-- INVERSE PROBLEMS --

Inverse Problems

Tomography

Overview

- Tomography
 - Absorption / emission
 - Fourier Slice Theorem and Filtered Back Projection
 - Algebraic Reconstruction
 - Applications

- Computed Tomography (CT)
 - Radon transform
 - Filtered Back-Projection
 - natural phenomena
 - glass objects

Computed Tomography (CT)

3D

f(x,y)

Radon transform (1917)

$$\mathcal{R}\left\{f\right\}\left(\alpha,s\right) \quad = \quad \int_{c_{\alpha,s}} f \circ c_{\alpha,s}(t) dt$$

- Radon: Inverse transform exists
 - if all (α, s) are covered

c(lpha,s)

- First numerical application

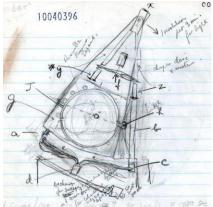
Viktor Ambartsumian (1936, astrophysics) $\sqrt[y]{n} = (\cos \alpha, \sin \alpha)$

Johann Radon (1887-1956)

Viktor Ambartsumian (1909-1996)

Some History

CT Scanning



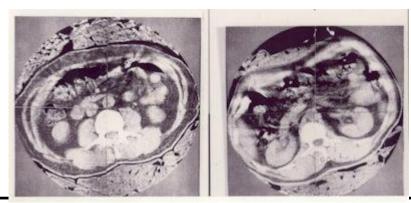
Sketch of the invention



Godfrey Hounsfield (1919-2004)

Allan Cormack (1924-1998)

1979 Nobel prize in Physiology or Medicine



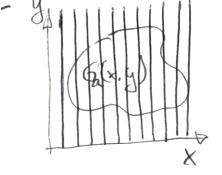
Protibitype Septimization Techniques in Chropmsfieldshatedon Strasbourg, 07/04/2014

- X-rays are attenuated by body tissue and bones
 - Attenuation is spatially variant (attenuation coeff. $\sigma_a(x,y)$)

$$I(x) = I_0(x)e^{-\int_c \sigma_a(x,y)dy}$$

$$\Rightarrow \frac{I(x)}{I_0(x)} = e^{-\int_c \sigma_a(x,y)dy}$$

$$\Rightarrow \log \frac{I(x)}{I_0(x)} = -\int_c \sigma_a(x,y)dy$$



T(x)

Ilx

- $I(x), I_0(x)$ are known, determine $\sigma_a(x, y)$
- III-posed for only one direction lpha
 - Need all

- Definition [Hadamard1902]
 - a problem is well-posed if
 - 1. a solution exists
 - 2. the solution is unique
 - 3. the solution continually depends on the data
 - a problem is ill-posed if it is not well-posed

Tomography

-- Fourier-Based Techniques --

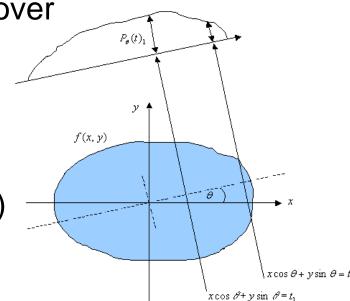
- tomography is the problem of computing a function from its projections
- a projection is a set of line integrals over function m along some ray c

$$o = \int_c m(c(s)) ds$$

invert this equation (noise is present)

$$o = \int_c m(c(s)) ds + n$$

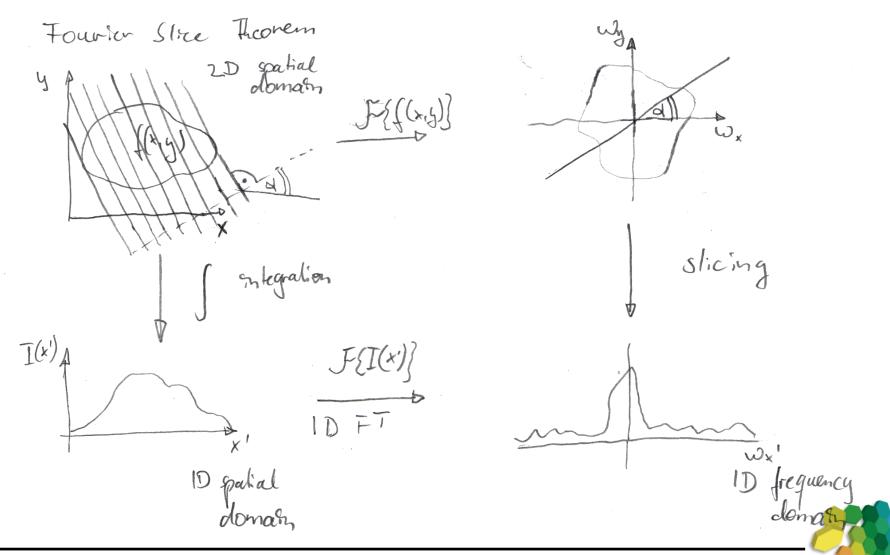
 if infinitely many projections are available this is possible (Radon transform) [Radon1917]



Computed Tomography – Frequency Space Approach

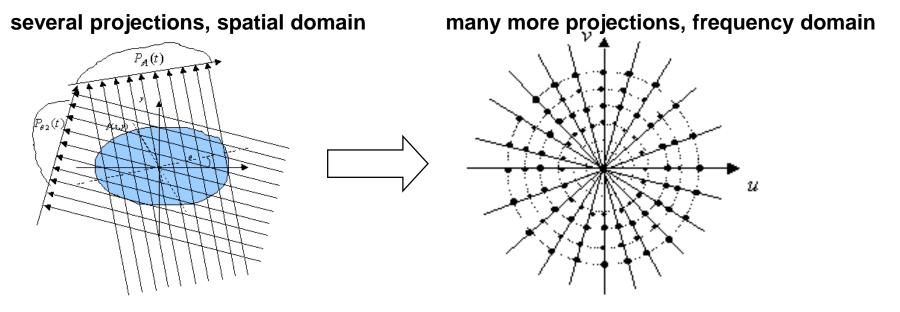
- Fourier Slice Theorem
- The Fourier transform of an orthogonal projection is a slice of the Fourier transform of the function

Computed Tomography – FST



Computed Tomography – Frequency Space Approach

for recovery of the 2D function we need several slices



- slices are usually interpolated onto a rectangular grid
- inverse Fourier transform
- gaps for high frequency components
 - \rightarrow artifacts

Frequency Space Approach - Example

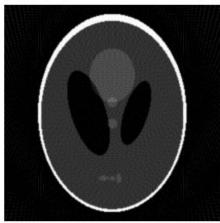
without noise !

original (Shepp-Logan head phantom)

reconstruction from 36 directions

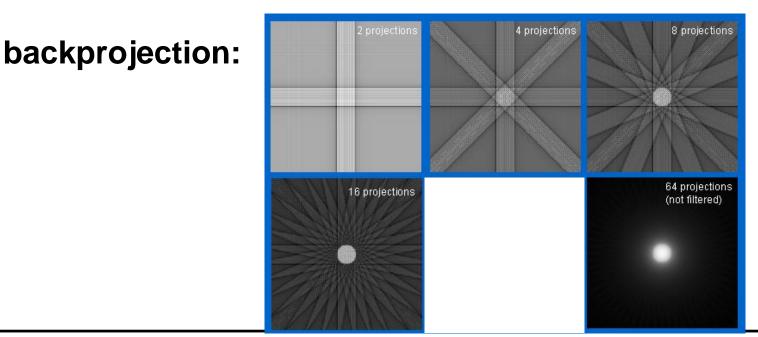
reconstruction from 18 directions

reconstruction from 90 directions



Computer Gra

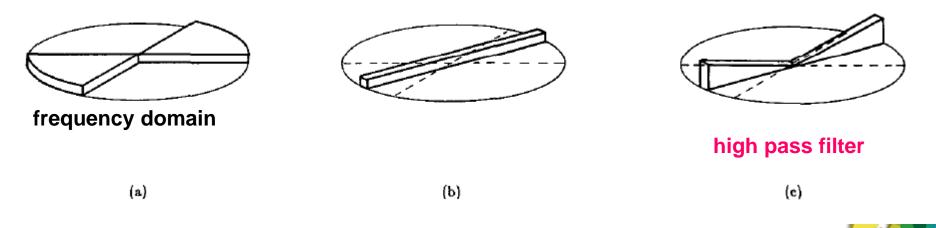
- Fourier transform is linear
 - → we can sum the inverse transforms of the lines in frequency space instead of performing the inverse transform of the sum of the lines



Filtered Back-Projection

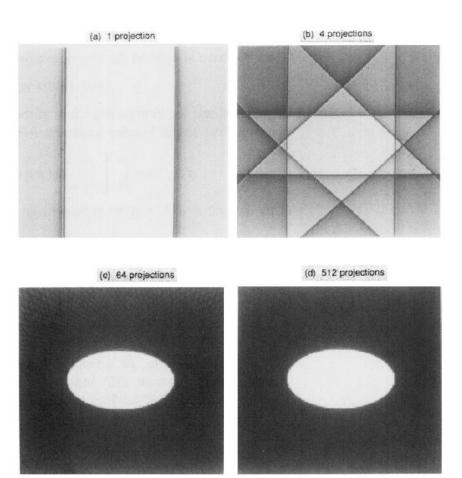
- Why filtering ?
- discrete nature of measurements gives unequal weights to samples
- compensate

would like to have wedge shape for one discrete measurement have a bar shape (discrete measurement) compensate to have equal volume under filter



Filtered Back-Projection (FBP)

- high pass filter 1D projections in spatial domain
- back-project
- blurring is removed
 - FBP can be implemented on the GPU
 - projective texture mapping



- Advantages
 - Fast processing
 - Incremental processing (FBP)
- Disadvantages
 - need orthogonal projections
 - sensitive to noise because of high pass filtering
 - Frequency-space artifacts, e.g. ringing
 - Equal angular view spacing (or adaptive filtering)

Inverse Problems

Tomography

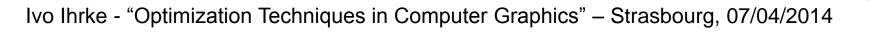
-- Algebraic Techniques --

Cp

- object described by Φ, a density field of e.g. emissive soot particles
- pixel intensities are line integrals along line of sight

$$I_p = \int_C \phi \ ds$$

Task: Given intensities, compute Φ

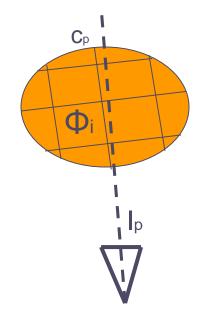


- ART
- Algebraic Reconstruction Technique (ART)
 Discretize unknown Φ using a linear combination of basis functions Φ_i

$$I_p = \int_c \left(\sum_i a_i \phi_i\right) \, ds$$

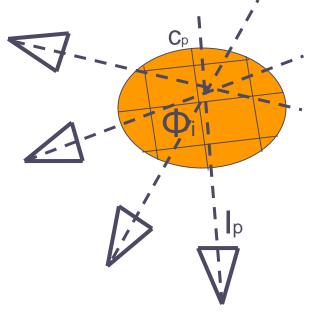
• \rightarrow linear system p = Sa

$$I_p = \sum_i a_i \left(\int_{\mathcal{C}_p} \phi_i \, ds \right)$$



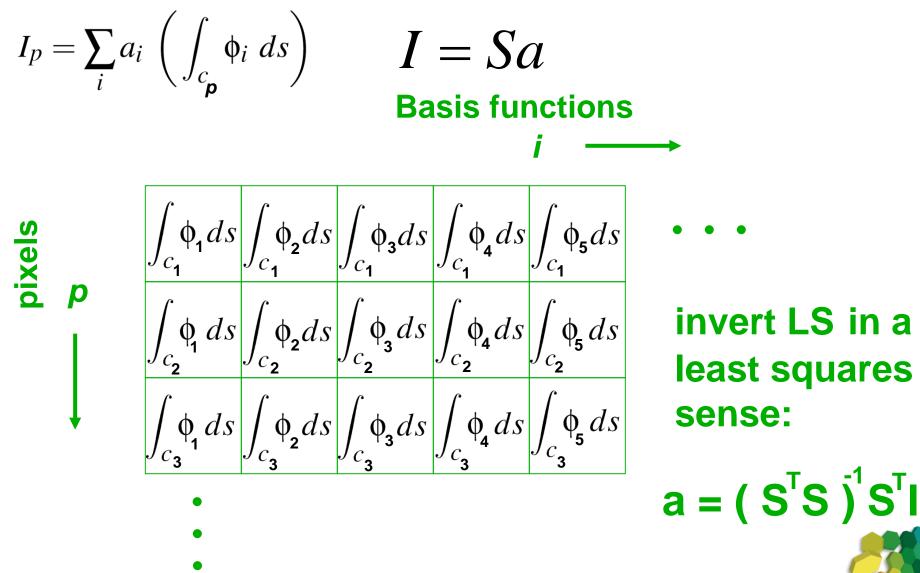
Discretize unknown Φ using a linear combination of basis functions Φ_i

$$I_p = \int_c \left(\sum_i a_i \phi_i\right) ds$$
$$I_p = \sum_i a_i \left(\int_{c_p} \phi_i ds\right)$$



Need several views

ART – Matrix Structure



- Advantages
 - Accomodates flexible acquisition setups
 - Can be made robust to noise (next lecture)
 - Arbitrary or adaptive discretization
 - Can be implemented on GPU
- Disadvantages
 - May be slow
 - May be memory-consumptive

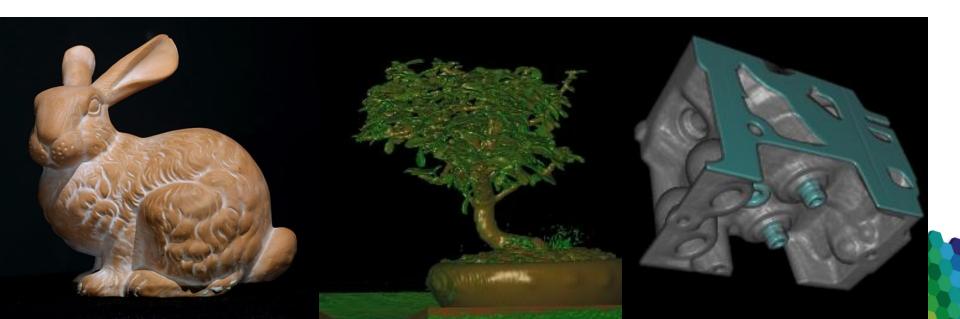
Inverse Problems

Tomography

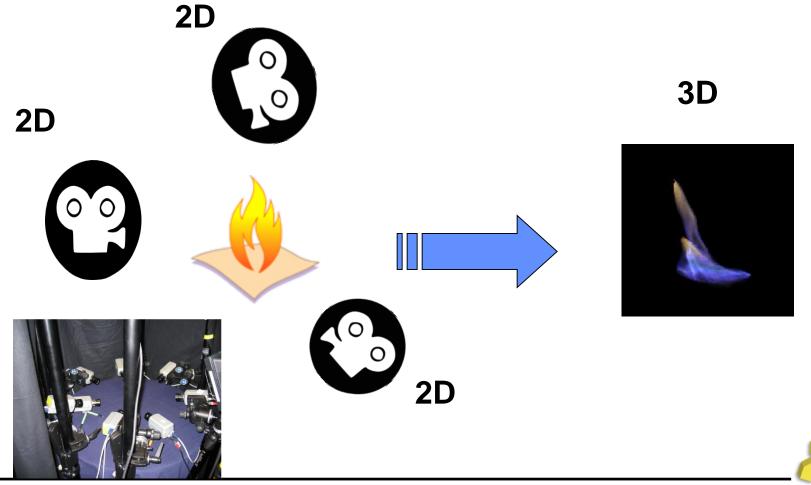
-- Applications --

CT Applications in measurement and quality control

- Acquisition of difficult to scan objects
- Visualization of internal structures (e.g. cracks)
- No refraction



reconstruction of flames using a multi-camera setup

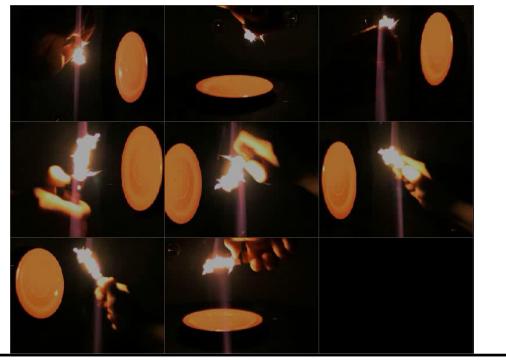


Flame tomography

Calibrated, synchronized camera setup

-8 cameras, 320 x 240 @ 15 fps

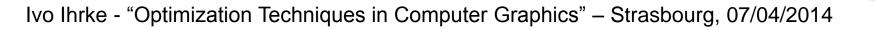
8 input views in original camera orientation



Camera setup

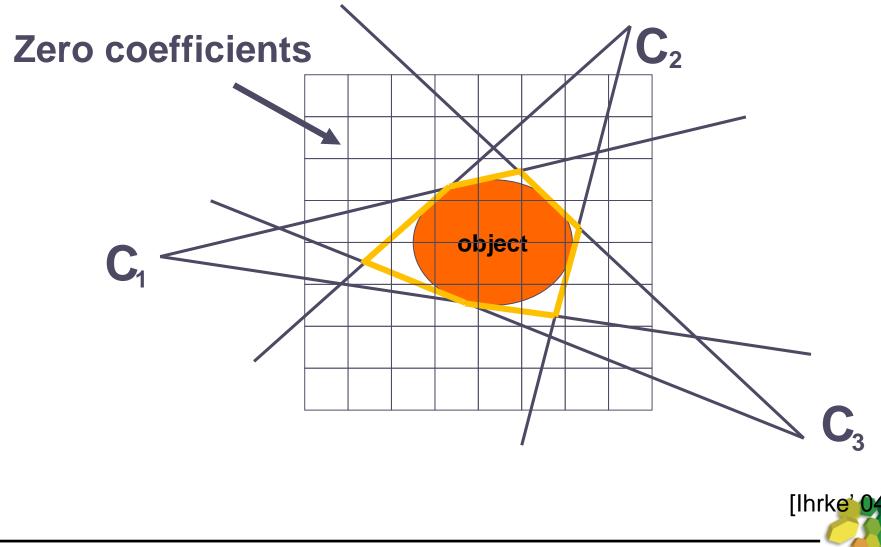
[lhrke' 04]

- Large number of projections is needed
- In case of dynamic phenomena
 - \rightarrow many cameras
 - expensive
 - inconvenient placement
- straight forward application of ART with few cameras not satisfactory

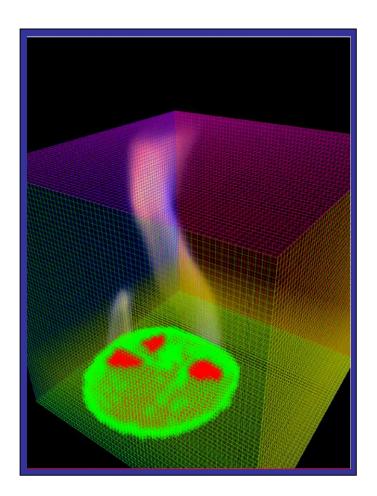


[lhrke'0

Visual Hull Restricted Tomography

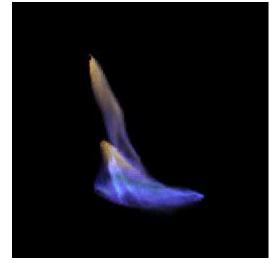


- Only a small number of voxels contribute
- Remove voxels that do not contribute from linear system
- Complexity of inversion is significantly reduced

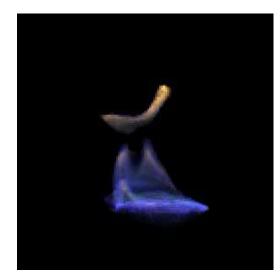


[lhrke' 0

Animated Flame Reconstruction



frame 86



frame 194



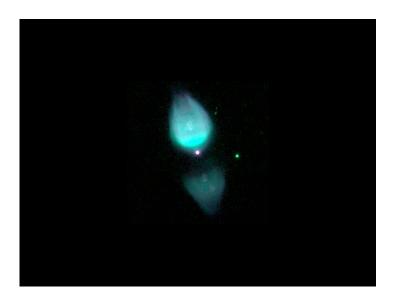
animated reconstructed flames

[lhrke' 04]

Smoke Reconstructions

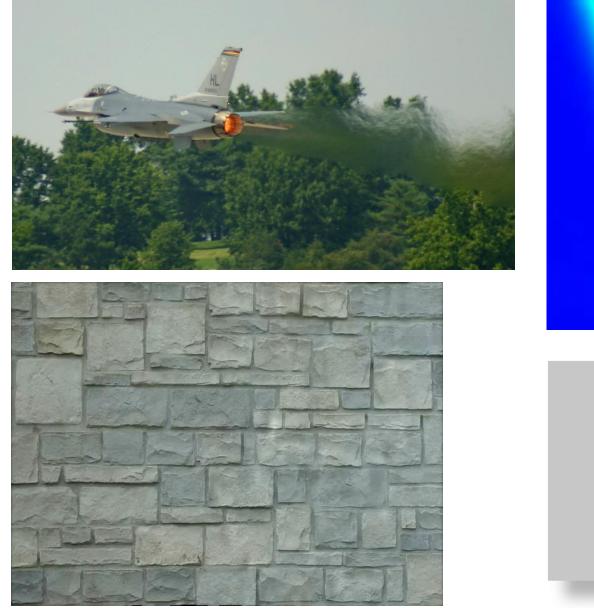
[lhrke' 06]

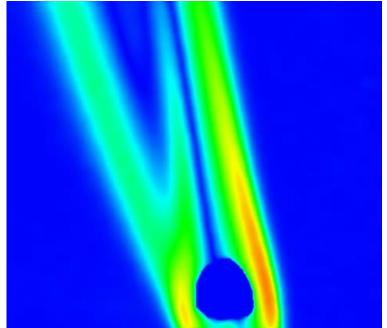
- only one view available
- exploit axial symmetry
- essentially a 2D problem

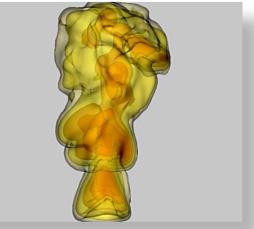


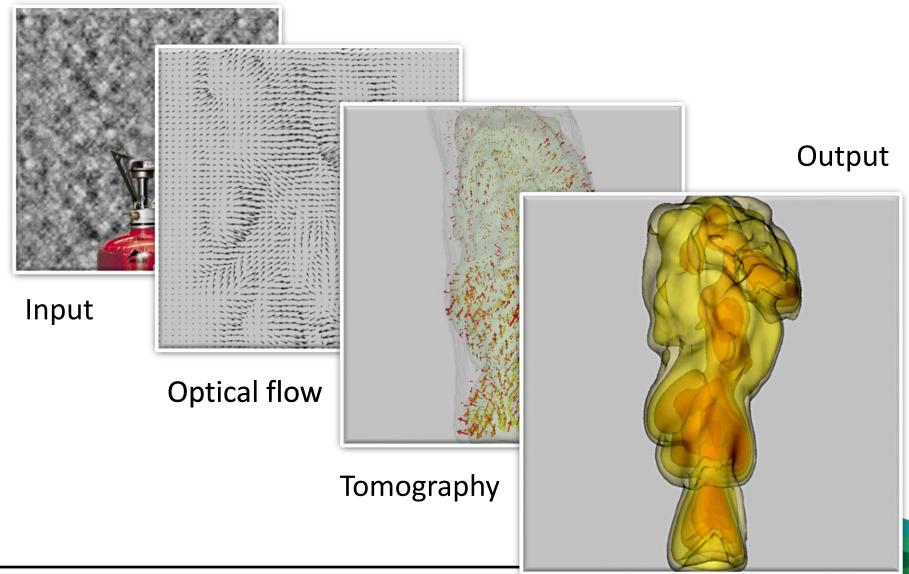


[Magnor04]



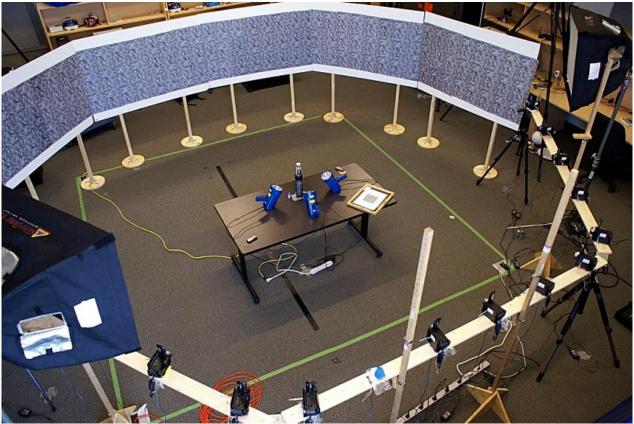






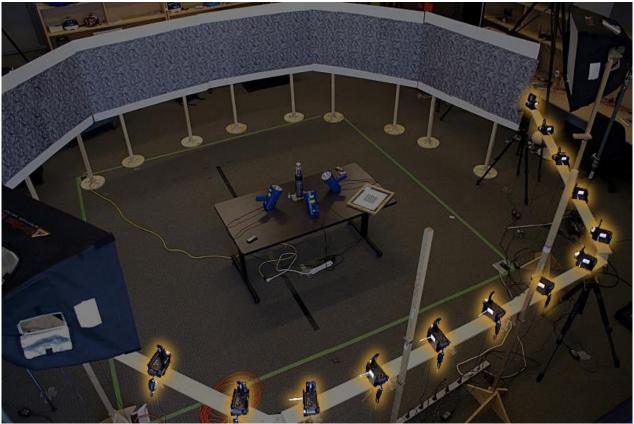
16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation



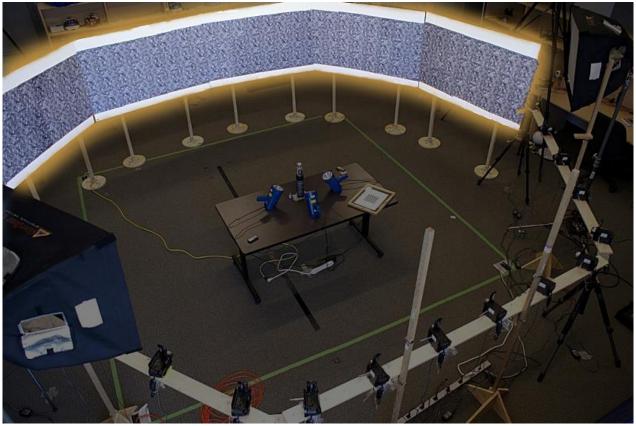
16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation



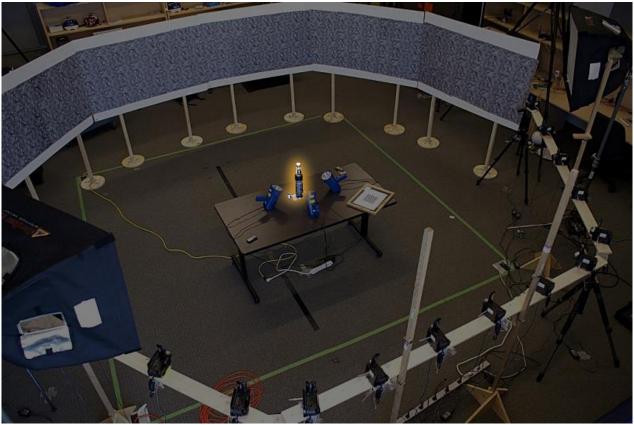
16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

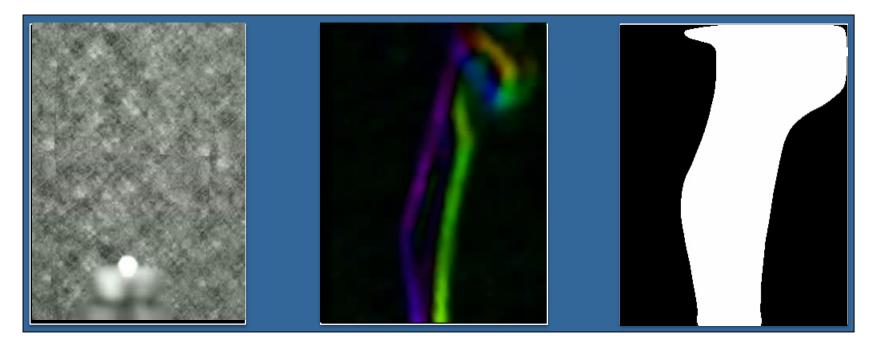


16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation



Schlieren CT – Image Processing



Input

Optical flow

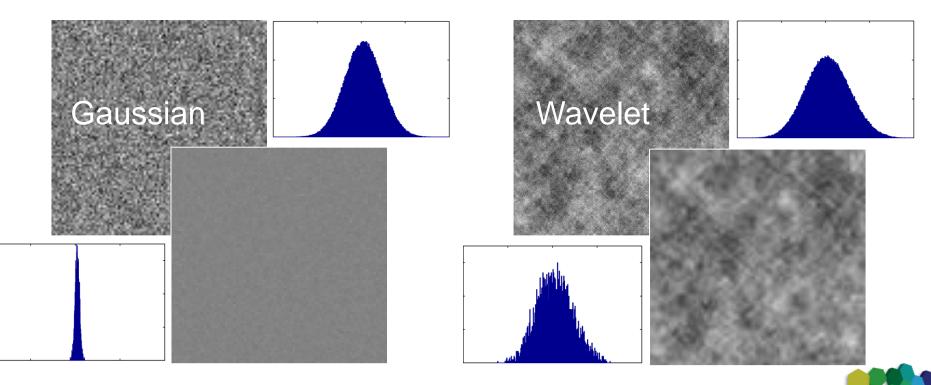
Mask

Schlieren CT – Background Pattern

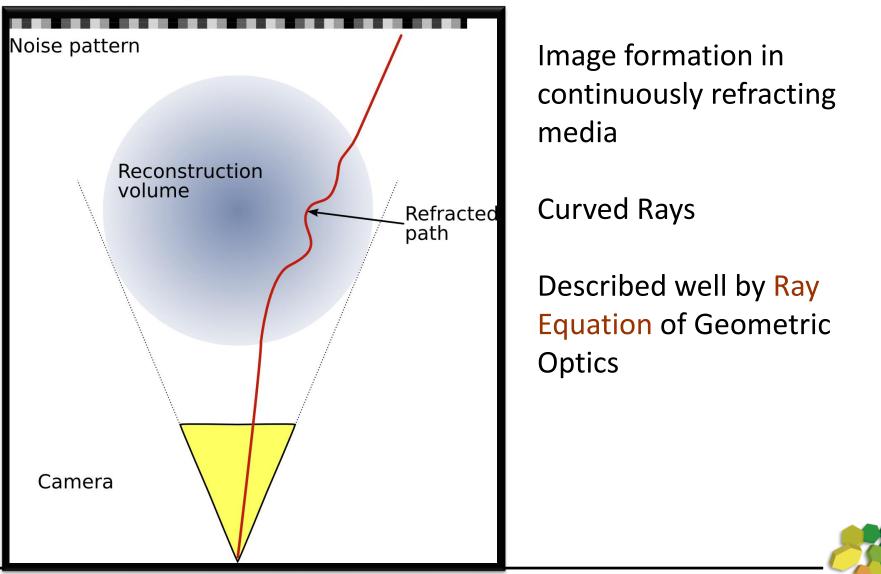
High frequency detail everywhere

Decouple pattern resolution from sensor

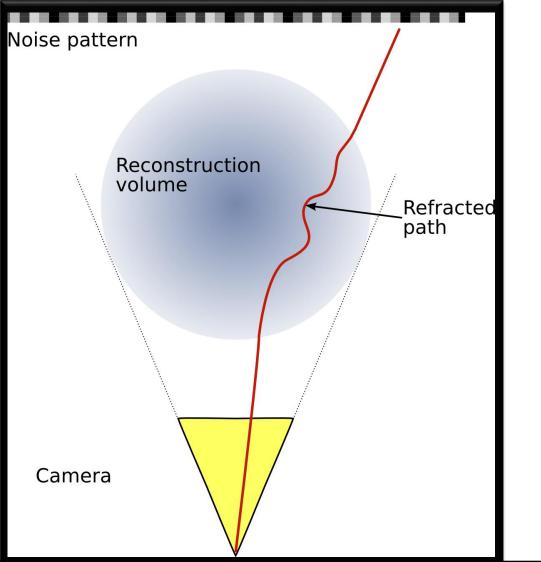
Wavelet noise [Cook 05]



Schlieren CT - Image Formation



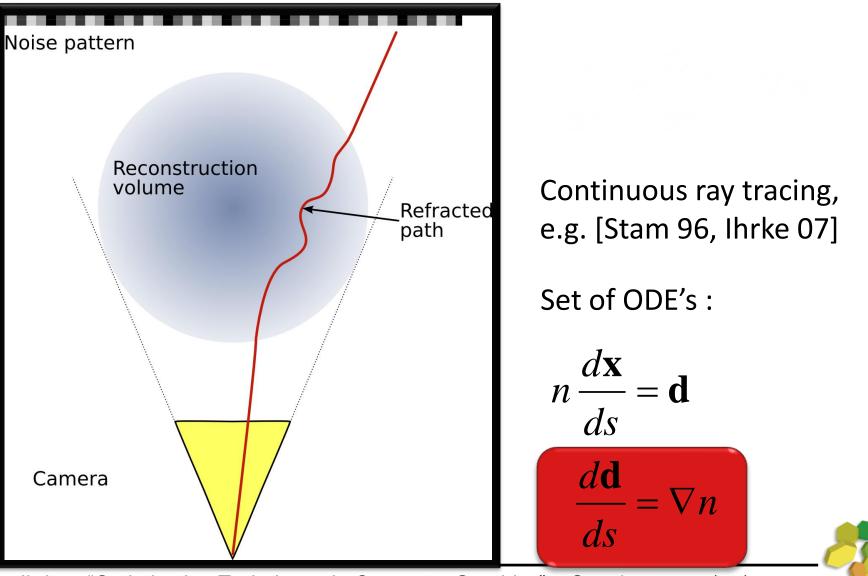
Schlieren CT - Image Formation



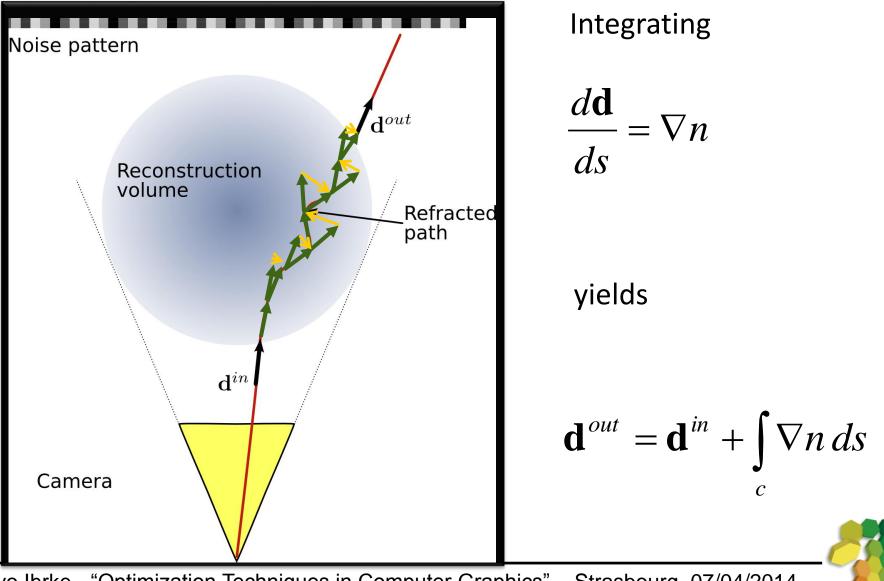
Continuous ray tracing, e.g. [Stam 96, Ihrke 07] Set of 1st order ODE's :

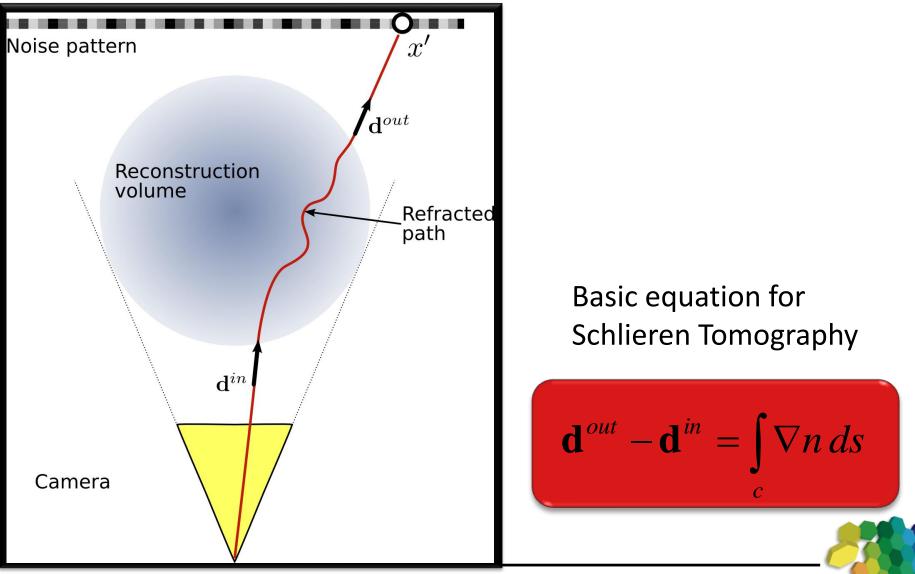
$$n\frac{d\mathbf{x}}{ds} = \mathbf{d}$$
$$\frac{d\mathbf{d}}{ds} = \nabla n$$

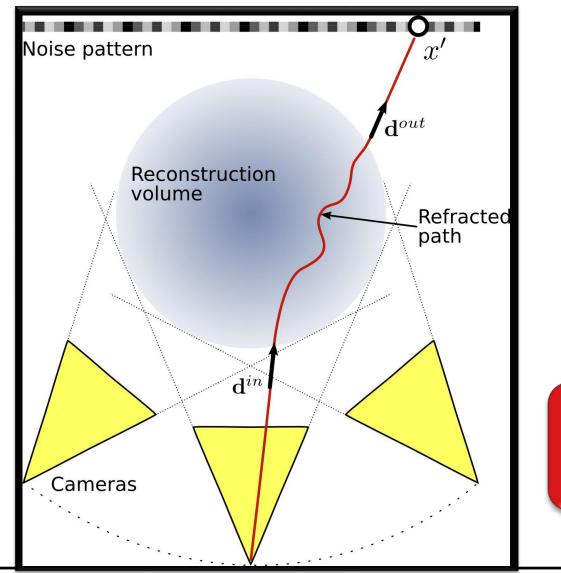
Schlieren CT - Ray equation



Schlieren CT - Ray equation



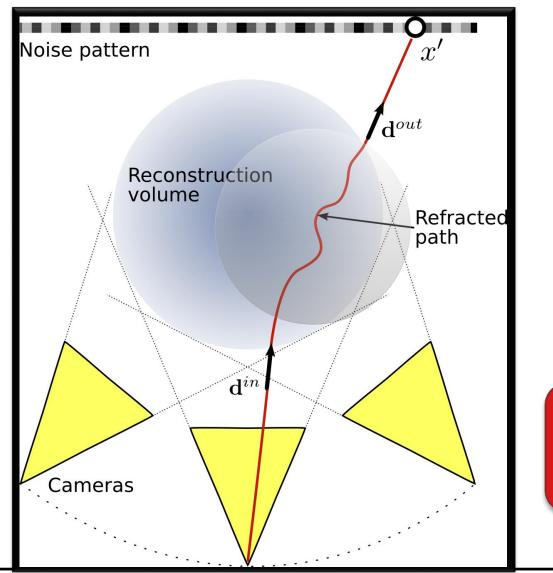




Based on measurements of line integrals from different orientations

$$\mathbf{d}^{out} - \mathbf{d}^{in} = \int_{c} \nabla n \, ds$$





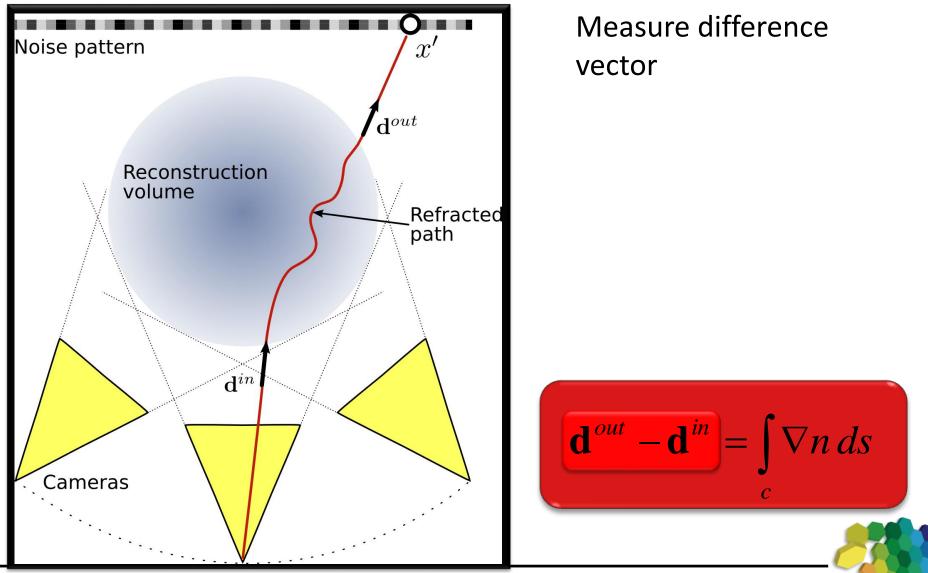
Ray path must be known

BUT: unknown refractive index

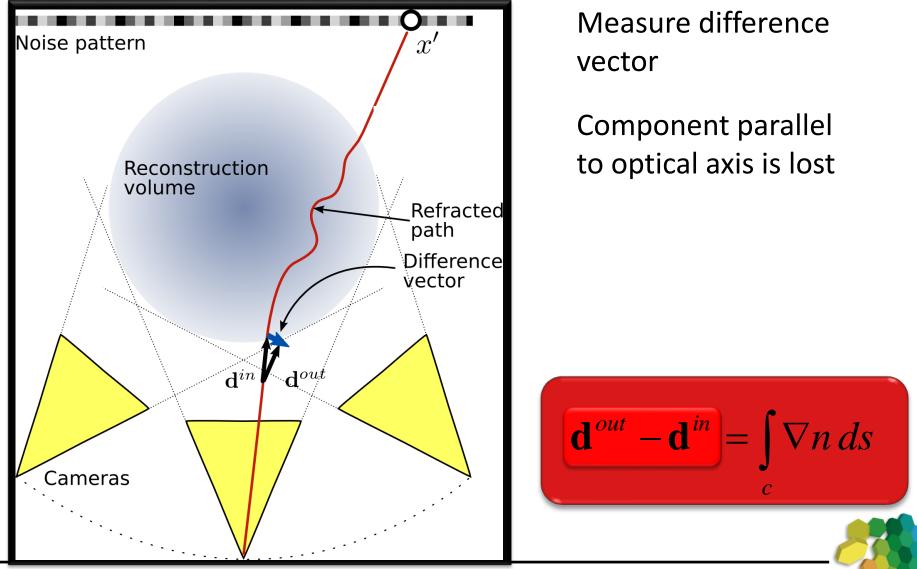
Affects integration path only, equation still holds approximately!

$$\mathbf{d}^{out} - \mathbf{d}^{in} = \int \nabla n \, ds$$

Schlieren Tomography - Measurements



Schlieren Tomography - Measurements



Vector-valued tomographic problem

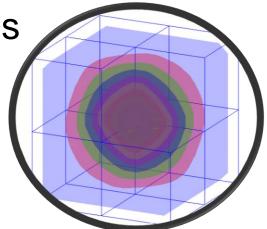
Discretize gradient

Radially symmetric basis functions

$$\overline{\nabla n} = \sum_{i} \mathbf{n}_{i} \phi_{i}$$

Linear system in

$$\overline{\mathbf{d}}^{out} - \mathbf{d}^{in} = \int \sum \mathbf{n}_i \phi_i ds = \sum \mathbf{n}_i \int \phi_i ds$$



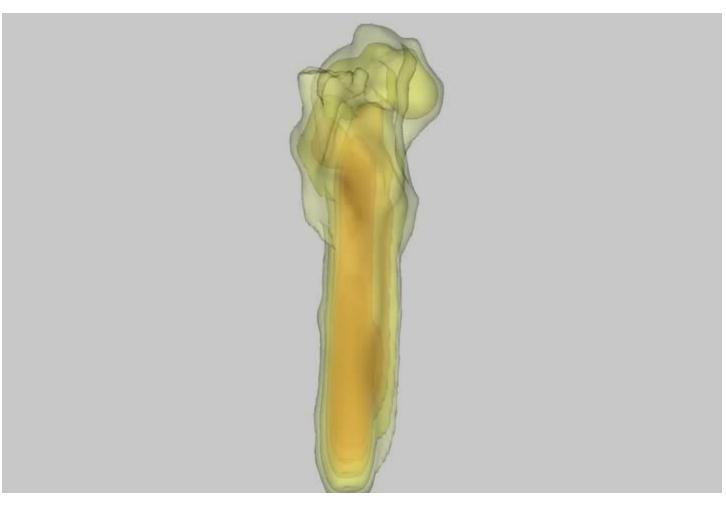
Given ∇n from tomography Compute ^{*n*} from definition of Laplacian

$$\nabla \cdot \nabla n = \Delta n$$

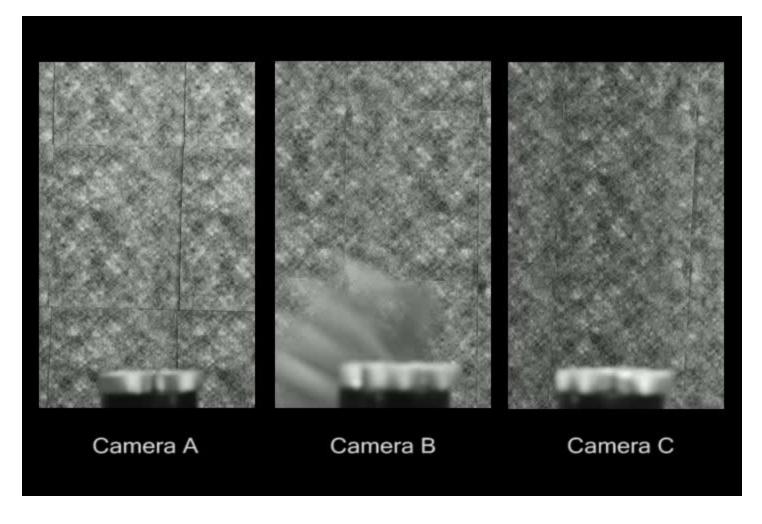
Solve Poisson equation to get refractive index

- Inconsistent gradient field due to noise and other measurement error
- Anisotropic diffusion

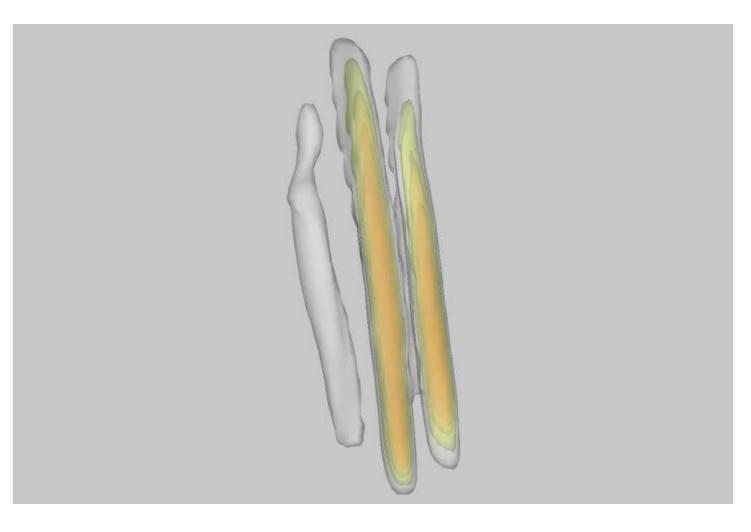
Schlieren Tomography - Results



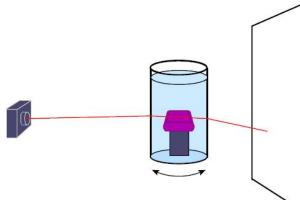
Schlieren Tomography - Results



Schlieren Tomography - Results



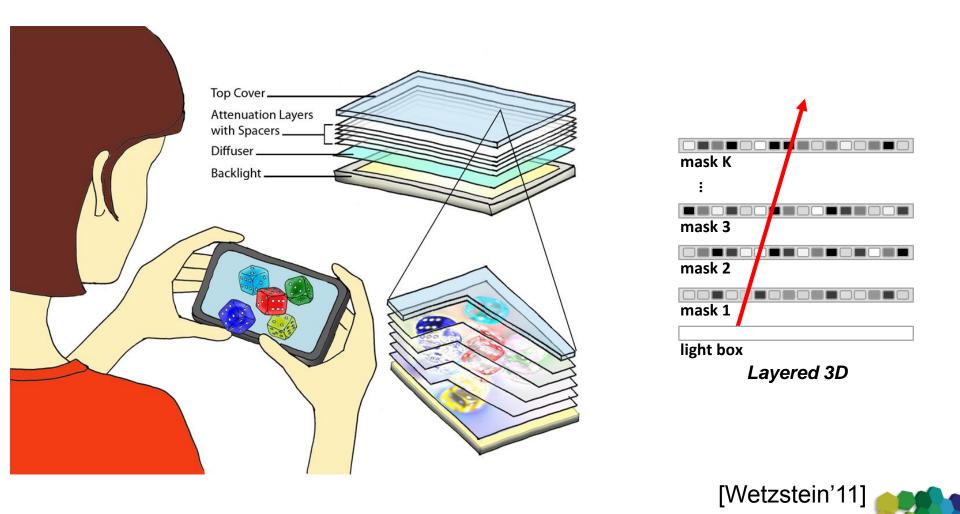
- visible light tomography of glass objects
 - needs straight ray pathes
- compensate for refraction
 - immerse glass object in water
 - add refractive index matching agent
 - \rightarrow "ray straightening"
- apply tomographic reconstruction

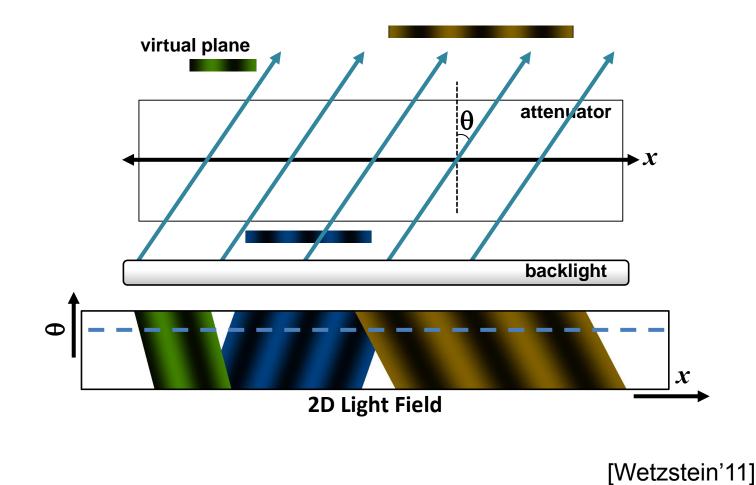


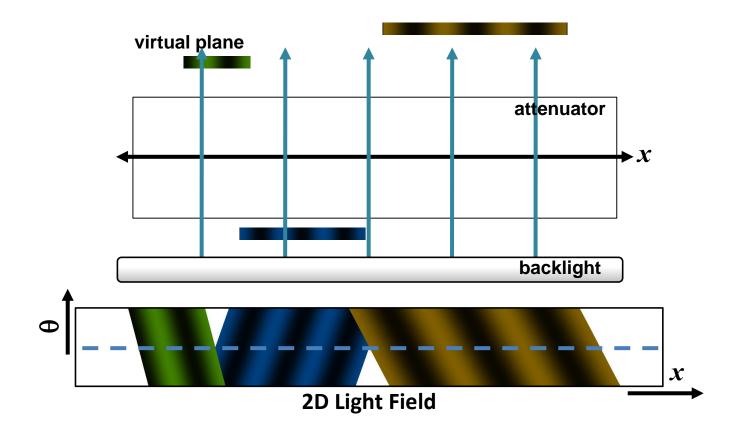
3D Scanning of Glass Objects [Trifonov06]

- Tomographic reconstruction results in volume densities
- use marching cubes to extract object surfaces

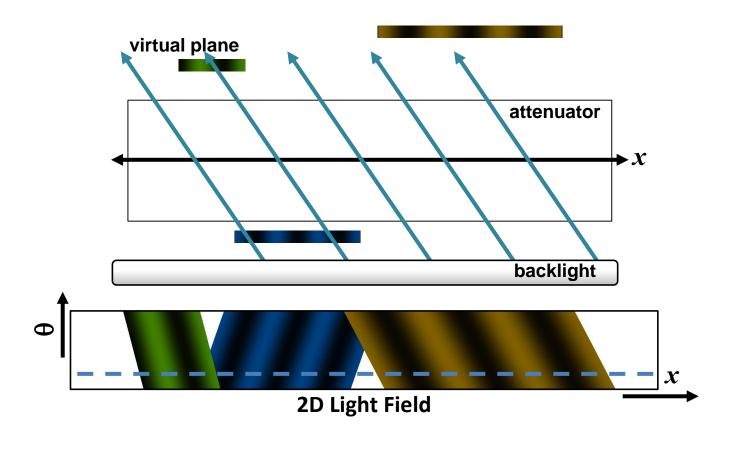
Layered 3D: Multi-Layer Displays







[Wetzstein'11]



[Wetzstein'11]

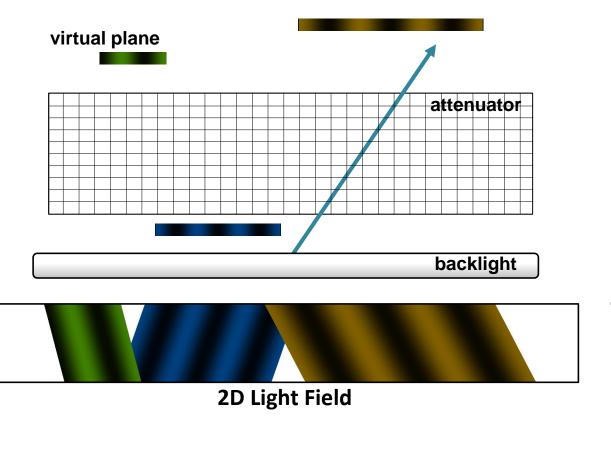


Image formation model:

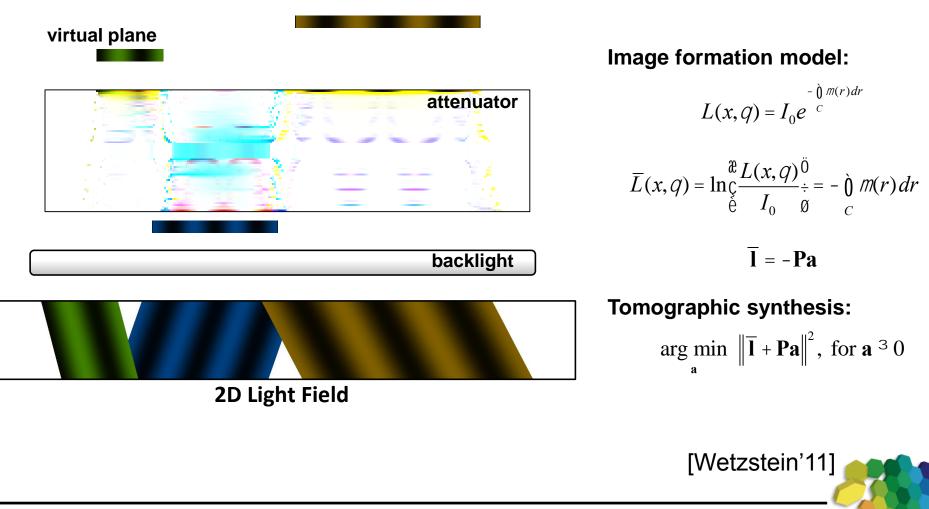
 $L(x,q) = I_0 e^{-\oint_C m(r)dr}$

$$\overline{L}(x,q) = \ln \overset{\mathcal{R}}{\underset{e}{\bigcirc}} \frac{L(x,q)}{I_0} \overset{\hat{0}}{\underset{g}{\otimes}} = - \overset{\circ}{\underset{C}{\bigcirc}} \mathcal{M}(r) dr$$

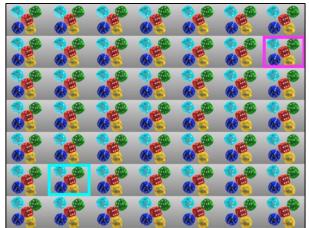
 $\overline{\mathbf{l}} = -\mathbf{P}\mathbf{a}$

Tomographic synthesis: $\arg \min_{\mathbf{a}} \|\overline{\mathbf{l}} + \mathbf{P}\mathbf{a}\|^{2}, \text{ for } \mathbf{a} \ge 0$

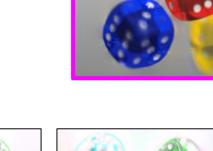
[Wetzstein'11]



Multi-Layer Light Field Decomposition



Target 4D Light Field

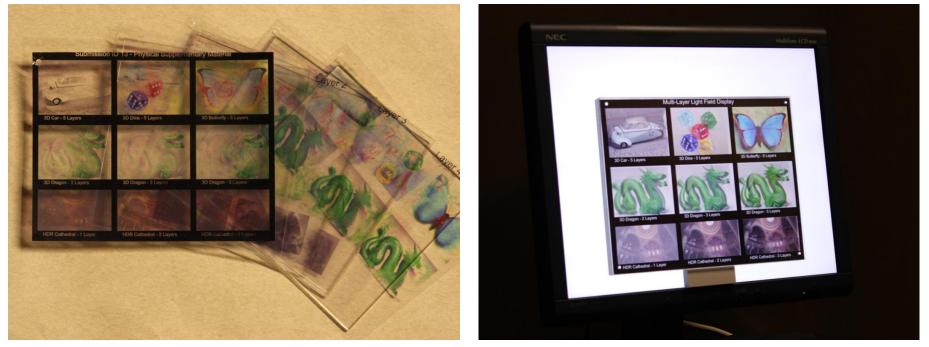


Reconstructed Views

Multi-Layer Decomposition

[Wetzstein'11]

Prototype Layered 3D Display



Transparency stack with acrylic spacers

Prototype in front of LCD (backlight source)

[Wetzstein'11]

[Wetzstein'11]

Inverse Problems - Deconvolution

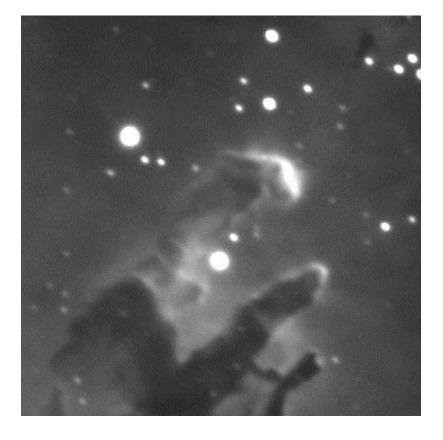
Deconvolution

- Deconvolution Theory
 - example 1D deconvolution
 - Fourier method
 - Algebraic method
 - discretization
 - matrix properties
 - regularization
 - solution methods
- Deconvolution Examples

Applications - Astronomy

BEFORE

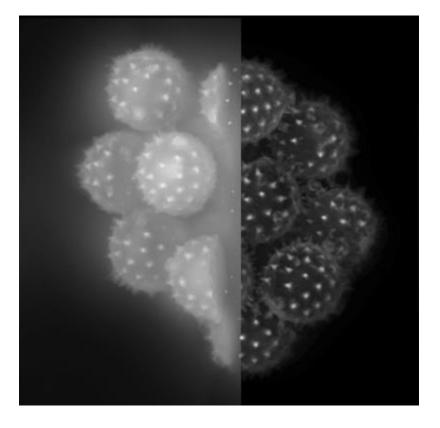
AFTER

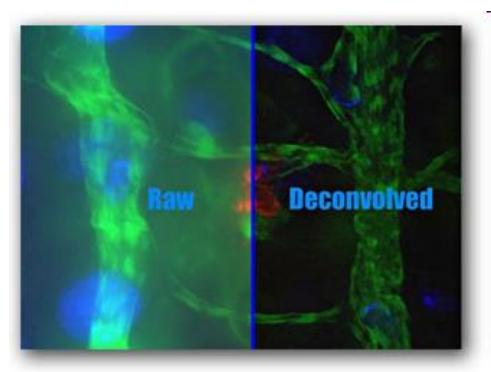




Images courtesy of Robert Vanderbei

Applications - Microscopy





Images courtesy Meyer Instruments

Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

Inverse Problem - Definition

- forward problem
 - given a mathematical model M and its parameters m, compute (predict) observations o

o = M(m)

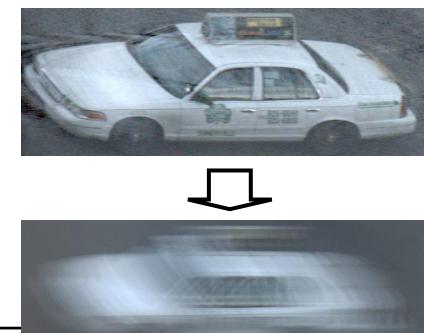
- inverse problem
 - given observations o and a mathematical model M, compute the model's parameters

$$m = M^{-1}(o)$$

Inverse Problems – Example Deconvolution

- forward problem convolution
 - example blur filter
 - given an image m and a filter kernel k, compute the blurred image o

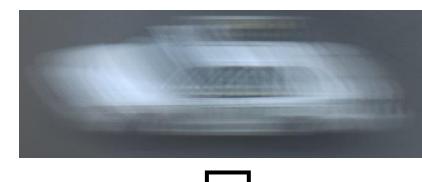
$$o = m \otimes k$$



Ivo Ihrke - "Optimization Techniques in Computer Graphi

Inverse Problems – Example Deconvolution

- Inverse problem deconvolution
 - example blur filter
 - given a blurred image o and a filter kernel k, compute the sharp image
 - need to invert
 - $o = m \otimes k + n$
 - n is noise



Ivo Ihrke - "Optimization Techniques in Computer Graphi

Deconvolution

--Fourier Solution--

Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

- deconvolution in Fourier space
- convolution theorem (F is the Fourier transform):

$$o = m \otimes k, \ \Rightarrow \mathcal{F}\{o\} = \mathcal{F}\{m\} \cdot \mathcal{F}\{k\}$$

deconvolution:

$$\Rightarrow \mathcal{F}\{m\} = \frac{\mathcal{F}\{o\}}{\mathcal{F}\{k\}}$$

- problems
 - division by zero
 - Gibbs phenomenon
 - (ringing artifacts)

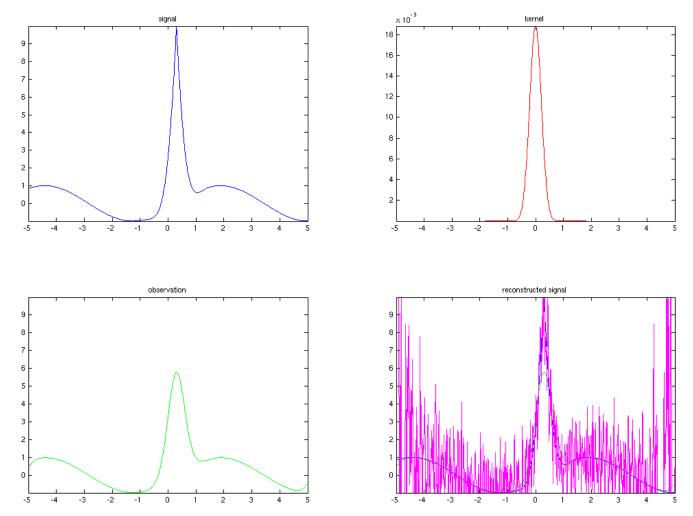
Ivo Ihrke - "Optimization Techniques in Computer Graph

A One-Dimensional Example – Deconvolution Spectral

- most common: $\mathcal{F}\{k\}$ is a low pass filter
 - → $\frac{1}{\mathcal{F}\{k\}}$, the inverse filter, is high pass
 - \rightarrow amplifies noise and numerical errors

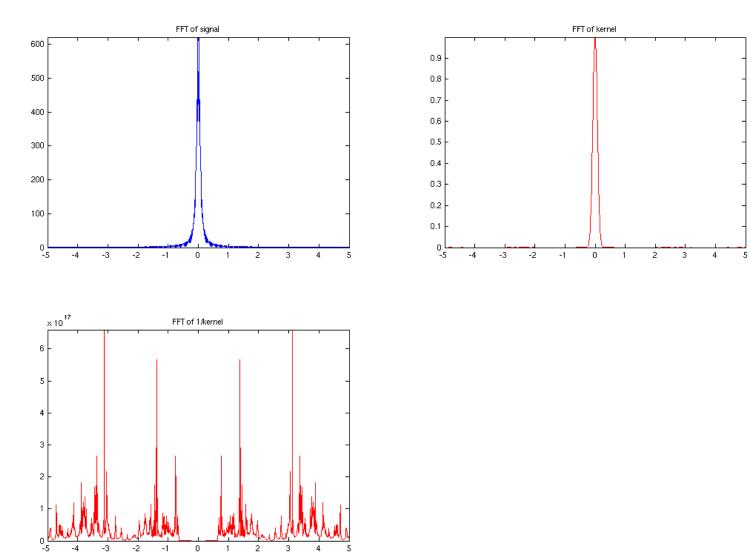
A One-Dimensional Example – Deconvolution Spectral

- reconstruction is noisy even if data is perfect !
 - Reason: numerical errors in representation of function



A One-Dimensional Example – Deconvolution Spectral

spectral view of signal, filter and inverse filter



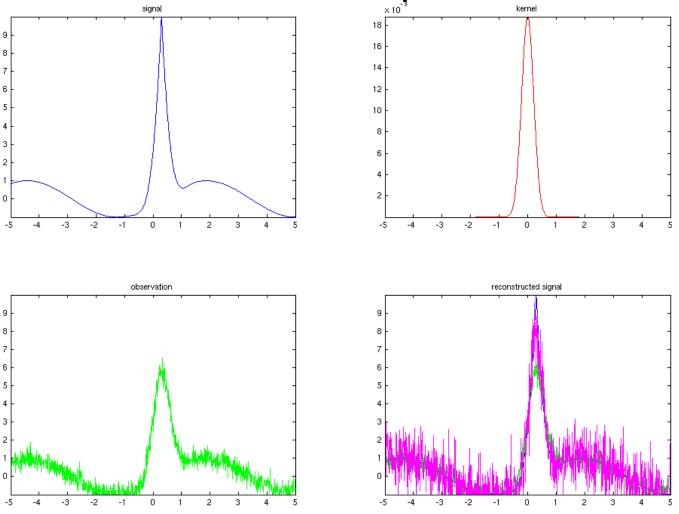
A One-Dimensional Example – Deconvolution Spectral

 solution: restrict frequency response of high pass filter (clamping)

$$\begin{array}{lll} \mathfrak{F}\{g\} & := & \left\{ \begin{array}{ll} \frac{1}{\mathfrak{F}\{k\}} & \mathrm{if}\frac{1}{\mathfrak{F}\{k\}} < \gamma \\ \gamma \frac{\mathfrak{F}\{k\}}{|\mathfrak{F}\{k\}|} & \mathrm{else} \end{array} \right. \\ \mathfrak{F}\{m\} & = & \mathfrak{F}\{o\} \cdot \mathfrak{F}\{g\} \end{array}$$

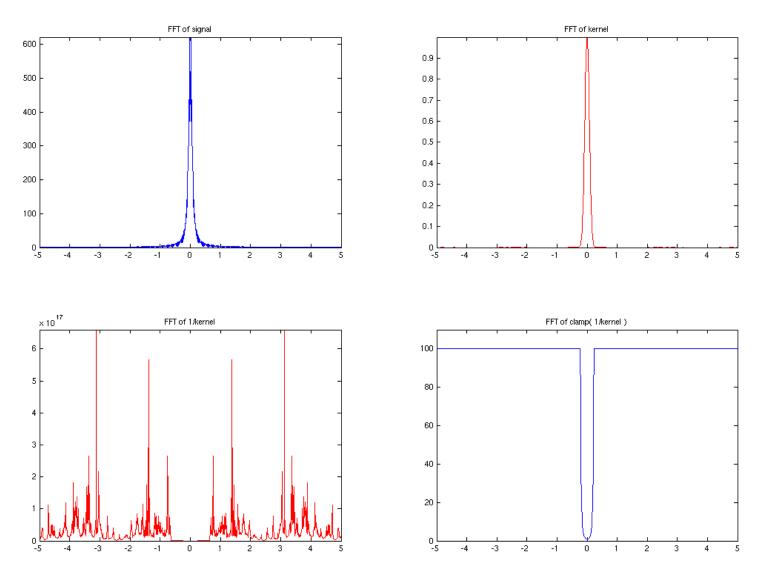
A One-Dimensional Example -Deconvolution Spectral

reconstruction with clamped inverse filter



A One-Dimensional Example – Deconvolution Spectral

spectral view of signal, filter and inverse filter



A One-Dimensional Example – Deconvolution Spectral

- Automatic per-frequency tuning: Wiener Deconvolution
 - Alternative definition of inverse kernel
 - Least squares optimal
 - Per-frequency SNR must be known

$$\mathcal{F}\left\{g\right\}(\omega) := \frac{1}{\mathcal{F}\left\{k\right\}(\omega)} \frac{|\mathcal{F}\left\{k\right\}|^{2}(\omega)}{|\mathcal{F}\left\{k\right\}|^{2}(\omega) + |\frac{1}{\mathrm{SNR}(\omega)}|}$$

Deconvolution

-- Algebraic Solution --

Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

A One-Dimensional Example-Deconvolution Algebraic

- alternative: algebraic reconstruction
- convolution

$$o(x) = \int_{-\infty}^{\infty} m(t)k(x-t)dt$$

 discretization: linear combination of basis functions

$$m(t) = \sum_{i=0}^{N} m_i \phi_i(t)$$

A One-Dimensional Example – Deconvolution Algebraic

- discretization:
 - observations are linear combinations of convolved basis functions
 - linear system with unknowns m_i
 - often over-determined,
 i.e. more observations o
 than degrees of freedom
 (# basis functions)

$$o(x) = \{m \otimes k\} (x)$$

= $\int_{-\infty}^{\infty} m(t)k(x-t)dt$
= $\int_{-\infty}^{\infty} \sum_{i=0}^{N} m_i \phi_i(t)k(x-t)dt$
= $\sum_{i=0}^{N} m_i \int_{-\infty}^{\infty} \phi_i(t)k(x-t)dt$
= $\sum_{i=0}^{N} m_i \{\phi_i \otimes k\} (x)$

 $\mathbf{o}=\mathtt{M}\mathbf{m}$ linear system

A One-Dimensional Example – Deconvolution Algebraic

- discretization:
 - observations are linear combinations of convolved basis functions
 - linear system with unknowns m_i
 - often over-determined,
 i.e. more observations o
 than degrees of freedom
 (# basis functions)

$$o(x) = \{m \otimes k\} (x)$$

$$= \int_{-\infty}^{\infty} m(t)k(x-t)dt$$

$$= \int_{-\infty}^{\infty} \sum_{i=0}^{N} m_i \phi_i(t)k(x-t)dt$$

$$= \sum_{i=0}^{N} m_i \int_{-\infty}^{\infty} \phi_i(t)k(x-t)dt$$

$$= \sum_{i=0}^{N} m_i (\phi_i \otimes k) (x)$$

 $\mathbf{o}=\mathtt{M}\mathbf{m}$ linear system

A One-Dimensional Example – Deconvolution Algebraic

normal equations

$$\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 = \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \min_{\mathbf{x}} f(\mathbf{x})$$

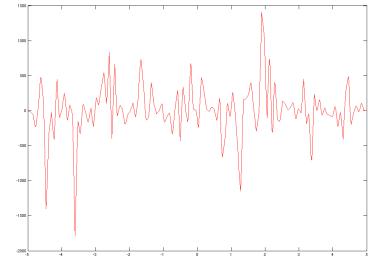
$$\nabla f = 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} = \mathbf{0}$$

→ solve $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ least squares sense

to obtain solution in a

solution is completely broken !

Ivo Ihrke - "Optimization Techniques in Computer Graphic



A One-Dimensional Example – Deconvolution Algebraic

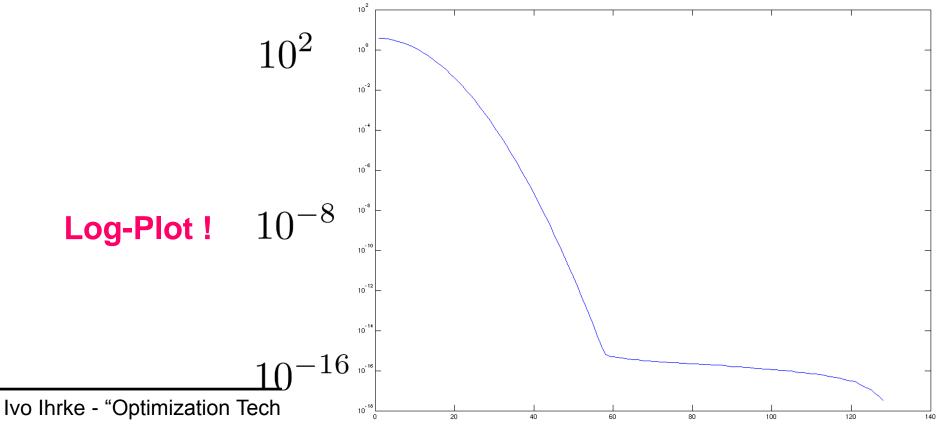
- Why ?
- analyze distribution of eigenvalues
- Remember:

$$\det \mathbf{A} = \prod_{i=0}^N \lambda_i \quad \text{and} \quad \det \mathbf{A} = 0 \Rightarrow \quad \begin{array}{l} \text{Matrix is under-} \\ \text{determined} \end{array}$$

- we will check the singular values
 - Ok, since $A^T A$ is SPD (symmetric, positive semi-definite)
 - \rightarrow non-negative eigenvalues
- Singular values are the square root of the eigenvalues
 Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

A One-Dimensional Example – Deconvolution Algebraic

- matrix $M^T M$ has a very wide range of singular values!
- more than half of the singular values are smaller than machine epsilon ($10^{-16}\,$) for double precision



A One-Dimensional Example – Deconvolution Algebraic

- Why is this bad ?
- Singular Value Decomposition: U, V are orthonormal, D is diagonal

$$\mathtt{M} = \mathtt{U} \mathtt{D} \mathtt{V}^T$$

- Inverse of M: $M^{-1} = (UDV^T)^{-1}$ = $V^{-T}D^{-1}U^{-1}$ = $VD^{-1}U^T$
- singular values are diagonal elements of D
- inversion: $D^{-1} = \operatorname{diag}\left(\frac{1}{D_{i}}\right)$

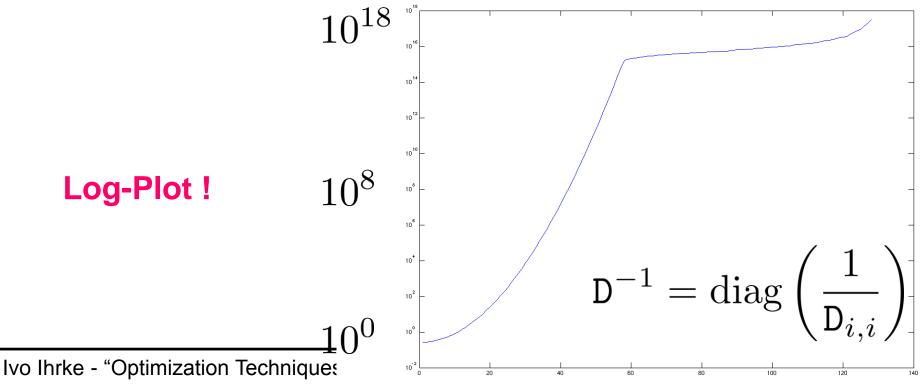
Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

A One-Dimensional Example – Deconvolution Algebraic

computing model parameters from observations:

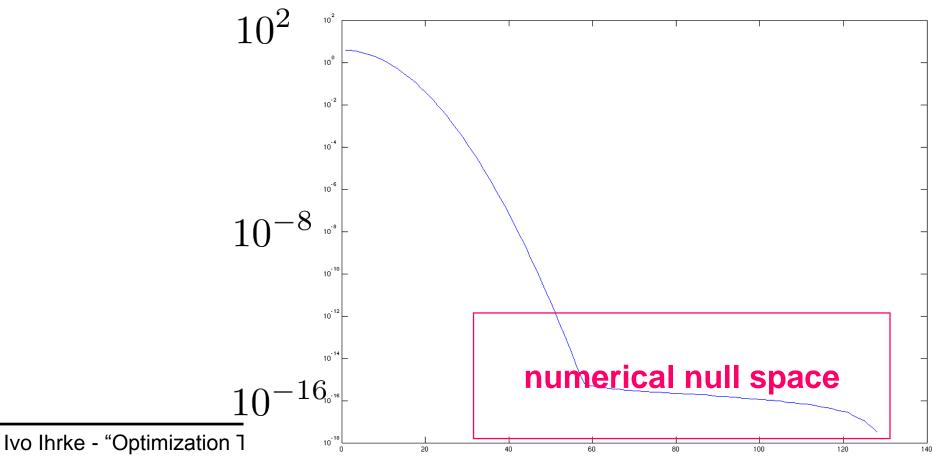
$$\mathbf{m} = \mathtt{M}^{-1}\mathbf{o} = \mathtt{V}\mathtt{D}^{-1}\mathtt{U}^T\mathbf{o}$$

- again: amplification of noise
- potential division by zero



A One-Dimensional Example – Deconvolution Algebraic

- inverse problems are often ill-conditioned (have a numerical null-space)
- inversion causes amplification of noise



- Definition [Hadamard1902]
 - a problem is well-posed if
 - 1. a solution exists
 - 2. the solution is unique
 - 3. the solution continually depends on the data

- Definition [Hadamard1902]
 - a problem is ill-posed if it is not well-posed
 - most often condition (3) is violated
 - if model has a (numerical) null space, parameter choice influences the data in the null-space of the data very slightly, if at all
 - noise takes over and is amplified when inverting the model

1

- measure of ill-conditionedness: condition number
- measure of stability for numerical inversion
- ratio between largest and smallest singular value

$$\rho(\mathbf{A}) = \frac{\sigma_0}{\sigma_N}, \quad \sigma_0 > \ldots > \sigma_N \text{ are the singular values of } \mathbf{A}$$

- smaller condition number → less problems when inverting linear system
- condition number close to one implies near orthogonal matrix

- solution to stability problems: avoid dividing by values close to zero
- Truncated Singular Value Decomposition (TSVD)

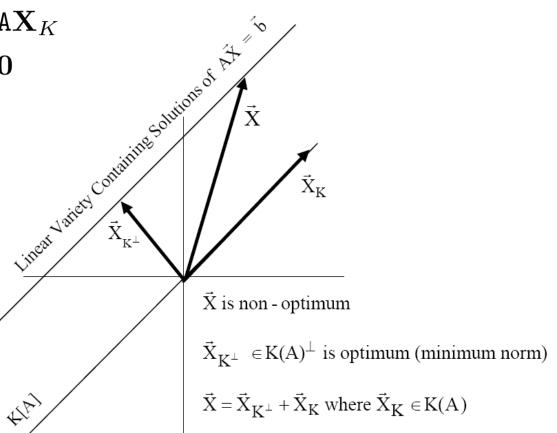
$$\mathbf{d}^{+} = \begin{cases} \frac{1}{\mathsf{D}_{i,i}} & \text{if } \mathsf{D}_{i,i} > \epsilon \\ 0 & \text{else} \end{cases}$$
$$\mathbf{D}^{+} = \operatorname{diag}(\mathbf{d}^{+})$$

 $\mathbf{M}^+ = \mathbf{V} \mathbf{D}^+ \mathbf{U}^T$

• ϵ is called the *regularization* parameter

- Let K[A] be the null-space of A and $\mathbf{X}_K \in K$ $\Rightarrow \mathbf{A}\mathbf{X}_K = \mathbf{0}$
 - $\Rightarrow \mathbf{A}\mathbf{X} = \mathbf{A}(\mathbf{X}_{K^{\perp}} + \mathbf{X}_{K})$
 - $= \mathbf{A}\mathbf{X}_{K^{\perp}} + \mathbf{A}\mathbf{X}_{K}$
 - = A $\mathbf{X}_{K^{\perp}} + \mathbf{0}$
 - $= \ \mathbf{A}\mathbf{X}_{K^\perp}$
 - = b

• $\mathbf{X}_{K^{\perp}}$ is the minimum norm solution

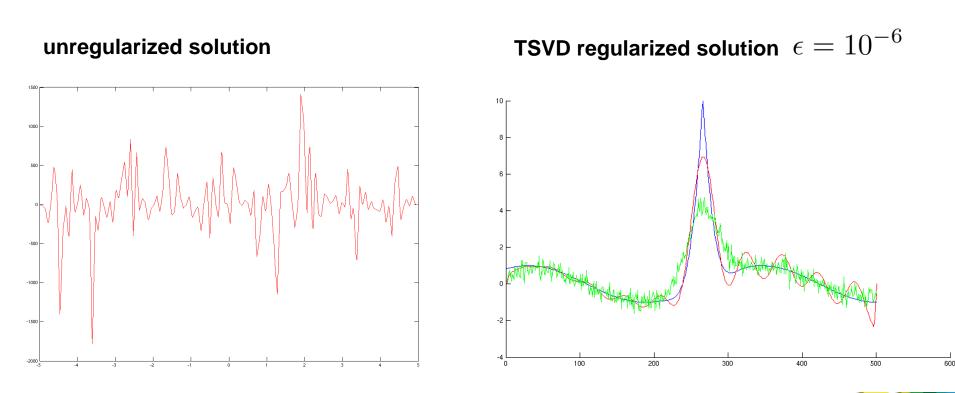


Regularization

- countering the effect of ill-conditioned problems is called regularization
- an ill-conditioned problem behaves like a singular (i.e. under-constrained) system
- family of solutions exist
- →impose additional knowledge to pick a favorable solution
- TSVD results in minimum norm solution

Example – 1D Deconvolution

- back to our example apply TSVD
- solution is much smoother than Fourier deconvolution



- consider 2D deconvolution
- 512x512 image, 256x256 basis functions
- \rightarrow least squares problem results in matrix that is 65536x65536 !
- even worse in 3D (millions of unknowns)
- problem: SVD is $\mathcal{O}\left(N^3\right)$

system size	512	1024	2048	4096
SVD time (in s)	0.27	1.75	12.54	96.28

Intel Xeon 2-core (E5503) @ 2GHz (introduced 2010)

- today impractical to compute for systems larger than > 16384² (takes a couple of hours)
- Question: How to compute regularized solutions for large scale systems ?

 Answer: modify original problem to include additional optimization goals (e.g. small norm solutions)

$$\begin{split} \min_{x} & \alpha ||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} + (1 - \alpha)||\mathbf{R}\mathbf{x}||_{2}^{2} = \\ \min_{x} & \alpha \left(\mathbf{A}\mathbf{x} - \mathbf{b}\right)^{T} \left(\mathbf{A}\mathbf{x} - \mathbf{b}\right) + (1 - \alpha)\mathbf{x}^{T}\mathbf{R}^{T}\mathbf{R}\mathbf{x} = \\ \min_{x} & \hat{f}(\mathbf{x}) \end{split}$$

- minimize modified quadratic form $\nabla \hat{f}(\mathbf{x}) = 2\alpha \mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} + 2(1-\alpha)\mathbf{R}^T \mathbf{R} \mathbf{x} = \mathbf{0}$
- regularized normal equations:

$$(\alpha \mathbf{A}^T \mathbf{A} \mathbf{x} + (1 - \alpha) \mathbf{R}^T \mathbf{R}) \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

Modified Normal Equations

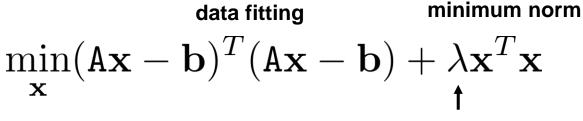
 include data term, smoothness term and blending parameter

data Prior information (popular: smoothness)
$$(\alpha \mathbf{A}^T \mathbf{A} \mathbf{x} + (1 - \alpha) \mathbf{R}^T \mathbf{R}) \mathbf{x} = \mathbf{A}^T \mathbf{b}$$

blending (regularization) parameter

Tikhonov Regularization

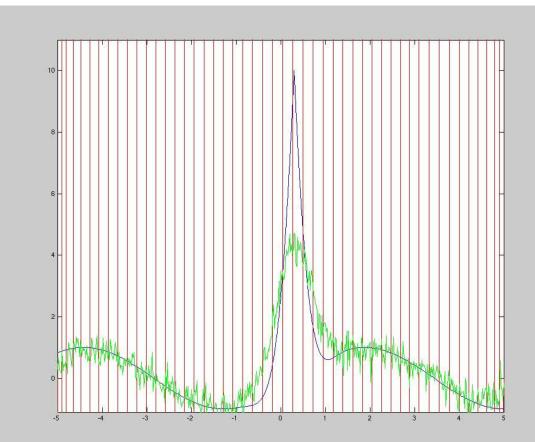
• setting $\mathbf{R} = \mathbb{1}$ and $\lambda = \frac{1-\alpha}{\alpha}$ we have a quadratic optimization problem with data fitting *and* minimum norm terms



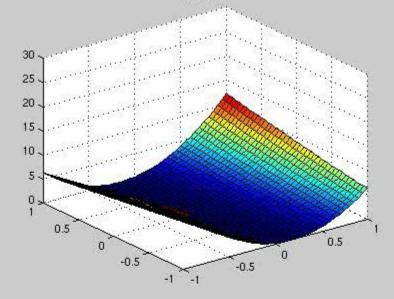
regularization parameter

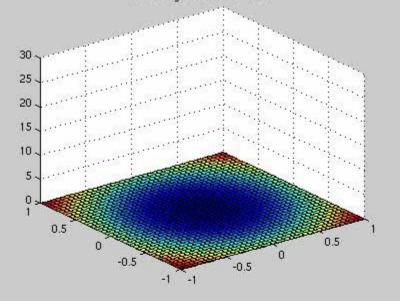
- large λ will result in smooth solution, small $~\lambda~$ fits the data well
- find good trade-off

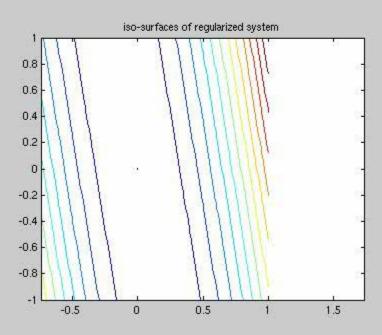
- reconstruction for different choices of $\,\lambda\,$
- small lambda, many oscillations
- large lambda, smooth solution (in the limit constant)

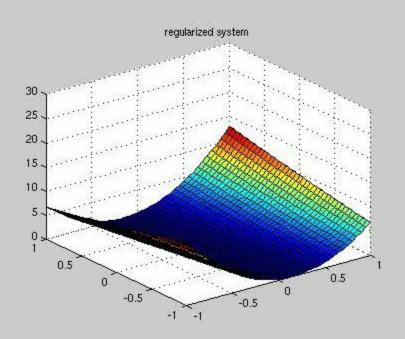


Ivo Ihrke - "Optimization Techniques ir







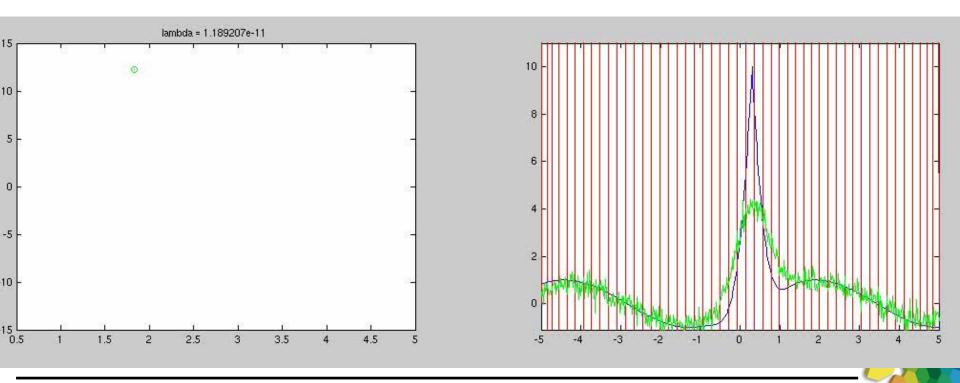


- need automatic way of determining
- want solution with small oscillations
- also want good data fit
- log-log plot of norm of residual (data fitting error) vs. norm of the solution (measure of oscillations in solution)

L-Curve Criterion

- video shows reconstructions for different λ
- start with $\lambda = 10^{-12}$
 - L-Curve

regularized solution



Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

L-Curve Criterion

- compute L-Curve by solving inverse problem with choices of λ over a large range, e.g. $\lambda \in [10^{-12}, 10^7]$
- point of highest curvature on resulting curve corresponds to optimal regularization parameter
- curvature computation

$$\kappa = \frac{x'y'' - y'x''}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

- find maximum κ and use corresponding λ to compute optimal solution

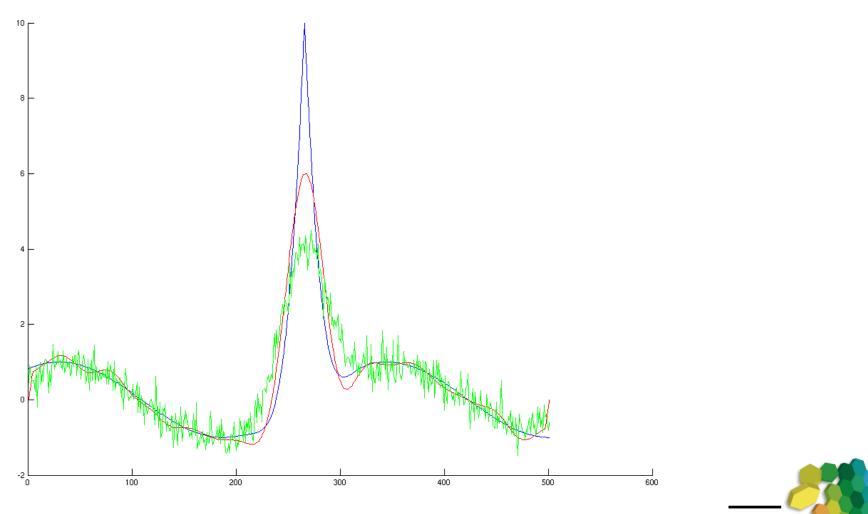
L-Curve Criterion – Example 1D Deconvolution

- L-curve with automatically selected optimal point
- optimal regularization parameter is different for every problem



L-Curve Criterion – Example 1D Deconvolution

• regularized solution (red) with optimal $\lambda = 0.0429$



Solving Large Linear Systems

- we can now regularize large ill-conditioned linear systems
- How to solve them ?
 - Gaussian elimination: $O(N^3)$
 - -SVD: $\mathcal{O}(N^3)$
- direct solution methods are too time-consuming
- Solution: approximate iterative solution

- stationary iterative methods [Barret94]
 - Examples
 - Jacobi
 - Gauss-Seidel
 - Successive Over-Relaxation (SOR)
 - use fixed-point iteration

 $\mathbf{x}^{t+1} = \mathbf{G}\mathbf{x}^t + \mathbf{c}$

- matrix G and vector c are constant throughout iteration
- generally slow convergence
- don't use for practical applications

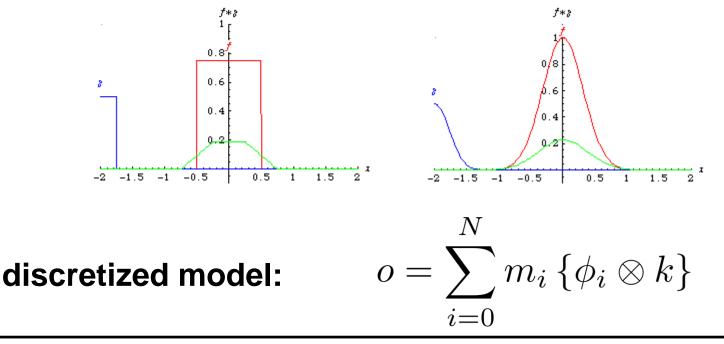
- non-stationary iterative methods [Barret94]
 - conjugate gradients (CG)
 - symmetric, positive definite linear systems (SPD)
 - conjugate gradients for the normal equations short CGLS or CGNR
 - avoid explicit computation of $\mathbf{A}^T \mathbf{A}$
 - CG type methods are good because
 - fast convergence (depends on condition number)
 - regularization built in !
 - number of iterations = regularization parameter
 - behave similar to truncated SVD

- iterative solution methods require only matrix-vector multiplications
- most efficient if matrix A is sparse
- sparse matrix means lots of zero entries
- back to our hypothetical 65536x65536 matrix
- memory consumption for full matrix:

 $2^{16} \times 2^{16} \times 8$ bytes = 32 Gbyte

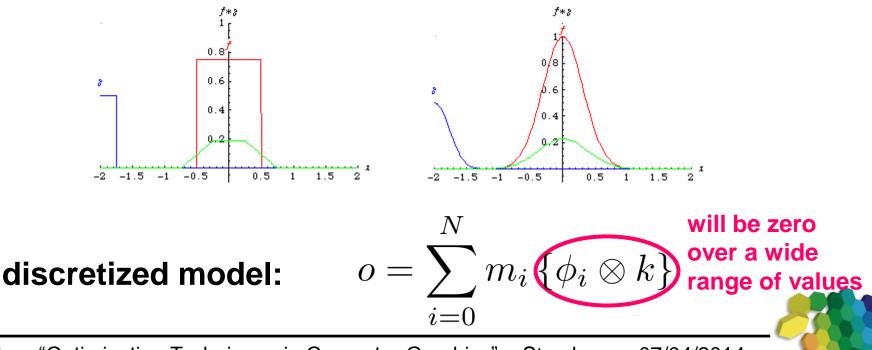
- sparse matrices store only non-zero matrix entries
- Question: How do we get sparse matrices ?

- answer: use a discretization with basis functions that have local support, i.e. which are themselves zero over a wide range
- for deconvolution the filter kernel should also be locally supported



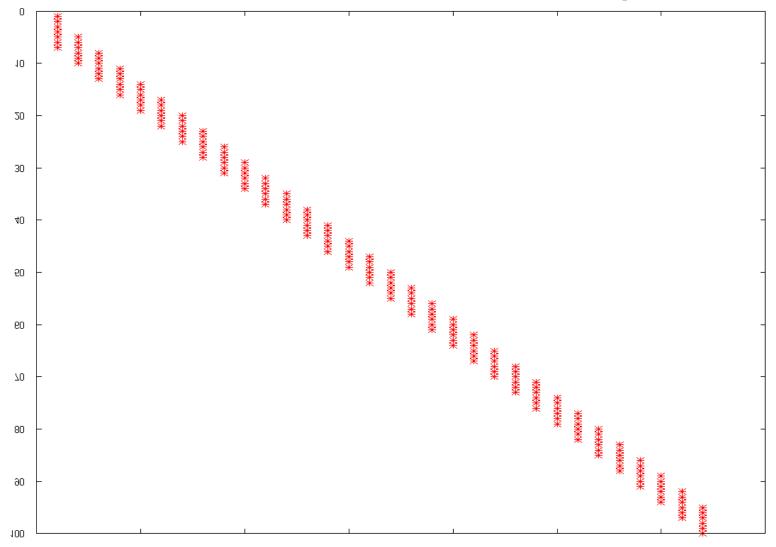
Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

- answer: use a discretization with basis functions that have local support, i.e. which are themselves zero over a wide range
- for deconvolution the filter kernel should also be locally supported



Ivo Ihrke - "Optimization Techniques in Computer Graphics" – Strasbourg, 07/04/2014

sparse matrix structure for 1D deconvolution problem .



Ivo Ih

Inverse Problems – Wrap Up

- inverse problems are often ill-posed
- if solution is unstable check condition number
- if problem is small $< 4000^2$ use TSVD and Matlab
- otherwise use CG if problem is symmetric (positive definite), otherwise CGLS
- if convergence is slow try Tikhonov regularization it's simple
 - improves condition number and thus convergence
- if problem gets large > 15000² make sure you have a sparse linear system!
- if system is sparse, avoid computing $\mathbf{A}^{T}\mathbf{A}$ explicitly it is usually dense

