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 “From scrambled sensing to information”
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Informative signals are composed of 
structures ...

Speech signal3-D data

AstronomyBiology Video

Data on Graph 
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‣ Hypothesis: an image (or any signal) can be decomposed 
in a “sparsity basis” Ψ with few non-zero elements α :
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Generalization: Sparsity principle

x =
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atomf
# “atoms” ⇔ improved quality

Non-linear approximation

x =
D�

j=1

�j�j = �� � = (�1, · · · ,�D) ⇥ RN�D,

Generalization: Sparsity principle
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... in a signal            (e.g. N = pixel number, voxels, graph nodes, ...)

there exists a “sparsity” basis (e.g. wavelets, Fourier, ...)

where x has a linear representation

and

Counterexample: Noise!

x � RN

� = (�1, · · · ,�D) ⇥ RN�D

x =
D�

j=1

�j�j = ��
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2.4. Transformée continue en ondelettes sur la sphère 37

avec ψ̂a(l, m) = ⟨Y m
l |ψa⟩ la transformée en harmonique sphérique12 de ψa = Daψ.

Une condition plus simple à manipuler et presque équivalente à (2.65) est d’imposer
que [Van98]

∫

S2

dµ(θ, ϕ)
ψ(θ, ϕ)

1 + cos θ
= 0, (2.66)

condition homologue à l’annulation de la moyenne des ondelettes planes.
En remarquant que

∫

S2

dµ(θ, ϕ)
Daψ(θ, ϕ)

1 + cos θ
= a

∫

S2

dµ(θ, ϕ)
ψ(θ, ϕ)

1 + cos θ
, (2.67)

la condition (2.66) permet de créer toute une classe d’ondelettes admissibles de la forme

ψ(θ, ϕ) = φ(θ, ϕ) − 1
αDαφ(θ, ϕ), (2.68)

pour une certaine fonction φ ∈ L2(S2).

Fig. 2.3 – L’ondelette DOG pour α = 1.25 dilatée de a = 0.1.

En particulier, pour φ = exp
(
− tan2(1

2θ)
)
, c.-à-d. la projection stéréographique inverse

de la gaussienne sur la sphère, nous obtenons l’ondelette sphérique DOG13

ψ(θ, ϕ) = exp
(
− tan2(1

2θ)
)

− 1
αλ(α, θ)

1
2 exp

(
− 1

α2 tan2(1
2θ)

)
, (2.69)

dont une représentation dilatée d’un facteur a = 0.1 est donnée sur la Figure 2.3.

12Nommée également transformée de Fourier sur S2.
13Pour Difference of Gaussians.
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In summary: if “information” ...

or
k↵k0 := #{i : ↵i 6= 0}⌧ N
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Other “informative” models
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Other “informative” models
‣ Structured sparsity for high-dimensional data

21

Consider a data volume (3-D or more)
(e.g. video, hyperspectral data, medical data)

Possible models:
‣ 3-D sparsity basis (see before)
   (sometimes costly, sometimes   )

‣ or structured sparsity
idea: consecutive “slices” vary “slowly” 

@

e1 e2

e3 = t, � or z

x
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‣ Structured sparsity for high-dimensional data

Other “informative” models
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2-D  

2-D  

Hyperspectral data cube

Hyperspectral 
slices

Hyperspectral 
sparsity coeff.

close
coefficient
supports!

�

e1 e2

x

e3 = �
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‣ Structured sparsity for high-dimensional data

Other “informative” models
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Spatially Sparse

correlated &
not sparse

�

`1-norm

`2-norm

$ i $ j

$ k↵

Hyperspectral 
sparsity coeff.

e1 e2 e1 e2

e3 = �

spa
rse not sparse
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Spatially Sparse

correlated &
not sparse

�

`1-norm

`2-norm

) small `2,1-norm

k↵k2,1 =

P
ij (

P
k |↵i,j,k|2)1/2

$ i $ j

$ k↵

Hyperspectral 
sparsity coeff.

e1 e2 e1 e2

e3 = �

spa
rse not sparse
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Other “informative” models
‣ Low-rank models in high dimensions
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Moving foreground

e1

e2

x

e3 = t

Example:
Video

(PETS DB)

Moving foreground

Static background
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Moving foreground

e1

e2

x

e3 = t

Example:
Video

(PETS DB)

· · ·

sp
ac

e

time

X
1 frame 
= 1 vector
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Moving foreground
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x
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(PETS DB)

· · ·
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e
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� Low-rank matrix:
Many columns are (almost)
linear combination of others

X
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Moving foreground

e1

e2

x

e3 = t

Example:
Video

(PETS DB)

· · ·

sp
ac

e

time

� Low-rank matrix:
Many columns are (almost)
linear combination of others

X

X = U⇤⌃V
⌃ = diag(�1, · · · , �N )

Given

small k�k0, or small k�k1 = kXk⇤

(SVD)
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General Sparsity Applications
1. Data Compression/Transmission (by definition);
2. Data restoration :

‣ Denoising,
‣ Debluring,
‣ Inpainting, ...

3. Simplified model and interpretation (e.g., in ML)

30
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1. Data Compression/Transmission (by definition);
2. Data restoration :

‣ Denoising,
‣ Debluring,
‣ Inpainting, ...

3. Simplified model and interpretation (e.g., in ML)

More generally, 
      For regularizing (stabilizing) inverse problems
+ Impact on data sampling philosophy ! (see after)

31

General Sparsity Applications

e.g., in
Ivo’s talk
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First Part:
‣ Sparsity, low-rankness and relatives:

 “From information to structures”

‣ Compress while you sample:
 “From structure to scrambled sensing”

‣ and Reconstruct!  
 “From scrambled sensing to information”

32
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‣ Paradigm shift:
   “Computer readable” sensing 
  + prior information (structures)

33

Sampling with Sparsity
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‣ Paradigm shift:
   “Computer readable” sensing 
  + prior information (structures)

‣ Examples: 
Radio-Interferometry, Compressed Sensing, 
MRI, Deflectometry, Seismology, ... 

34

World Sensing
Device Human

Signal Sensing Signal

Sampling with Sparsity

Optimized setup: sampling rate     information/



ELEN Laurent Jacques - “Compressive sensing: how to sample data from what you know!” 35

Reconstruct x 2 RN
from y = Sensing(x) 2 RM

given a sparse model on x.

x

⇤ = argmin
u2RN

S(u) s.t. Sensing(u) ⇡ Sensing(x)

Noise: Gaussian, Poisson, ...
Sparsity metric:

Examples: Tomography, 
frequency/partial observations, ...

Regularized inverse problems:

  but ... non-linear reconstruction schemes!

e.g., small S(↵) = k↵k1 if u =  ↵,
small Total Variation S(u) = kruk

Sampling with Sparsity
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Compressed Sensing

“Forget” Dirac, forget Nyquist, 
ask few (linear) questions 
about your informative (sparse) signal, 
and recover it differently (non-linearly)”  

CS in a nutshell:
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=

� x

y

M M ⇥N

N

Compressed Sensing

“Forget” Dirac, forget Nyquist, 
ask few (linear) questions 
about your informative (sparse) signal, 
and recover it differently (non-linearly)”  

CS in a nutshell:

M questions Sensing method Signal

0

0
0

0

0
0
0
0

0

Sparsity
Prior

( = Id)
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Compressed Sensing

If x is K-sparse and if     well “conditioned” 
then: 

=

� x

y

M M ⇥N

N
x = arg min

u2RN

kuk0 s.t. y = �u

�

kuk0 = #{j : uj 6= 0}

⇤

Non-linear reconstruction

Low complexity signal
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

=

� x

y

M M ⇥N

N

Compressed Sensing

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

for all 2K sparse signals v.

p
1� � kvk2 6 k�vk2 6

p
1 + � kvk2

9 � 2 (0, 1)

Compressed Sensing

any subset of 2K columns 
is an isometry 

if                 � <
⇥

2� 1  [Candes 08]

Restricted Isometry Property

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

for all 2K sparse signals v.

p
1� � kvk2 6 k�vk2 6

p
1 + � kvk2

9 � 2 (0, 1)

Compressed Sensing

any subset of 2K columns 
is an isometry 

if                 � <
⇥

2� 1  [Candes 08]

Restricted Isometry Property

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

M = O(K lnN/K)⌧ N

� 2 RM⇥N , �ij ⇠iid N (0, 1)

Examples: 
+ Gaussian
+ Bernoulli
+ Random Fourier
+ ....

⇤
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

Compressed Sensing

xLS

x = xBP

Φu = y

ℓ1-ball

ℓ2-ball

R2

e1

e2

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤

Solvers:
Linear Programming, 
Interior Point Method,
Proximal Methods, 
 ... Tons of toolboxes ...
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u2RN

kuk0 s.t. y = �u

�

1

(relax.)

kuk1 =
P

j |uj |

Compressed Sensing

xLS

x = xBP

Φu = y

ℓ1-ball

ℓ2-ball

R2

e1

e2

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

⇤

kx� x

⇤k 6 C 1p
K
kx� xKk1 + D✏

Robustness: vs sparse deviation + noise.

Solvers:
Linear Programming, 
Interior Point Method,
Proximal Methods, 
 ... Tons of toolboxes ...

ky ��uk 6 ✏
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... in summary, CS is

Ask few (linear) questions 
about your informative (sparse) signal, 
and recover it differently (non-linearly)”  

=

� x

y

M M ⇥N

M questions Sensing method Signal

N

0

0
0

0

0
0
0
0

0

x

M = O(K logN/K)

Random is ok!

Candès, Romberg, Tao, 2006 
Donoho, 2006
1-Pixel Camera, Wakin et al., 2006

or x

⇤ ' x

if noise, quantization, 
non-linearities

LIGHT SENSINGHEAVY RECONSTRUCTION

SENSORSENSOR



ELEN Laurent Jacques - “Compressive sensing: how to sample data from what you know!”

First Part:
‣ Sparsity, low-rankness and relatives:

 “From information to structures”

‣ Compress while you sample:
 “From structure to scrambled sensing”

‣ and Reconstruct!  
 “From scrambled sensing to information”

45

(very broad and active field ... just one slide)
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Reconstruct? (just one slide)

‣ For solving:

many possibilities/solvers ...

46

x

⇤ = argmin
u2RN

S(u) s.t. Sensing(u) ⇡ Sensing(x)

e.g., sparsity, 
low-rank, TV, ...

e.g., L2/L1 distance, robust to 
Gaussian/Poisson noise, ...
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Reconstruct? 
‣ For solving:

many possibilities/solvers ...
‣ Convex optimization: tons of toolboxes

‣ SPGL1, L1Magic, (F)ISTA, ADMM, ...
‣ Proximal algorithms (see also B. Goldluecke’s part) 

‣ Iterative (greedy) methods: 
‣ matching pursuit and relatives (OMP) 
‣ iterative hard thresholding, CoSAMP, SP, smoothed L0, ...
‣ Approximate Message Passing Algorithms, Bayesian, ...

47

x

⇤ = argmin
u2RN

S(u) s.t. Sensing(u) ⇡ Sensing(x)

xLS

x = xBP

Φu = y

ℓ1-ball

ℓ2-ball

R2

e1

e2

e.g., sparsity, 
low-rank, TV, ...

e.g., L2/L1 distance, robust to 
Gaussian/Poisson noise, ...
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Second Part:
‣ Compressive imaging appetizer: 

  The Rice single pixel camera 
‣ Other case studies:
‣ Radio-interferometry and aperture synthesis
‣ Hyperspectral CASSI imaging
‣ Highspeed Coded Strobing Imaging

48
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‣ Highspeed Coded Strobing Imaging
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Rice Single-pixel Camera

50

[Duarte, Davenport, Takbar, Laska, Sun, Kelly, Baraniuk, 2008]
x
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Rice Single-pixel Camera

51

[Duarte, Davenport, Takbar, Laska, Sun, Kelly, Baraniuk, 2008]
x

'ji xi, 'ji 2 {0, 1}
jth

random pattern 'j 2 RN
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Rice Single-pixel Camera

52

[Duarte, Davenport, Takbar, Laska, Sun, Kelly, Baraniuk, 2008]
x

'ji xi, 'ji 2 {0, 1}

yj =
P

i 'ji xi

yj

yj

jth
random pattern 'j 2 RN

Optical sum

y =

0

BBB@

y1

y2
...

yM

1

CCCA
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Rice Single-pixel Camera

53

[Duarte, Davenport, Takbar, Laska, Sun, Kelly, Baraniuk, 2008]

M = 2 % M = 5 %orig

x

⇤ = argmin k↵k1 s.t. � ↵ = y

x

sparse in  
(e.g., wavelets)

yj

yj

y =

0
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...
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Rice Single-pixel Camera
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[Duarte, Davenport, Takbar, Laska, Sun, Kelly, Baraniuk, 2008]

M = 2 % M = 5 %orig

x

⇤ = argmin k↵k1 s.t. � ↵ = y

x

yj

yj

y =

0

BBB@

y1

y2
...

yM

1

CCCA
sparse in  
(e.g., wavelets)

Proof of concept but PD is unique!
Specific imaging application:

high energy photons with
single costly photomultiplier
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Second Part:
‣ Compressive imaging appetizer: 

  The Rice single pixel camera 
‣ Other case studies:
‣ Radio-interferometry and aperture synthesis
‣ Hyperspectral CASSI imaging
‣ Highspeed Coded Strobing Imaging
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⇥�

E1(⇧�, t)

I⇥�(x, y)

Aperture Synthesis in Radio-Astronomy
Observation of the sky in 
radio frequency

56

E2(⇧�, t)

Astronomical radio sources

Planar approximation
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⇥�

E1(⇧�, t)

I⇥�(x, y)

Aperture Synthesis in Radio-Astronomy
Observation of the sky in 
radio frequency

57

E2(⇧�, t)

Astronomical radio sources

Planar approximation

“ Imagine a swimming pool with two 
swimmers, and you want to detect their 

positions from the waves they produce ... ” 
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⇥B

⇥�

E1(⇧�, t)

⇥B�
I⇥�(x, y)

Aperture Synthesis in Radio-Astronomy
Observation of the sky in 
radio frequency
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E2(⇧�, t)

Astronomical radio sources

Planar approximation

baseline
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⇥B

⇥�

E1(⇧�, t)

Î⇤�( ⌅B⇥) = �E1E
�
2 ⇥�t

Van Cittert Zernike Theorem :

⇥B�
I⇥�(x, y)

Aperture Synthesis in Radio-Astronomy
Observation of the sky in 
radio frequency
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E2(⇧�, t)

Î⇥�( ⇤B�)
Time correlation :

Astronomical radio sources

Planar approximation

baseline
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⇥B
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E1(⇧�, t)

Î⇤�( ⌅B⇥) = �E1E
�
2 ⇥�t

Van Cittert Zernike Theorem :

⇥B�
I⇥�(x, y)

Aperture Synthesis in Radio-Astronomy
Observation of the sky in 
radio frequency
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E2(⇧�, t)

Î⇥�( ⇤B�)
Time correlation :

Astronomical radio sources

Planar approximation
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‣ using N telescopes,        possible Fourier observations
‣ and baselines undergo Earth rotation !

E pur si muove!  “And yet it moves!”

61
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‣ using N telescopes,        possible Fourier observations
‣ and baselines undergo Earth rotation !
‣ Example : 

E pur si muove!  “And yet it moves!”

62

�
N

2

⇥

Arcminute Microkelvin Imager 
AMI

Each telescope 
pair 
= 

1 elliptic path u

v

1 observation
= 1 telescope pair
    at 1 instant

Other configurations :
‣ Very Large Array VLA
‣ Square Kilometer Array SKA

4 - 20m

18 - 
120m

Fourier 
domain

Earth 
rotation
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‣ using N telescopes,        possible Fourier observations
‣ and baselines undergo Earth rotation !
‣ Example : 

E pur si muove!  “And yet it moves!”

63

�
N

2

⇥

Partial Fourier Sampling Problem!

y = SFx + n

2-D Fourier 
Transform

Selection of 
a few frequencies
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‣ using N telescopes,        possible Fourier observations
‣ and baselines undergo Earth rotation !
‣ Example : 

E pur si muove!  “And yet it moves!”

64

�
N

2

⇥

Partial Fourier Sampling Problem!

y = SFx + n

2-D Fourier 
Transform

Selection of 
a few frequencies

+ Additional improvements: 
multiple sparsity basis, reweighted L1, ...

Image prior: SPARSITY!
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Reconstruction results

65
R. Carrillo, J. McEwen, Y. Wiaux, “PURIFY: a new approach to radio-interferometric imaging”,  Accepted MNRAS, 2014

Arcminute Microkelvin Imager(AMI)

Fourier InversionM31
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Reconstruction results

66
R. Carrillo, J. McEwen, Y. Wiaux, “PURIFY: a new approach to radio-interferometric imaging”,  Accepted MNRAS, 2014

Arcminute Microkelvin Imager(AMI)

Fourier Inversion

Sparsity 
Averaging 
Reweighted 
Analysis 
(SARA) residualreconstruction (log)

M31
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Second Part:
‣ Compressive imaging appetizer: 

  The Rice single pixel camera 
‣ Other case studies:
‣ Radio-interferometry and aperture synthesis
‣ Hyperspectral CASSI imaging
‣ Highspeed Coded Strobing Imaging
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‣ Fusion of spectrometry and imaging

Hyperspectral imaging 

68
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‣ Fusion of spectrometry and imaging
‣ Applications:
‣ material classification/segmentation

Hyperspectral imaging 
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‣ Fusion of spectrometry and imaging
‣ Applications:
‣ material classification/segmentation
‣ microscopy/spectroscopy
‣ counterfeit detection
‣ environmental monitoring
‣ skin decease detection 
‣ ...

Hyperspectral imaging 

70
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How is it usually done?

71

Single filtering Multiplexed filtering

Line scanning
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How is it usually done?

Issues:
‣ acquisition time is slow
‣ low spatial/spectral/temporal resolution 

                              (depending on selected sensing)

‣ Huge amount of data at sensing
‣ But “low complexity” (sparse/low-rank) signals

72
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‣ high-dimensional data = natural field for CS!
‣ Coded Aperture Snapshot Spectral Imaging (CASSI) 
‣ Mixing dispersive element + coded aperture

Compressive HS imaging

73

e1

e2

x

�

HS cube Coded
HS cube

Dispersive
Element

Coded & 
Sheered Cube

Spectral
Integration

Detec
tor 

grid

Random
Coded
Aperture
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Compressive HS imaging
‣ high-dimensional data = natural field for CS!
‣ Coded Aperture Snapshot Spectral Imaging (CASSI) 
‣ Mixing dispersive element + coded aperture

74

e1
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�

HS cube Random
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Aperture

Coded
HS cube

Dispersive
Element
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Spectral
Integration
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if line scanning!=
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= �x



ELEN Laurent Jacques - “Compressive sensing: how to sample data from what you know!”

Compressive HS imaging
‣ high-dimensional data = natural field for CS!
‣ Coded Aperture Snapshot Spectral Imaging (CASSI) 
‣ Mixing dispersive element + coded aperture

75

e1

e2

x

�

Detec
tor 

grid

C =
diag(c)
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yj

y

y = DSCx = �xSensing model: + with
multiple c



ELEN Laurent Jacques - “Compressive sensing: how to sample data from what you know!”

‣ high-dimensional data = natural field for CS!
‣ Coded Aperture Snapshot Spectral Imaging (CASSI) 
‣ Mixing dispersive element + coded aperture

Compressive HS imaging

76

Gonzalo R. Arce, David J. Brady, Lawrence Carin, Henry Arguello, and David S. Kittle, 
“Compressive Coded Aperture Spectral Imaging”, IEEE Sig. Proc, vol. 1, 2014

Optically:
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‣ Reconstruction: solving

77

Compressive HS imaging

Gonzalo R. Arce, David J. Brady, Lawrence Carin, Henry Arguello, and David S. Kittle, 
“Compressive Coded Aperture Spectral Imaging”, IEEE Sig. Proc, vol. 1, 2014

x

⇤ =  T (arg min
↵

⌧k↵k1 + 1
2 ky �DSC ↵k2)

 =  1 ⌦ 2  1

 2
{

2-D wavelet 
Symmlet-8

DCT
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‣ Reconstruction:

78

Compressive HS imaging

Gonzalo R. Arce, David J. Brady, Lawrence Carin, Henry Arguello, and David S. Kittle, 
“Compressive Coded Aperture Spectral Imaging”, IEEE Sig. Proc, vol. 1, 2014

Original 
(several wav.)

With 12 shots
and random c

With 12 shots
and optimized c

example of
optimized c
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Second Part:
‣ Compressive imaging appetizer: 

  The Rice single pixel camera 
‣ Other case studies:
‣ Radio-interferometry and aperture synthesis
‣ Hyperspectral CASSI imaging
‣ Highspeed Coded Strobing Imaging
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High Speed Imaging
‣ Imaging high speed object

lead to blurry image
if low shutter frequency

‣ But hardware limitation in # fps (e.g., O(20fps) )

‣ Solution: “Highspeed Coded Strobing Imaging” 
‣ keep the detector fps rate unchanged
‣ and add high rate coding of the shutter!

            (Reddy, Veeraraghavan, Chellappa, ...)

80

(source: wikipedia)
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Highspeed Coded Strobing Imaging

81

R. Dikpal, A. Veeraraghavan, and R. Chellappa. "P2C2: Programmable pixel compressive camera for high speed imaging" 
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.

8 ⇥ fps!
+ superresolution
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Highspeed Coded Strobing Imaging

82

R. Dikpal, A. Veeraraghavan, and R. Chellappa. "P2C2: Programmable pixel compressive camera for high speed imaging" 
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.

Optically:
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‣ Reconstruction: regularized with optical flow

83

Highspeed Coded Strobing Imaging

with wavelet prior + optical flow reg.

R. Dikpal, A. Veeraraghavan, and R. Chellappa. "P2C2: Programmable pixel compressive camera for high speed imaging" 
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.
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Conclusions
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Conclusion
Sparsity prior involves new sensing methods:
e.g., Compressed Sensing, Compressive Imaging.
Future:

More sensing examples: http://nuit-blanche.blogspot.com

hyperspectral, network, GPR, Lidar, ... (explosion) 
Better sparsity prior: 
structured, model-based, mixed-norm (Cevher, Bach, ...)

co-sparsity/analysis model (Gribonval, Nam, Davies, Elad, Candes)

Non-linear sensing models ?
1-bit CS is one instance, phase recovery (Candès), 
polychromatic CT, ...

85

http://nuit-blanche.blogspot.com
http://nuit-blanche.blogspot.com
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Links (Science 2.0.)
‣ Rice CS Resources page:

http://www-dsp.rice.edu/cs

‣ Igor Carron’s 
“Nuit Blanche”  blog:
http://nuit-blanche.blogspot.com

86

1 CS post/day!

http://www-dsp.rice.edu/cs
http://www-dsp.rice.edu/cs
http://nuit-blanche.blogspot.com
http://nuit-blanche.blogspot.com
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Thank you!

87

http://dsp.rice.edu/1bitCS/
http://dsp.rice.edu/1bitCS/

