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General considerations on objectives
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Data approximation and analysis

� Data from real measurements

– How to use them in simulation / rendering ?

─ Ex: acquired point clouds for geometry

[Chen et al. – CGF 2013]
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Data approximation and analysis

� Data from real measurements

– How to use them in simulation / rendering ?

– How to study the general behavior ?

─ Ex: data extrapolation in statistics  
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Data approximation and analysis

� Data from real measurements

– How to use them in simulation / rendering ?

– How to study the general behavior ?

– How to remove the noise ?

─ Ex: BRDF measures at grazing angle

Material – Dark blue paint

[Ngan et al. – EGSR 2005]
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Data modeling and conversion

� Computed data

– Conversion between representations

─ Ex: environment map  to spherical harmonics

[Nijasure et al. – JGT 2005]
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Data modeling and conversion

� Computed data

– Conversion between representations

– Objective-based modeling

─ Ex: anisotropic BRDF orientation field

[Raymond et al. – EG 2014]
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Generalized Goal

� Finding the best approximation

– Given a numerical model

– Using a reduce set of parameters

� Ex: linear regression

( x1 , y1 )

( x2 , y2 )

( x3 , y3 )

( x4 , y4 )

( x5 , y5 )
( x6 , y6 )

( x7 , y7 )

y = ax + b
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Definition of “Best”

� Maximize the quality
– Ex: expectation maximization 

� Be as close as possible to the goal
– Need a notion of distance / norm
– To be minimized



Ivo Ihrke / Winter 2013“Optimization Techniques in Computer Graphics”

Definitions

� Norm
– Separate points

– Absolute homogeneity

– Triangle inequality

� Distance

� � �� … �� �
∥ � ∥	� 0 ⇔ ∀ � 1. . �, �� � 0

∥ λ� ∥	�	∣ λ ∣	∥ � ∥
∥ � � � ∥	�	∥ � ∥�∥ � ∥
d �, � �	∥ � � � ∥
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Euclidian Norm for Least Squares

� Based on standard dot product

� Error ≈ average distance
– Uniform weight for each dimension

��…�� � � �����
���

���, � �����
��� �� � ��	�

∥ � ∥��� �, � � ��	�
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Euclidian Norm for Least Squares

● Generalized dot product
– W: symmetric positive definite matrix

● Error ≈ weighted average distance
– W is a diagonal matrix

�, � � � ��	�	�
∥ � ∥�� � �, � � � ��	�		�



Ivo Ihrke / Winter 2013“Optimization Techniques in Computer Graphics”

Other: max norm

� Maximum of absolute values

� Largest error

�� … �� �  � max���..$ ∣ �_ ∣
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Other: p -norm

� Generalizing the Euclidian norm

�� … �� � & � � �� &�
���
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Linear Optimization

Least Squares



Ivo Ihrke / Winter 2013“Optimization Techniques in Computer Graphics”

Linear optimization

� M measured data

� Linear approximating function

– Parameters: v

– Linear combination of basis function: fk

– 2D example 2D: line y = ax + b

( � )� … )* �

� � +( � � �),*
,�� +, �

� � f .,/ � � 0� � 1

�2, �2 2��..3
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Least Squares 

� Minimize Euclidian error = objective

� Unique solution if well conditioned 
– Do not contain the trivial solution v = 0

● Example: implicit line

– Measures ≥ parameters: M ≥ K

– Measures are different

0 � f .,/,4 �, � � 0� � 1� � 5

6 � 	 �2 � +( �7 2 �� � � �2 � +( �7 ��
3
2��
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Solving Linear Least Squares

● Properties of the objective function
– Positive

– Quadratic

– Parabola 

● Minimum when gradient = 0

● Lead to a linear system to solve

∀8 � 1. . 9, ::),� ∥ �2 � +( �7 ∥��3
2�� � 0

;	( � <
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Demonstration 1D

∀8 � 1. . 9, 	 � ::), �2 � f( �7 �3
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2�� � 0

∀8 � 1. . 9, 	 � f, �2 �)> 	f> �7*
>��

3
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2��

∀8 � 1. . 9, 	 � f, �2 	f( �73
2�� � � �2f, �23

2��



Ivo Ihrke / Winter 2013“Optimization Techniques in Computer Graphics”

Corresponding Linear System

1,0,>
< � ?	�;	 � ?	?�

∀8 � 1. . 9, 	 �)>� f, �2 	f> �73
2��

*
@�� � � �2f, �23

2��

A,2 � f, �2
A symmetric (positive-definite)
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Demonstration ND

∀8 � 1. . 9, 	 � ::),
3
2�� ∥ �2 � f( �7 �� � 0

∀8 � 1. . 9, 	 � 2	 +, �2 , �2 � +( �73
2�� � 0

∀8 � 1. . 9, 	 � +, �2 , +( �73
2�� � � +, �2 , �23

2��

∀8 � 1. . 9, 	 � +, �2 ,�)> 	+> �7*
>��

3
2�� � � +, �2 , �23

2��



Ivo Ihrke / Winter 2013“Optimization Techniques in Computer Graphics”

Corresponding Linear System

1,0,>
∀8 � 1. . 9, 	 �)>� +, �7 , +> �73

2��
*
@�� � � �2, +, �23

2��

A symmetric (positive-definite)
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Equivalent Linear System

� Minimal least squares error
– Equivalent linear system

– A symmetric

– If well conditioned, A positive-definite

� How to solve it ?
– Use your favorite linear algebra solver

– Ex: Cholesky factorization

;	( � <
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Conditioning of a linear system

� Conditioning = stability of a system
– Input: d (perturbation d + δd)

– Output: x (perturbation x + δx)

– Relative conditioning

● Smaller is better

� For a linear system
– Conditioning of the matrix

– Symmetric positive-definite matrix

● Ratio of eigenvalues

9BCD E � limH→' supME NH
δ� �⁄δE E⁄

Q ; � λ7RSλ7TU
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Adding constraints

� For regularization
– Improvement on conditioning 

– Removing trivial solution
● Example of implicit line

min( � ∥ f .,/,4 �2, �2 ∥��  

3
2��  

� �2W3
2�� � �2�23

2�� � �23
2��

� �2�23
2�� � �2W3

2�� � �23
2��

� �23
2�� � �23

2�� X

015 �
000

∥ ( ∥��	Y 0
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Adding constraints

� For regularization
– Improvement on conditioning 

– Removing trivial solution
● Example of implicit line

� �2W �3
2�� ϵ � �2�2 � ϵ3

2�� � �2 � ϵ3
2��

� �2�23
2�� � ϵ � �2W � ϵ3

2�� � �23
2�� � ϵ

� �23
2�� � ϵ � �2 � ϵ3

2�� X � ϵ

015 �
ϵϵϵ

min( � ∥ f .,/,4 �2, �2 ∥��  

3
2�� � ϵ 0 � 1 � 5 � 1 � 
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Adding constraints

� For regularization
– Improvement on conditioning 

– Removing trivial solution
● Example of implicit line

� Other linear constraints
– Ex:  continuity, …  (cf. geometry part)

min( � ∥ f .,/,4 �2, �2 ∥��  

3
2�� � ϵ 0 � 1 � 5 � 1 � 

∥ ( ∥��	Y 0
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Lagrange Multipliers

� Approach
– Original objective

– A new constraint

– New objective

� Minimum is reached when

min( 	[ ( g ( � cmin(,^ 	E ( � λ g ( � c

::), E ( � λ ::), g ( � 0::λ E ( � λ g ( � 5 � 0 � g ( � c
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Equivalent Linear System

� If multiple linear constraints

� New objective function

� Unique solution if it exists
– But matrix may not be symmetric

● Cf. geometry part of the tutorial

`>�	( � 5>

min( � ∥ �2 � +( �2 ∥��3
2�� ��λ>a

>�� `>�	( � 5>
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Linear Least Squares - Summary

● Avantages
– Euclidian norm : in average the best

● Robust to noise

– Linear system to solve : unique solution

– Extensions
● Non-uniform norm

● Linear constraints as equalities

● But 
– Minimizing maximal error ?

– Inequality linear constraints ?
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Linear Optimization

Linear/Quadratic Programming
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Inequality constraints

� For regularization
– Improvement on conditioning 

– Removing trivial solution
● Example of implicit line

� Other linear constraints
– Ex:  continuity, …  (cf. geometry part)

– Definition domain (see BRDF fitting)

∥ ( ∥��	Y 0
min( � ∥ f .,/,4 �2, �2 ∥��  

3
2�� � ϵ 0 � 1 � 5 � 1 � 
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Linear Programing 

� Minimizing the max-norm

� Towardlinear programing 

min( max2��3 ∥ �2 � f( �7 ∥ 

⇔
min(,Hϵ

subject tob ϵ c 0��2 � fd �2 � ϵ c 0 ∀e�2 � fd �2 � ϵ c 0 ∀e

⇔min( ∥ � � +( � ∥ 
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Linear programing

– Objective: dot product

– Constraints: linear equalities and inequalities

� Unique solution if it exists

� Solving
– Simplex algorithm

– #iterations ~ O(#constraints)

min( 			fT(
subject	to				<2T( � 52																								E2T( � l2
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Simplex: Standard Form

max( f� (
subject	to	 b<2� 	( � 52 � m2 ∀e), c 0 ∀852 c 0 ∀e
with	 b ( � )� . . ), �f � 0� . . 0, �<2 � 12� . . 12, �	
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Maximize         3 x1 + 5 x2

Constraints
x1 ≤ 4
x2 ≤ 6
3 x1 + 2 x2 ≤ 18
x1 ≥ 0 
x2 ≥ 0

Geometrical Analogy 
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Geometrical Analogy 
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3 x1 + 2 x2 = 18

x1 = 436 = 3 x1 + 5 x2

20 = 3 x1 + 5 x2

10 = 3 x1 + 5 x2
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Quadratic Programing

� Term to minimize = quadratic form

� Iterative solver 
– Classical least squares solver 

● Langrage multiplier for equalities

– If some inequalities are not fulfilled  
● Take one and transform it into an equality

� Unique solution if it exists

min( (�p�( � E�(
subject	to	 q r>�	) � 1>r2� 	) � 12
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Non-Linear Optimization
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Non-linear Optimization 

� When it is impossible to use
– Linear combination of functions 

– Linear / quadratic objective function

– Linear constraints

� Solvers are iterative
– Step by step progression toward a solution

● Still where gradient is null

– Convergence toward a local minima

● Not a unique solution

● If a unique solution exists, it will be found
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Finding e(x) = 0 (Newton Method)

� 1st order Taylor expansion

� Look for 0-crossing

� Iterative scheme

e � , � s ≃ e � , � :ul � , s

s � � e	 � ,:ue	 � ,

� ,v� � � , � e	 � ,:ue	 � ,
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Newton Method

� Illustration

y = tanh(x) cos(x2) + x - 2

y‘ = (1-tanh2(x)) cos(x2)
- 2 tanh(x) sin(x2) x + 1

y(x)

©Insa Rouen
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Newton Method

x0 = 2
x1 = 2.1627
x2 = 2.1380
x3 = 2.1378
x4 = 2.1378

x1 = 2.1627

x2= 2.1380

x0 = 2

� Illustration

y = tanh(x) cos(x2) + x - 2

y‘ = (1-tanh2(x)) cos(x2)
- 2 tanh(x) sin(x2) x + 1

©Insa Rouen
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Newton Method: convergence

� Quadratic convergence

● Conditions
– Known analytic derivative

– Tangent crosses 0-line in the definition domain.

� ,v� � � ≃ 	 � , � � � 	 :uu� e �2:ue �
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1D Optimization – e'(x) = 0

� 2nd order Taylor expansion

� 0-crossing of derivative

� Similar iterative process

e � , � s ≃ e	 � , � :ue � , s � 12:uu� l � , s�

s � � :ue � ,:uu� e � ,

� ,v� � � , � :ue � ,:uu� e � ,
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2D Taylor Expansion

e �, � � � cos �2 sin �2
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2D Taylor Expansion

� Gradient

wl � � sin �2 cos �2 � �2 sin �2�2 cos �2 cos �2

wl � � :ue	:xe	 e �, � � � cos �2 sin �2
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2D Taylor Expansion

� Gradient

� 1st order derivative
– Dot product with direction

E � mu , mx ∈ z�

:Ee � mu:u	e � mx	:x	e
:Ee � 〈E, we	〉

e �, � � � cos �2 sin �2wl � � :ue	:xe	
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N-dimensional Expansion

� 1 equation, N unknowns

wl �
:u}e	⋮:u�e	⋮:u�e	

e � � � ≃ e � � ��we � � 12���� � � � o ∥ � ∥��	
gradient Hessian Matrix

�C � �
:u}u}� e	 ⋯ :u}u�� e	 ⋯ :u}u�� e	⋮ ⋱ ⋮ ⋰ ⋮:u�u}� e	 ⋯ :u�u�� e	 ⋯ :u�u�� e	⋮ ⋰ ⋮ ⋱ ⋮:u�u}� e	 ⋯ :u�u�� e	 ⋯ :u�u�� e	



Ivo Ihrke / Winter 2013“Optimization Techniques in Computer Graphics”

N-dimensional Expansion

� 1 equation, N unknowns

e � � � ≃ e � � ��we � � 12���� � � � o ∥ � ∥��	
gradient Hessian Matrix = 2D Tensor

wl �
:u}e	⋮:u�e	⋮:u�e	

�C � �
:u}u}� e	 ⋯ :u}u�� e	 ⋯ :u}u�� e	⋮ ⋱ ⋮ ⋰ ⋮:u�u}� e	 ⋯ :u�u�� e	 ⋯ :u�u�� e	⋮ ⋰ ⋮ ⋱ ⋮:u�u}� e	 ⋯ :u�u�� e	 ⋯ :u�u�� e	
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Hessian Matrix

� 2D Tensor
– Associated to a quadratic form

� Symmetric
– Schwarz’ theorem 

– If a function has continuous nth-order partial 
derivative, derivation order has no influence 
on the result.

12��HC����
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Derivatives in Dimension NxM

� M equations, N unknowns

Jacobian matrix

��� � �� ≃ ���� � �_����� � o�∥ � ∥��

Je � �
:u} 	e� � :u� 	e� � ⋯ :u�e� �:u}e� � ⋱ ⋮⋮ ⋱ ⋮:u}e� � ⋯ ⋯ :u�e� �
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Jacobian Matrix

� Be careful: 1st order derivative only
– Gradient for vector functions

– Not a Hessian matrix

� Used for integration by substitution
– e is a bijective vector function

– N = M (square matrix)

�f �� 	d��…d�� �� f��} � � � ∣ det �� � ∣ d��…d��
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Optimization: find ∇e(x) = 0

� 2nd order Taylor expansion

� Step estimation

� Iteration

� � � 	�C � , �� we � ,

� ,v� � � , � 	�C � , �� we � ,

e � , � � ≃ e � , � ��wl � , � 12���C � , �
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Limitation of Newton Method

● If the Hessian is not semi positive-definite
– Each step increase the error !
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Gradient Descent

� Follow the inclination of the function
– Inclination = slope = gradient

� Compute how much in this direction

� ,v� � � , � ρwe � , 	with	ρ	such	as	e � ,v� � e � , 	
min� 	e � , � ρwe � , 	

:�e � , � ρwe � , 	 � 0 � we � , 	 � we � , � ρwe � ,
� ,v� � � , � we � , � we � ,

�e � , ��C � , we � , 	 	we � ,
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Gradient Descent

� Follow the inclination of the function
– Inclination = slope = gradient

� Compute how much in this direction

� ,v� � � , � we � , ��we � , �� � �� 	wl � ,
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Gradient Descent
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Gradient Descent : Convergence

● K:condition number of the Hessian
– Convergence

● Starting point is very important
– As close as possible to the solution

● Remaining question
– What is the best direction ?

∥ � , �� ∥��	 9 � 19 � 1
, 	 ∥ � ' � � ∥�
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Conjugate Gradient

● Basis
– H: symmetric positive-definite

– Selecting pseudo-orthogonal direction

● For each step
– Orthogonal direction (Gram-Schmidt)

– New step

� � � ⇔ ���� � 0

E, 		� w, �� E� , w, �	E� ���N, E�
s � E, , w, �E, ��
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Convergences

� K:condition number of the Hessian

� Gradient descent

� Conjugate gradient

� Limitation: needs 2nd order derivatives 

∥ � , �� ∥��	 9 � 19 � 1
, 	 ∥ � ' � � ∥�

∥ � , �� ∥��	 9 � 19 � 1
, 	 ∥ � ' � � ∥�
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Residual-based form

� Residual

� Least-Square objective

� Gradient

e ( � � r2� (3
2��

r2�(�� y2 � f( �2

J� �
:�}r� :��r� ⋯ :��r�:�}r� ⋱ ⋮⋮ ⋱ ⋮:�}r3 ⋯ ⋯ :��r�

we � 2 ����
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Residual-based form

� Residual

� Least-Square objective

� Gradient

� Hessian matrix

e ( � � r2� (3
2��

r2�(�� y2 � f( �2

we � 2 ����
�_e � 2 ���		�� � � �2���3

2��
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Gauss -Newton Method

� Idea: replacing the Hessian matrix

� Advantages
– No 2nd derivatives

– Semi positive-definite matrix

� Limitations
– Valid approximation for small residual

– Carefull choice of initial values

�e ≃ 2��T	�� � ,v� �	� , �	 �e � , ��we � , 	
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Levenberg -Marquardt

� Most used method
� For each iteration, direction is

� Choice of λ is balancing the behavior
– Small: Newton

– Large: fast gradient descent

� More robust to noise

��T�� � λ	diag		 ��T	�� � � ��T�


