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Tomography

Inverse Problems
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 Tomography 

– Absorption / emission

– Fourier Slice Theorem and Filtered Back Projection 

– Algebraic Reconstruction 

– Applications

Overview
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Outline

 Computed Tomography (CT)

– Radon transform

– Filtered Back-Projection

– natural phenomena

– glass objects



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Computed Tomography (CT)

3D
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Some History

 Radon transform (1917)

– Radon: Inverse transform exists

if all           are covered  

– First numerical application 

Viktor Ambartsumian (1936, astrophysics)

Johann Radon (1887-1956)

Viktor Ambartsumian (1909-1996)
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Some History

 CT Scanning

Godfrey Hounsfield (1919-2004)

Sketch of the invention

Prototype scanner Hounsfield’s abdomen

Allan Cormack (1924-1998)

 1979 Nobel prize in Physiology or Medicine



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

The math

 X-rays are attenuated by body tissue and bones

– Attenuation is spatially variant (attenuation coeff.               ) 

– are known, determine 

– Ill-posed for only one direction 

─ Need all
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Well-Posed and Ill-Posed Problems

 Definition [Hadamard1902]

– a problem is well-posed if 

1. a solution exists

2. the solution is unique

3. the solution continually depends on the data

– a problem is ill-posed if it is not well-posed
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Tomography

-- Fourier-Based Techniques --

Inverse Problems
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Computed Tomography

 tomography is the problem of computing 
a function from its projections

 a projection is a set of line integrals over 
function m along some ray c

 invert this equation (noise is present)

 if infinitely many projections are 
available this is possible (Radon 
transform) [Radon1917]
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Computed Tomography –
Frequency Space Approach

 Fourier Slice Theorem

 The Fourier transform of an orthogonal 
projection is a slice of the Fourier transform of 
the function
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Computed Tomography – FST
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Computed Tomography –
Frequency Space Approach

 for recovery of the 2D function we need several slices

 slices are usually interpolated onto a rectangular grid

 inverse Fourier transform 

 gaps for high frequency components

 artifacts

several projections, spatial domain many more projections, frequency domain
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Frequency Space Approach - Example

original (Shepp-Logan head phantom) reconstruction from 18 directions

reconstruction from 36 directions reconstruction from 90 directions

without noise !
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Filtered Back-Projection

 Fourier transform is linear 

–  we can sum the inverse transforms of the lines in 
frequency space instead of performing the inverse 
transform of the sum of the lines 

backprojection:
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Filtered Back-Projection

 Why filtering ?

 discrete nature of measurements gives unequal 
weights to samples

 compensate
would like to have

wedge shape for one

discrete measurement

have a bar shape

(discrete measurement)

compensate to have

equal volume under filter

frequency domain

high pass filter
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Filtered Back-Projection (FBP)

 high pass filter 1D 
projections in spatial domain

 back-project

 blurring is removed

– FBP can be implemented on 
the GPU

– projective texture mapping
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Frequency Space based Methods 

 Advantages

– Fast processing 

– Incremental processing (FBP)

 Disadvantages

– need orthogonal projections

– sensitive to noise because of high pass filtering

– Frequency-space artifacts, e.g. ringing 

– Equal angular view spacing (or adaptive filtering)
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Tomography

-- Algebraic Techniques --

Inverse Problems
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Algebraic Reconstruction Techniques (ART)

 object described by Φ, a density 
field of e.g. emissive soot particles 

 pixel intensities are line integrals 
along line of sight 

 Task: Given intensities, compute Φ 

Φ

cp

Ip
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ART

 Algebraic Reconstruction Technique (ART)
 Discretize unknown Φ using a linear combination  

of basis functions Φi

  linear system   p = Sa

Φi

cp

Ip

p
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ART

 Discretize unknown Φ using a linear 
combination  of basis functions Φi

 Need several views 

Φi

cp

Ipp
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ART – Matrix Structure

invert LS in a 

least squares 

sense:

i

p
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Frequency Space based Methods -
Disadvantages

 Advantages 

– Accomodates flexible acquisition setups

– Can be made robust to noise (next lecture)

– Arbitrary or adaptive discretization

– Can be implemented on GPU

 Disadvantages

– May be slow

– May be memory-consumptive
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Tomography

-- Applications --

Inverse Problems
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CT Applications in measurement and 
quality control

 Acquisition of difficult to scan objects

 Visualization of internal structures (e.g. cracks)

 No refraction
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3D

2D

2D

2D

Tomographic Imaging in Graphics

reconstruction of flames using a multi-camera setup
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Flame tomography

 Calibrated, synchronized camera setup

– 8 cameras, 320 x 240 @ 15 fps

8 input views in 

original camera orientation 

Camera setup
[Ihrke’ 04]
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Sparse View ART - Practice

 Large number of projections is needed

 In case of dynamic phenomena

  many cameras

– expensive

– inconvenient placement

 straight forward application of ART with 
few cameras not satisfactory

[Ihrke’ 04]
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Visual Hull Restricted Tomography

object

Zero coefficients

C

C

C

1

2

3

[Ihrke’ 04]
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Visual Hull Restricted Tomography

 Only a small number of 
voxels contribute

 Remove voxels that do 
not contribute from 
linear system

 Complexity of inversion 
is significantly reduced

[Ihrke’ 04]
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Animated Flame Reconstruction



frame 194

frame 86

animated reconstructed flames

[Ihrke’ 04]
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Smoke Reconstructions

[Ihrke’ 06]
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3D Reconstruction of Planetary Nebulae

 only one view available

 exploit axial symmetry

 essentially a 2D problem

[Magnor04]
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Input

Optical flow

Tomography

Output

Schlieren Tomography

Optical flow
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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16 camera array (consumer camcorders)

Synchronization & rolling shutter compensation

Schlieren Tomography - Acquisition
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Input Optical flow Mask

Schlieren CT – Image Processing
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High frequency detail everywhere

Decouple pattern resolution from sensor

Wavelet noise [Cook 05]

Gaussian Wavelet

Schlieren CT – Background Pattern
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Image formation in 
continuously refracting 
media

Curved Rays

Described well by Ray 
Equation of Geometric 
Optics

Schlieren CT - Image Formation



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Continuous ray tracing, 
e.g. [Stam 96, Ihrke 07]

n
ds

d

ds

d
n





d

d
x

Set of 1st order ODE’s :

Schlieren CT - Image Formation
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Continuous ray tracing, 
e.g. [Stam 96, Ihrke 07]

n
ds

d

ds

d
n





d

d
x

Set of ODE’s :

Schlieren CT - Ray equation 
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c

inout
dsndd

n
ds

d


d

Integrating

yields

Schlieren CT - Ray equation 
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c

inout
dsndd

Basic equation for
Schlieren Tomography

Schlieren Tomography
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Based on measurements 
of line integrals from 
different orientations


c

inout
dsndd

Schlieren Tomography
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Ray path must be known

BUT: unknown refractive
index

In practice, ray bending 
negligible 

[Venkatakrishnan’04]


c

inout
dsndd

Schlieren Tomography
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Ray path must be known

BUT: unknown refractive
index

Affects integration path
only, equation still holds
approximately! 


c

inout
dsndd

Schlieren Tomography
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Measure difference 
vector


c

inout
dsndd

Schlieren Tomography - Measurements



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014


c

inout
dsndd

Measure difference 
vector

Component parallel
to optical axis is lost

Schlieren Tomography - Measurements
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Vector-valued tomographic problem

Discretize gradient

Radially symmetric basis functions

Linear system in 


i

iin n

  
i c

ii

c i

ii

in
out

dsds  nndd

Schlieren Tomography –Linear System
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Given        from tomography

Compute     from definition of Laplacian

Solve Poisson equation to get refractive index

– Inconsistent gradient field due to noise and other 
measurement error

– Anisotropic diffusion

n

Schlieren Tomography - Integration



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Schlieren Tomography - Results
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Schlieren Tomography - Results
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Schlieren Tomography - Results
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 visible light tomography of glass objects

– needs straight ray pathes

 compensate for refraction

– immerse glass object in water

– add refractive index matching agent

 “ray straightening” 

 apply tomographic reconstruction

3D Scanning of Glass Objects 
[Trifonov06]
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3D Scanning of Glass Objects 
[Trifonov06]

 Tomographic 
reconstruction results 
in volume densities

 use marching cubes 
to extract object 
surfaces
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Layered 3D: Multi-Layer Displays

mask 2

mask 3

mask K

light box

mask 1

…

Layered 3D

[Wetzstein’11]
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attenuator

x

q

2D Light Field

x

q

virtual plane

backlight

Tomographic Light Field Synthesis

[Wetzstein’11]
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x

q

2D Light Field

x

virtual plane

attenuator

backlight

Tomographic Light Field Synthesis

[Wetzstein’11]
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attenuator

x

q

2D Light Field

x

virtual plane

backlight

Tomographic Light Field Synthesis

[Wetzstein’11]
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attenuator

2D Light Field

virtual plane

L(x,q) = I0e
- m (r )dr

C

ò

L(x,q) = ln
L(x,q )

I0

æ

è
ç

ö

ø
÷ = - m(r)dr

C

ò

l = -Pabacklight

Image formation model:

arg min
a

 l +Pa
2

,  for a ³ 0

Tomographic synthesis:

Tomographic Light Field Synthesis

[Wetzstein’11]
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2D Light Field

virtual plane

backlight

attenuator

arg min
a

 l +Pa
2

,  for a ³ 0

Tomographic synthesis:

L(x,q) = I0e
- m (r )dr

C

ò

L(x,q) = ln
L(x,q )

I0

æ

è
ç

ö

ø
÷ = - m(r)dr

C

ò

l = -Pa

Image formation model:

Tomographic Light Field Synthesis

[Wetzstein’11]
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Multi-Layer Light Field Decomposition

Target 4D Light Field

Multi-Layer Decomposition

Reconstructed Views

[Wetzstein’11]
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Prototype Layered 3D Display

Transparency stack with acrylic spacers Prototype in front of LCD (backlight source)

[Wetzstein’11]
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[Wetzstein’11]
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Deconvolution

Inverse Problems - Deconvolution
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Outline

 Deconvolution Theory

– example 1D deconvolution

– Fourier method

– Algebraic method

─ discretization

─ matrix properties

─ regularization

─ solution methods

 Deconvolution Examples
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Applications - Astronomy

 BEFORE                                         AFTER 



Images courtesy of Robert Vanderbei
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Applications - Microscopy

Images courtesy Meyer Instruments



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Inverse Problem - Definition

 forward problem

– given a mathematical model M and its parameters m, 
compute (predict) observations o

 inverse problem

– given observations o and a mathematical model M, 
compute the model's parameters
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Inverse Problems – Example 
Deconvolution

 forward problem – convolution

– example blur filter

– given an image m and a filter kernel k, 
compute the blurred image o
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Inverse Problems – Example 
Deconvolution

 inverse problem – deconvolution

– example blur filter

– given a blurred image o and a filter kernel k, 
compute the sharp image

– need to invert 

– n is noise
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Deconvolution

--Fourier Solution--

Inverse Problems - Deconvolution
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Deconvolution - Theory

 deconvolution in Fourier space

 convolution theorem ( F is the Fourier transform ):

 deconvolution:

 problems

– division by zero

– Gibbs phenomenon

(ringing artifacts)
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A One-Dimensional Example –
Deconvolution Spectral

 most common:                   is a low pass filter

  , the inverse filter, is high pass

  amplifies noise and numerical errors
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A One-Dimensional Example –
Deconvolution Spectral

 reconstruction is noisy even if data is perfect !
– Reason: numerical errors in representation of function
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A One-Dimensional Example –
Deconvolution Spectral

 spectral view of signal, filter and inverse filter
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A One-Dimensional Example –
Deconvolution Spectral

 solution: restrict frequency response of high pass 
filter (clamping)
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A One-Dimensional Example -
Deconvolution Spectral

 reconstruction with clamped inverse filter
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A One-Dimensional Example –
Deconvolution Spectral

 spectral view of signal, filter and inverse filter
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A One-Dimensional Example –
Deconvolution Spectral

 Automatic per-frequency tuning: 
Wiener Deconvolution
- Alternative definition of inverse kernel

- Least squares optimal

- Per-frequency SNR must be known
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Deconvolution

-- Algebraic Solution --

Inverse Problems - Deconvolution
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A One-Dimensional Example-
Deconvolution Algebraic

 alternative: algebraic reconstruction

 convolution

 discretization: linear combination of basis 
functions
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A One-Dimensional Example –
Deconvolution Algebraic

 discretization:

– observations are linear 
combinations of 
convolved basis functions

– linear system with 
unknowns

– often over-determined, 
i.e. more observations o 
than degrees of freedom 
(# basis functions )

linear system



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

A One-Dimensional Example –
Deconvolution Algebraic

 discretization:

– observations are linear 
combinations of 
convolved basis functions

– linear system with 
unknowns

– often over-determined, 
i.e. more observations o 
than degrees of freedom 
(# basis functions )

linear system

unknown
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A One-Dimensional Example –
Deconvolution Algebraic

 normal equations

 solve                              to obtain solution in a 
least squares sense

 apply to deconvolution

solution is completely broken !
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A One-Dimensional Example –
Deconvolution Algebraic

 Why ?

 analyze distribution of eigenvalues

 Remember:  

 we will check the singular values

– Ok, since           is SPD (symmetric, positive semi-definite)

 non-negative eigenvalues

 Singular values are the square root of the 
eigenvalues

and Matrix is under-

determined
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 matrix                  has a very wide range of singular 
values!

 more than half of the singular values are smaller than 
machine epsilon (            ) for double precision

A One-Dimensional Example –
Deconvolution Algebraic

Log-Plot !
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A One-Dimensional Example –
Deconvolution Algebraic

 Why is this bad ?

 Singular Value Decomposition: U, V are orthonormal, D 
is diagonal

 Inverse of M: 

 singular values are diagonal elements of D

 inversion: 
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A One-Dimensional Example –
Deconvolution Algebraic

 computing model parameters from observations:

 again: amplification of noise

 potential division by zero

Log-Plot !
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numerical null space

A One-Dimensional Example –
Deconvolution Algebraic

 inverse problems are often ill-conditioned (have a 
numerical null-space)

 inversion causes amplification of noise
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Well-Posed and Ill-Posed Problems

 Definition [Hadamard1902]

– a problem is well-posed if 

1. a solution exists

2. the solution is unique

3. the solution continually depends on the data
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Well-Posed and Ill-Posed Problems

 Definition [Hadamard1902]

– a problem is ill-posed if it is not well-posed

─ most often condition (3) is violated

─ if model has a (numerical) null space, parameter 
choice influences the data in the null-space of the 
data very slightly, if at all

─ noise takes over and is amplified when inverting 
the model
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Condition Number

 measure of ill-conditionedness:   condition number

 measure of stability for numerical inversion 

 ratio between largest and smallest singular value

 smaller condition number  less problems when 
inverting linear system

 condition number close to one implies near orthogonal 
matrix
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Truncated Singular Value Decomposition

 solution to stability problems: avoid dividing by values 
close to zero

 Truncated Singular Value Decomposition (TSVD)

 is called the regularization parameter
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Minimum Norm Solution

 Let             be the null-space of A and 

 is the minimum
norm solution
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Regularization

 countering the effect of ill-conditioned problems is called 
regularization

 an ill-conditioned problem behaves like a singular
(i.e. under-constrained) system

 family of solutions exist 

impose additional knowledge to pick a favorable solution

 TSVD results in minimum norm solution
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Example – 1D Deconvolution

 back to our example – apply TSVD

 solution is much smoother than Fourier 
deconvolution

unregularized solution TSVD regularized solution
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Large Scale Problems

 consider 2D deconvolution

 512x512 image, 256x256 basis functions

 least squares problem results in matrix that is 65536x65536 !

 even worse in 3D (millions of unknowns)

 problem: SVD is

 today impractical to compute for systems larger than                     
(takes a couple of hours)

 Question: How to compute regularized solutions for large 
scale systems ?

Intel Xeon 2-core (E5503) @ 2GHz (introduced 2010)
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Explicit Regularization

 Answer: modify original problem to include additional 
optimization goals (e.g. small norm solutions)

 minimize modified quadratic form

 regularized normal equations:
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Modified Normal Equations

 include data term, smoothness term and blending 
parameter

data Prior information (popular: smoothness)

blending (regularization) parameter
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 setting                  and                    we have a quadratic 
optimization problem with data fitting and minimum norm 
terms

 large      will result in smooth solution, small          fits the 
data well

 find good trade-off

Tikhonov Regularization

data fitting minimum norm

regularization parameter
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Tikhonov Regularization - Example

 reconstruction for different choices of

 small lambda, many oscillations

 large lambda, smooth solution (in the limit constant)
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Tikhonov Regularization - Example
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L-Curve criterion [Hansen98]

 need automatic way of determining

 want solution with small oscillations

 also want good data fit

 log-log plot of norm of residual (data fitting error) vs. 
norm of the solution (measure of oscillations in solution) 

¸
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L-Curve Criterion 

 video shows reconstructions for different 

 start with  

L-Curve regularized solution
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L-Curve Criterion

 compute L-Curve by solving inverse problem with 
choices of        over a large range, e.g.

 point of highest curvature on resulting curve 
corresponds to optimal regularization parameter

 curvature computation

 find maximum         and use corresponding         to 
compute optimal solution
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L-Curve Criterion – Example 
1D Deconvolution

 L-curve with automatically selected optimal point

 optimal regularization parameter is different for every 
problem
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L-Curve Criterion –
Example 1D Deconvolution

 regularized solution (red) with optimal
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Solving Large Linear Systems

 we can now regularize large ill-conditioned linear 
systems

 How to solve them  ?

– Gaussian elimination: 

– SVD:

 direct solution methods are too time-consuming

 Solution: approximate iterative solution
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Iterative Solution Methods for 
Large Linear Systems

 stationary iterative methods [Barret94]

– Examples

─ Jacobi

─ Gauss-Seidel

─ Successive Over-Relaxation (SOR)

– use fixed-point iteration

─ matrix G and vector c are constant throughout iteration

─ generally slow convergence

─ don't use for practical applications



Ivo Ihrke / Winter 2013Ivo Ihrke - “Optimization Techniques in Computer Graphics” – Strasbourg, 07/04/2014

Iterative Solution Methods for 
Large Linear Systems

 non-stationary iterative methods [Barret94]

– conjugate gradients (CG)

─ symmetric, positive definite linear systems ( SPD )

– conjugate gradients for the normal equations

short CGLS or CGNR

─ avoid explicit computation of 

– CG – type methods are good because

─ fast convergence (depends on condition number)

─ regularization built in !

─ number of iterations = regularization parameter

─ behave similar to truncated SVD
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Iterative Solution Methods for 
Large Linear Systems

 iterative solution methods require only matrix-vector 
multiplications

 most efficient if matrix       is sparse

 sparse matrix means lots of zero entries

 back to our hypothetical 65536x65536 matrix

 memory consumption for full matrix: 

 sparse matrices store only non-zero matrix entries

 Question: How do we get sparse matrices ?

A
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Iterative Solution Methods for 
Large Linear Systems

 answer: use a discretization with basis functions that 
have local support, i.e. which are themselves zero over a 
wide range

 for deconvolution the filter kernel should also be locally 
supported

discretized model:
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Iterative Solution Methods for 
Large Linear Systems

 answer: use a discretization with basis functions that 
have local support, i.e. which are themselves zero over a 
wide range

 for deconvolution the filter kernel should also be locally 
supported

discretized model:

will be zero

over a wide 

range of values
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Iterative Solution Methods for 
Large Linear Systems

sparse matrix structure for 1D deconvolution problem
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Inverse Problems – Wrap Up

 inverse problems are often ill-posed

 if solution is unstable – check condition number

 if problem is small                   use TSVD and Matlab

 otherwise use CG if problem is symmetric (positive definite), 
otherwise CGLS

 if convergence is slow try Tikhonov regularization – it's 
simple 

– improves condition number and thus convergence

 if problem gets large                   make sure you have a 
sparse linear system! 

 if system is sparse, avoid computing             explicitly – it is 

usually dense


