Hardware

EXAMPLES

<

7VIDIA.

Example: Cloth Simulation

EC .

< Cloth Simulation
< Demo by Simon Green
< Simulation in fragment
program
© Use PBO/VBO to cast
texture as vertex array
for rendering

. ragmont program physics

2 24 Tutorial 5: Programming Graphics Hardware

1 Million Particles at 30 Hz
Demo by Simon Green

Example: OQ-based subdivision

Example: GPU Radiosity

Used in Coombe et al., “Radiosityon Graphics Hardware”

EC 2 44 Tutorial5: Programming Graphics Hardware

HVITIT A,

< Greg Coombe, UNC
< Progressive-refinement radiosity
< Uniform and adaptive solutions

< Hemisphere visibility (not hemicube)

The Future

The Future

< Increasing flexibility

<~ Always adding new features

© Improved vertex, fragment languages
< Easier programming

2 Non-graphics APIs and languages?

<~ Brook for GPUs
< http:/igraphics.stanford.edu/projects/brookgpu

= m
e 2 24 Tutorial5: Programming Graphics Hardware

G

WD A,

< Increasing performance
< More vertex & fragment processors
2 GFLOPs, GFLOPs, GFLOPs!
< Fast approaching TFLOPs!
< Supercomputer on a chip
< Start planning ways to use it!

< Massive multi-GPU Supercomputers / Clusters?

< Very low cost per GFLOP.
© Today: 40 GFLOPs coprocessor for $500

=
& 2 Y4 Tutorial 5: Programming Graphics Hardware

<

HEIDIA,

More Information

< GPGPU news, research links and forums
< www.GPGPU.org

< Questions?
2 mharris@nvidia.com

et 2 24 Tutorial 5: Programming Graphics Hardware

