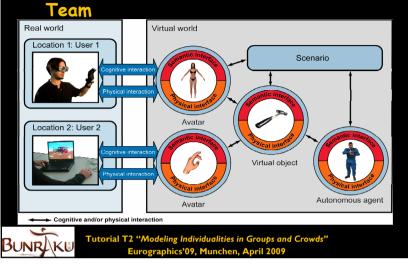



A research team funded by five research organisms


A joint scientific objective

Perception, decision and action of real and virtual humans in virtual environments and impact on real environments

Overall Objective of our Research

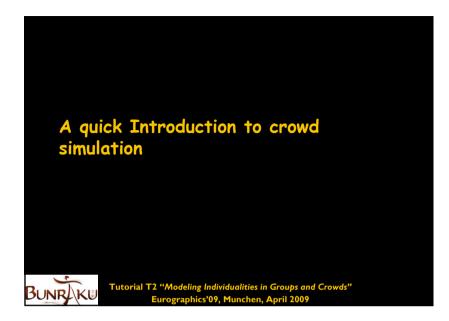
Our challenges

JUNRIAKI

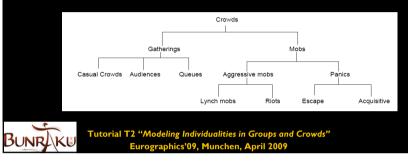
- Increase cross fertilization between two complementary research thematics
 - Virtual Reality and Virtual Humans
- Allow Real and Virtual Humans to naturally interact in a shared virtual world

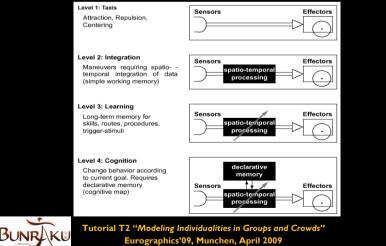
Combine two kinds of interaction of different nature: cognitive and physical

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

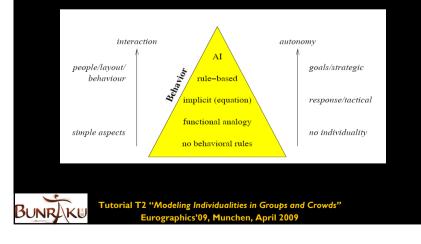

Complementary Research Thematics

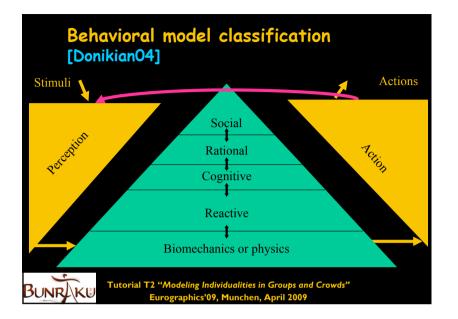
- Multimodal Interaction with objects within the world
 - A generic multilevel model of an object
 - Multimodal rendering
 - visual, haptic, audio, cognitive
 - Acting on the objects of the world
 language, gesture, mind
- Expressive Autonomous Characters
 - Complex and believable movements for human-like characters
 - Unified architecture to model individual and collective human behaviors
- Interactive scenario languages

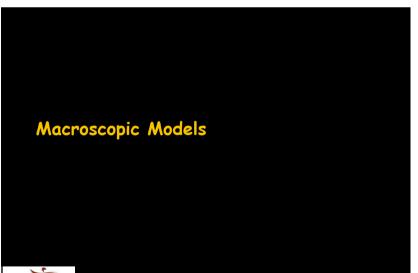




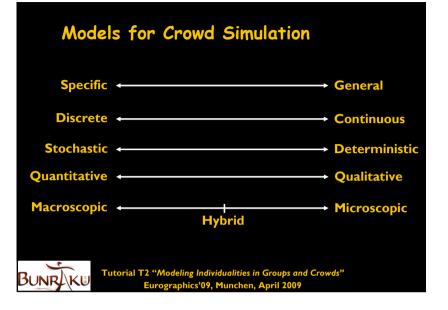
Crowd definition


- Group: any gathering of two or more persons
- Mass: a large group
- Crowds: large groups that occupy a single location and share a common focus [Forsyth99]

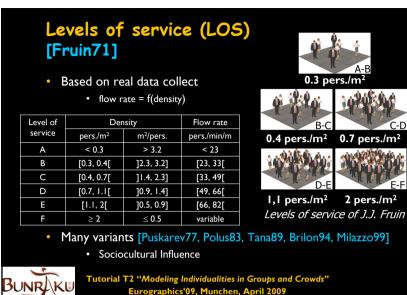


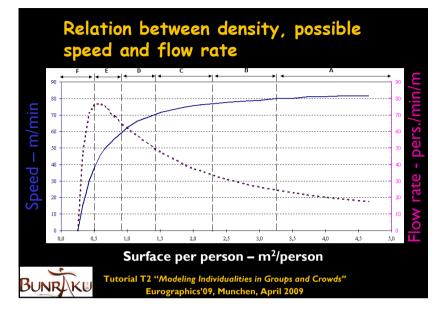

Behavioral model classification [Mallot99]

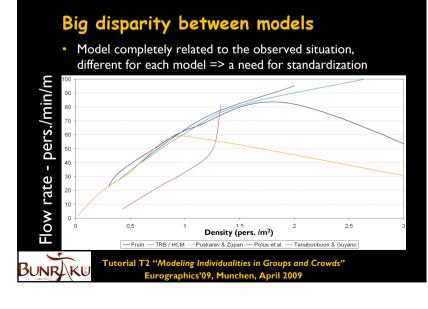
Behavioral model classification [Klüpfel03]



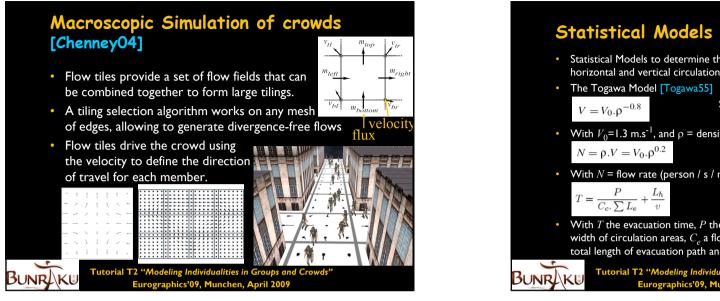
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009


BUNRAKE



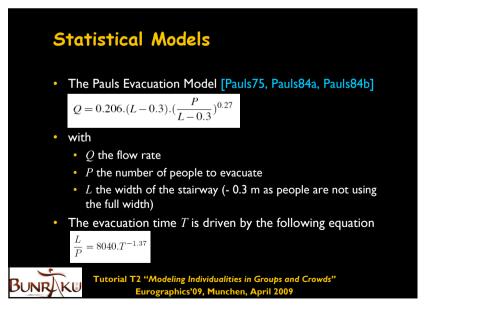

Macroscopic Models

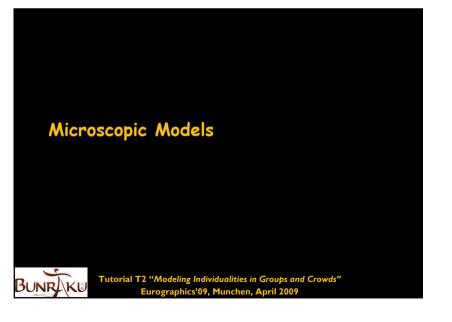
- In this approach the pedestrian is not treated on its own but as a component of a more macroscopic element.
 - Statistical approach
 - Dynamics models (gas, fluid)



Macroscopic Simulation of crowds

- Gazeous Model for low density [Henderson71]
 - Use of the Maxwell-Boltzmann Theory
 - Three possible states (stop, walk, run)
 - Distribution of velocities is Gaussian
- Hydraulic Model for high density [Archea79, Predtechenskii78]
 - The motion of persons in corridors, stairways and doors is assimilated to the one of water inside pipes ans sluice-gates
 - Uniform distribution of persons inside pipes
 - Uniform flow rates and unidirectional flows
- Partial differential Equations are used in both cases to explain how crowd densitiy and velocity are evolving.




- Statistical Models to determine the evacuation time of an aera by separating horizontal and vertical circulation spaces

Speed of the crowd function of the density

- With $V_0 = 1.3 \text{ m.s}^{-1}$, and $\rho = \text{density} (\text{person } / \text{ m}^2)$
- With N = flow rate (person / s / m), 1.3 < N < 1.7
- With T the evacuation time, P the number of persons in the building, L_e the width of circulation areas, C_{ρ} a flow rate (fixed at 1.3 pers./m/s), L_{h} the total length of evacuation path and v the evacuation speed (usually 0.6 m/s)

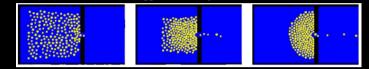
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

6

Microscopic Model

- Microscopic models consider persons as the elementary units of the model, and manage their interaction inside the environment.
- Different kinds of model
 - Particle systems
 - Cellular Automata
 - Predictive geometric models
 - Steering methods

BUNRI/K


BUNRLIK

Agent based approach

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Particle System

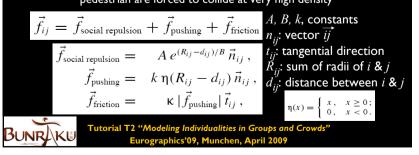
- Introduced by I. Peschl in 1971 [Peschl71]
- Analogy between the displacement of persons in very dense area with the outflow of particles in a compartment
- Allow to model the agglutination phenomenon

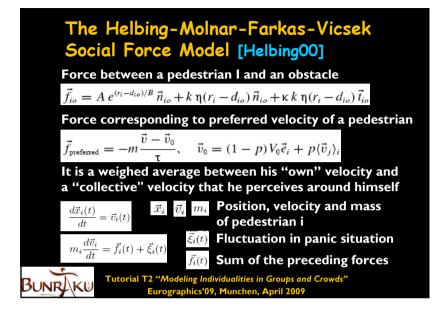
- The probability of an arch appearance increases with the density
- The flow is linearly dependent of the exit width

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Social Forces [Helbing95]

- Introduced by Dirk Helbing and Peter Molnar in 1995
- A social force is not a real force exerted by its surrounding on a pedestrian but rather a quantity that describes its motivation to act

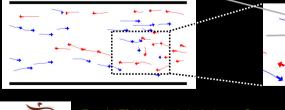

$$\vec{F}_{\alpha}(t) := \vec{F}_{\alpha}^{0}(\vec{v}_{\alpha}, v_{\alpha}^{0}\vec{e}_{\alpha}) + \sum_{\beta} \vec{F}_{\alpha\beta}(\vec{e}_{\alpha}, \vec{r}_{\alpha} - \vec{r}_{\beta}) + \sum_{B} \vec{F}_{\alpha B}(\vec{e}_{\alpha}, \vec{r}_{\alpha} - \vec{r}_{B}^{\alpha}) + \sum_{i} \vec{F}_{\alpha i}(\vec{e}_{\alpha}, \vec{r}_{\alpha} - \vec{r}_{i}, t)$$

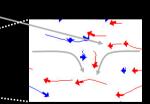

- Desired Motion Social Force Obstacle Avoidance Attractive Forces
- This model has evolved over the last decade with later contributions from Illes Farkas and Tamas Vicsek.

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

The Helbing-Molnar-Farkas-Vicsek Social Force Model [Helbing00]

- Each pedestrian feels and exerts on others two kinds of forces, social and physical.
 - Social forces (repulsion/attraction) reflect the intention of a pedestrian not to collide with others
 - Physical forces (pushing and friction) are used when pedestrian are forced to collide at very high density

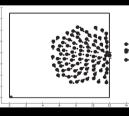



Illustration of the HMFV Model in Normal and Evacuation Situations Isimulation of pedestrians moving with identical desired velocity In wide exit Room size 15m x15m [Helbing01]

BUNRAKU Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Illustration of the HMFV Model in Normal and Evacuation Situations

- Typical usage (validated):
 - high densities of people, evacuation scenarios
- Major problem:
 - lack of anticipation ,



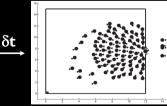
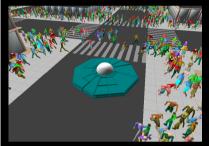

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Illustration of the HMFV Model in Normal and Evacuation Situations

- The validity domain is limited to very high densities
- Trajectories are not correct for individual pedestrians in sparse conditions.
- Problems may also arise at the boundary of the crowd

BUNRAK



The Lakoba-Kaup-Finkelstein Model [Lakoba05]

- Modification of the Helbing-Molnar-Farkas-Vicsek Social Force Model
 - To increase its domain of validity for lower densities
 - To eliminate overlapping between pedestrians
 - Stable solutions using the explicit 1st-order Euler Method
 - To add a memory providing to a pedestrian the knowledge about the location of exit(s)
 - Determines the vector of its preferred velocity

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Potential fields [Treuille06]

- Based on global attraction / repulsion forces
 - High performances
- Major problems:
- unrealistic speeds
- lack of control over individual destinations

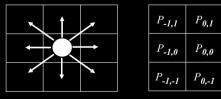
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Cellular Automaton [Schadschneider01]

• Discrete approach

BUNRA

JUNRIKE


• use of a regular lattice, each cell approximately 40 x 40 cm²)

 $P_{I,I}$

P1,0

P_{1,-1}

• Each cell is either empty or occupied by exactly one person

- P_{i,j}: probability to go in the cell (x+i, y+j): preferred walking direction
 Σ P_{i,j} = 1
- In case of conflict (two particles share the same target cell), one is chosen according to their relative probabilities to choose the target

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Cellular Automaton [Klüpfel03]

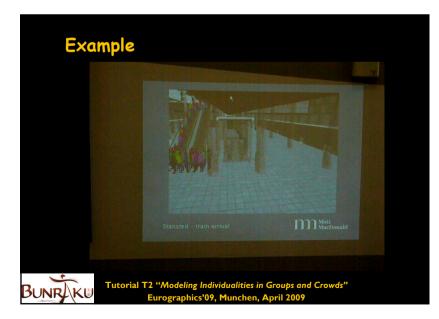
- A pedestrian can move more than one cell in a time-step Δt
- Use of a time-step-slice Δt_s
 - $\Delta t_s = \Delta t / v_{max}$ (v_{max} the maximum speed)
- For each time-step-slice:
 - I. Try to access the desired cell
 - 2. If this is not possible, try to go to one of the two 45° neighbors
 - 3. If this is not possible, try to go to one of the two 90° neighbors
 - 4. If none of those five cells are accessible, then stop.
- The fact that diagonal movement corresponds to a longer distance is taken into account by a factor $\sqrt{2}$

Floor Field [Schadschneider01]

- The floor field modifies the transition probabilities to increase the probability to move into the direction of larger fields.
- Dynamic floor field (Matrix D_{ii}):
 - Used to model long-ranged attractive interaction between persons
 - Virtual trace are left by pedestrians, but they are subject to diffusion and decay
 - dilution until the vanishing of the trace after some time
- Static floor field (Matrix S_{ii}):
 - Used to specify regions of space that are more attractive

BUNRAKU Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

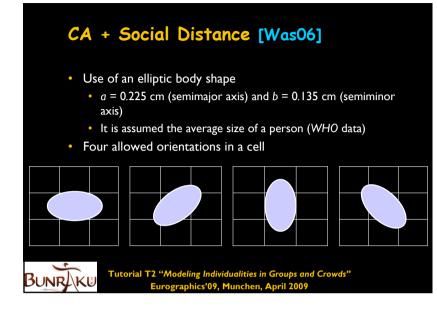
Floor Field [Schadschneider01]

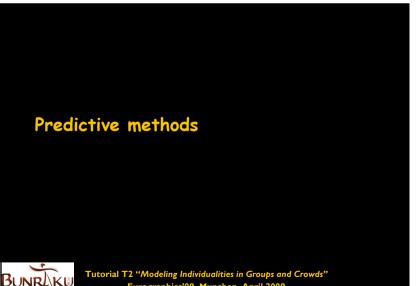

• The transition probability p_{ij} in direction (i, j) depends on four contributions:

$$p_{ij} = N P_{ij} D_{ij} S_{ij} (l - n_{ij})$$

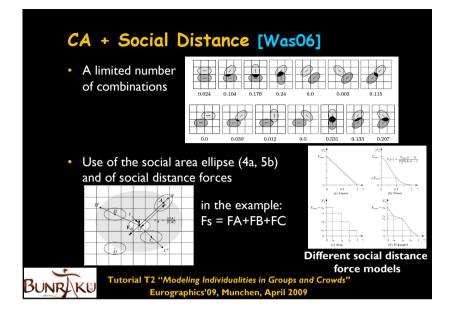
- With:
 - N: normalization factor to ensure $\Sigma_{(i,j)} p_{i,j} = 1$
- n_{ii} : occupation number of the target cell (1 occupied, 0 free)
- Advantage:
 - simple, and can be used for large scale simulations

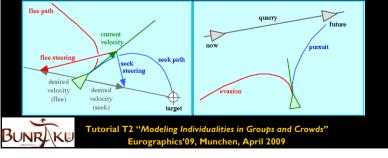
BUNRAKU


Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

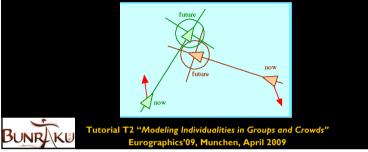


CA + Social Distance [Was06]

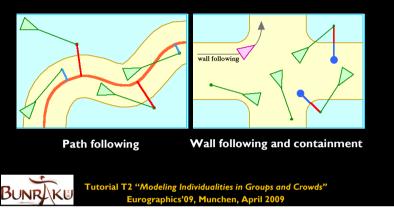

- Four sort of distances:
 - Intimate distance: below 40-50 cm
 - Can appear between couples, parents and children
 - Personal distance: from 40-50 cm to 150 cm
 - Close phase below 90 cm for people who know each other very well
 - Social distance: from 150 cm to 300 cm
 - Casual interaction-distance between acquaintances and strangers
 - Public distance: above 300 cm

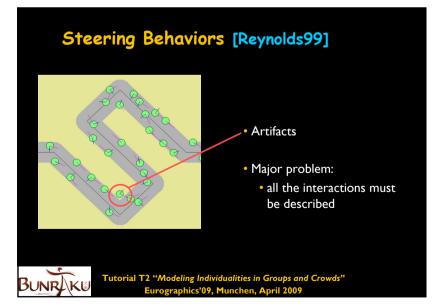


Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

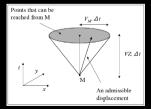

Steering Behaviors [Reynolds99]

- Use of several different behaviors
 - Seek: steer the character towards a specified position
 - Flee: inverse of seek
 - Pursuit: identical to seek but with a moving target
 - Evasion: used to steer away from the predicted future position


Steering Behaviors [Reynolds99]

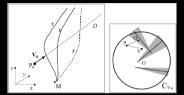

- Obstacle avoidance
- The obstacle which intersects the forward axis nearest the character is selected as the "most threatening."
- Steering to avoid this obstacle is computed by negating the (lateral) side-up projection of the obstacle's center.

Steering Behaviors [Reynolds99]


• Other behaviors

Predictive Geometric Model [Feurtey00]

- Predictive approach to manage collision avoidance.
- Navigation of persons represented in a (x, y, t) reference system



• At each time t, all possible positions that can be reached by a pedestrian are included in a circle of radius $(V_M \Delta t)$ with V_M its maximal velocity.

Predictive Geometric Model [Feurtey00]

• A possible collision is represented in the cone by a segment in the case of an intersection with the trajectory of a surrounding entity.

• To manage the vagueness of the trajectory prediction, the potential collision area is extended to become a triangle.

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Predictive Geometric Model [Feurtey00]

- Feurtey postulates that a person apply three rules with different priorities
 - Preserve its direction
 - Preserve its velocity
 - Preserve the time necessary for the displacement
- Those rules are synthesized in a cost function for each point P included in the circle of possible displacements of radius r_M

• With:

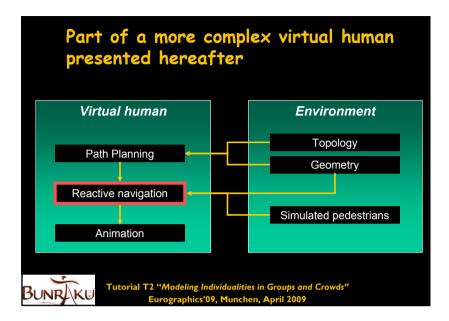
- $C_P = K_1 \frac{GP}{2.r_M} + K_2 \frac{\text{angle}(OV, OP)}{180} + K_i \frac{|OP OV|}{2.r_M}$
- i = 3 if $OP \ge OV$ and i = 4 otherwise
- G the target location, K_1 the cost of moving away from the goal, K_2 the cost of changing direction, K_3 the cost of acceleration, K_4 the cost of deceleration

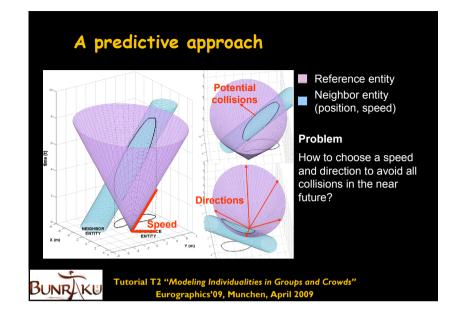
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

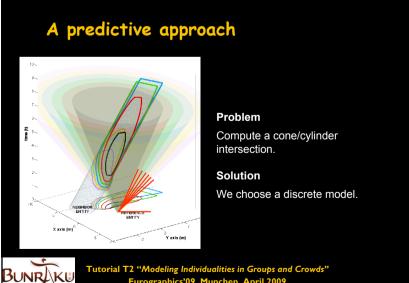
Predictive Geometric Model [Feurtey00]

BUNRAKI

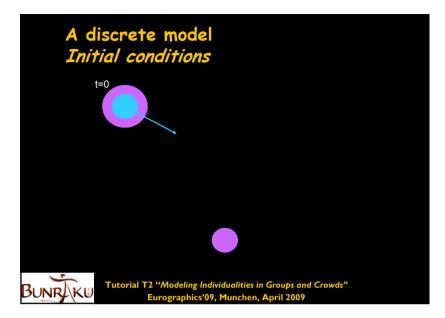
3UNRI/KI

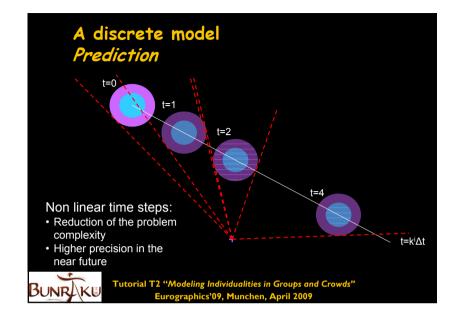

• This approach has been tested only on tiny examples

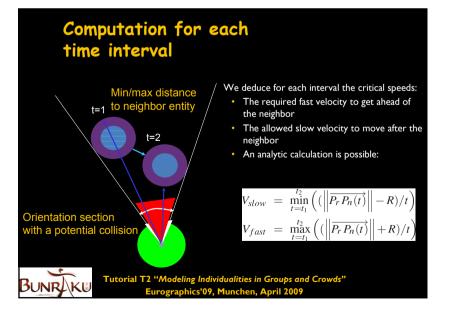


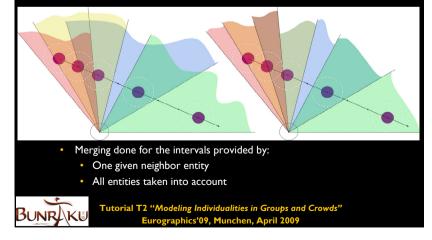

- When many pedestrians need to be avoided, the disk may be saturated.
 - It is necessary to limit the number of pedestrians to take into account
- Oscillations may occur when two pedestrians are face to face

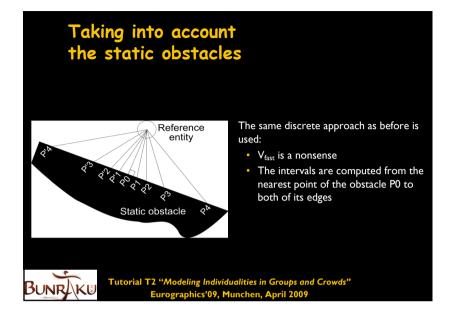
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009



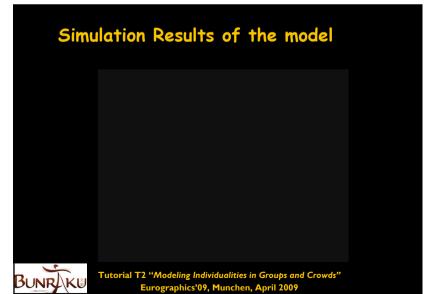





A discrete model Initial conditions t=0 Neighbor Entity (position, speed) Direction / speed to avoid collision? **Reference Entity** (position, goal) Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009 BUNRAKU



Merging the data of each overlapping section



Selection of the best orientation and speed

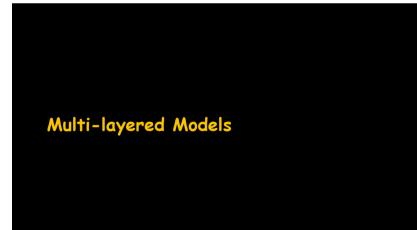
- Computation of a weight for each section:
 - Reference entity: goal, current state
 - Section: V_{slow}, V_{fast}, orientations
- The lower weight gives the best move.
- The cost function:
- defines the realism level
- requires a calibration phase: experimental data are needed

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

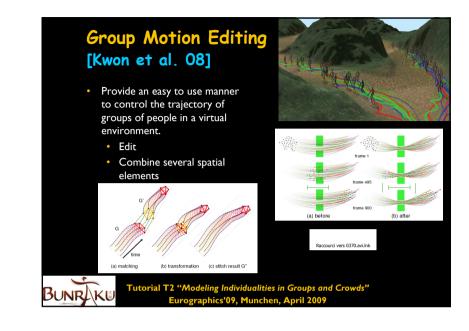
Jan and Jan Star

Group based crowd simulation [Musse99]

• Individual trajectories of virtual humans determined by the behaviour of the group they belong to.

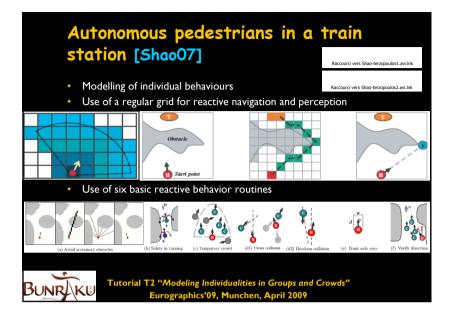


BUNRAK


BUNRAK

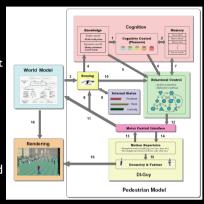
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009


Multi-layer Approach

Dynamic approach in three layers [Goldenstein01]

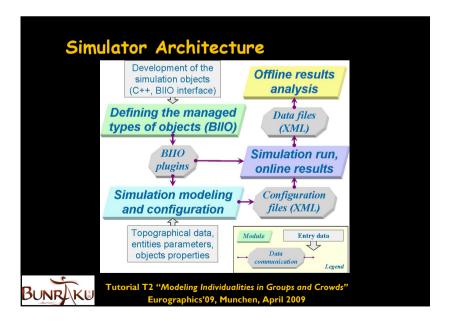
- I. Particle based dynamic system
- 2. Management of the relations between moving objects and the environment (based on Delaunay triangulation)
- **3.** Path planning and calculation of the desired orientation to reach a destination.

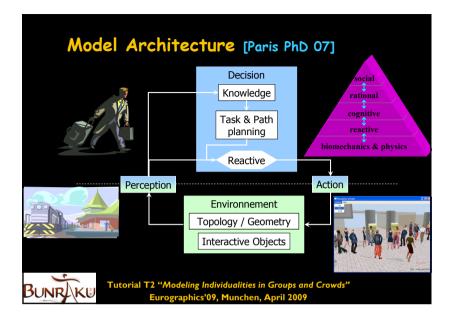

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

BUNRA

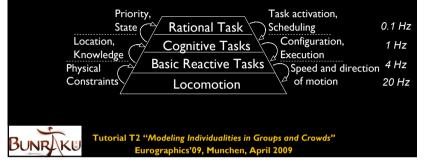
Autonomous pedestrians in a train station [Shao07]

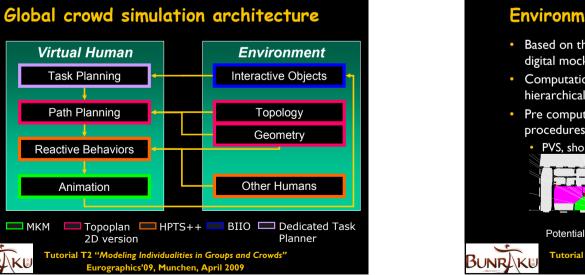
- Motivational behaviors are used to supplement basic reactive routines, such as:
 - Meet with friends and chat
 - Queue at a ticketing area
- An action selection mechanism chooses the appropriate behavior to fulfill needs.
- A cognitive model is responsible for creating and executing plans suitable.

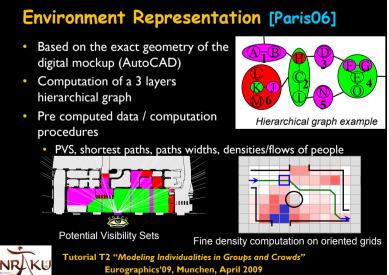


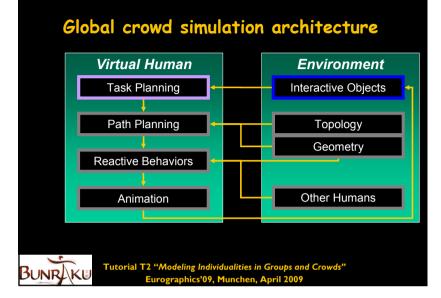


- Objective
 - Develop the first goal oriented simulation tool
 - dedicated to train station and more generally to transportation terminals
 - including all the human activity inside this restricted area






BUNRAKE

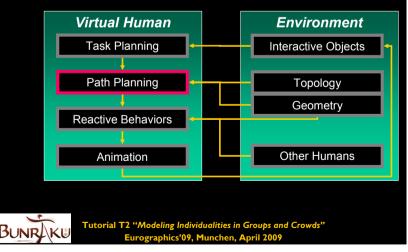

An Embodied and Situated Virtual Human

- Based on the Behavioral Pyramid
 - All processes are independant and only connected to the connex layers

Cognitive and Rational Tasks

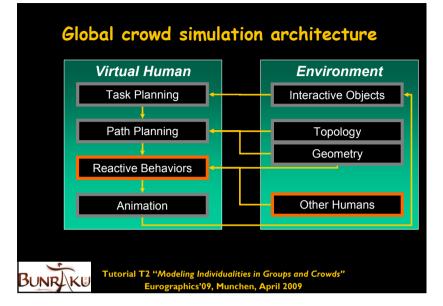
- Cognitive Tasks
 - Concurrent Atomic Processes (priorities)
 - Interact: complete management of an affordance
 - Move: management of default displacement
 - Observe: mangement of visual attention
- Goal Oriented Rational Model
 - manage all affordances
 - Rational Process classifying all interactions
 - Hierarchical Organization of affordances

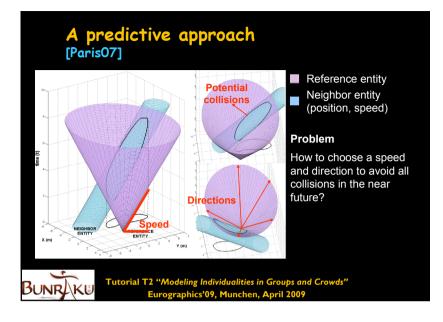
interactive/bjact resources bitetor wooling_pacer prophi_j_ wore_pacer prophi_j wore_pacer prophi_j wore_pacer pro


_centifiedo

* Andror visting_enclos 1.11 0.12

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009


Global crowd simulation architecture



Path Planning: a Hierarchical Technique [Paris06]

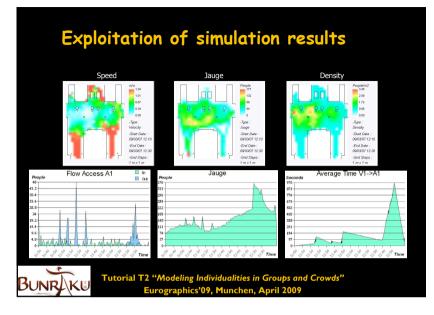
- Full path calculation in the more abstracted graph
- To find an approximate path from current to destination zone
- By part calculation in the contained sub-graphs
- Locally refine the path as the entity moves inside the environment
- 3 specializations for the full path calculation
- Reach a unique identified target
- Choose the best target between a set of identified ones
- Explore: Reach a target which may improve the entity's knowledge of the environment
- Multicriteria Heuristic based on static data (path width & length, deviation angles, discovering potential) and dynamic data (densities and flows of people)

Simulation Characteristics

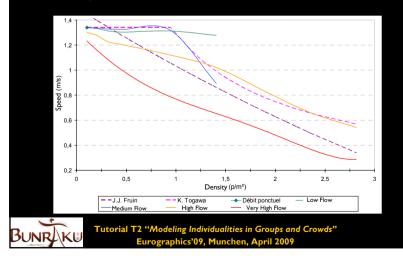
 Population generation based on exploitation data, distribution of delay before departure, Origin Destination Graph, ...

1ean S

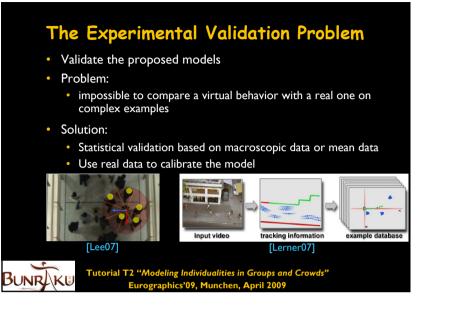
BUNRAKE


Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

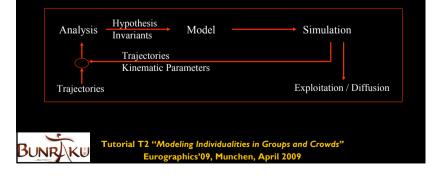
Configuration of a simulation


• Population generation based on exploitation data, distribution of delay before departure, Origin Destination Graph, ...

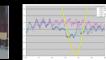
National Systems Ten Annual Ten From So Qualify Patiential Regulations Patiential Patie Patiential												
1 1500 1556 1554 OMMETILE 3 (11) SERVES Quadratify (11) 157(Hype) Populatory, 101 004_1 00 00 2 2141 11.18 ULLE BARCE Quadratify (11) 10(Hype) Populatory, 101 004_2 00 00 5 0555 1655 PARES Quadratify (11) 10(Hype) Populatory, 101 00_2, 20 00 5 1528 1655 PARES Quadratify (11) 10(Hype) Populatory, 101 00_2, 20 00 5 1528 1655 PARES Quadratify (11) 10(Hype) Populatory, 101 00_2, 20 00 5 1518 1656 PARES Quadratify (11) 10(Hype) Populatory, 101 00_2, 20 00 00 5 101 1105 PORES PORES Quadratify (11) 10(Hype) Populatory, 101 00_2, 20 100 5 101 1102 PORES PORES Quadratify (1) 10(Hype) Populatory, 101<											2	j 💿
1 Column		Number	Departure Time	Arrival Time		To	Quality	Material	Population	Platform	lengers in	angers o
3 2556 10.56 10.51 MellS RPMLS Quadrativity 10/(pres) Reputativity 101 100 101 4 51.81 10.77 10.82 (BST) MallS Quadrativity Totypes Reputativity 100 100 100 5 5244 10.51 10.82 (BST) MallS Quadrativity Totypes Reputativity 100 100 5 5244 10.50 10.53 ACALADIS Quadrativity Totypes Reputativity 100 100 6 5235 11.00 10.56 CLULERAPER Quadrativity Totypes Reputativity 100 100 6 5245 12.02 11.22 REPUTET Quadrativity Totypes Reputativity 100 100 7 5242 12.21 12.10 CLUERAPER RePutativity Totypes Reputativity 100 100 100 100 100 100 100 100	1	5360	10:56	10:54		RENNES	QualiteTGY_1	TGV_type1	Population_TGV1	Voie_1	100	100
4 5128 1057 1052 0453 Quadroff, 1 Digradian, 101 Mail, 2 00 10 5 558 1059 1053 1000000 1012 100, 100 100 100 5 5243 1010 1056 LLL2 EURCH Quadroff, 1 100, yyeel Repairing, 101 Nei, 2 100 100 7 518 2.050 1127 ROMES Quadroff, 1 100, yyeel Repairing, 101 Nei, 2 100 100 7 518 2.050 1127 ROMES Quadroff, 1 100, yyeel Repairing, 101 Nei, 2 100 100 0 5287 12.01 LLECHORE RomeS Quadroff, 1 100, yyeel Repairing, 101 Nei, 3 100 100 0 5287 12.01 LLECHORE RomeS Quadroff, 1 100, yyeel Repairing, 101 Nei, 3 100 100 0 5287 12.01 LLECHORE Quadroff, 1 100, yyee	2	5214	11:18	11:15	LILLE EUROPE	RENNES	QualiteTGV_1	TGV_type1	Population_TGV1	Vole_2	100	100
5 554 10.53 70000000 (100000000000000000000000000000	3	5326	10:56	10:51	PAR15	RENNES	QualteTGY_1	TGV_type1	Population_TGV1	Voie_1	100	100
5 504 10.65 10.63 10.44 EBJOR Comparing 10 Comparin 10	4	5128	10:57	10:52	BREST	PARIS	QualteTGV_1	TGV_type1	Population_TGV1	Voie_2	100	100
7 518 (220 1127 REMOSE (MMETALLES) (MMETALLES) Quadratify (1 for (1)met) Requirement (1 metalling) Requirement (1 metalling)	5	5264	10:58	10:53		LILLE EUROPE	QualiteTGY_1	TGV_type1	Population_TGV1	Vole_1	100	100
0 1270 12	6	5213	11:18	10:56	LILLE EUROPE	NANTES	QualteTGY_1	TGV_type1	Population_TGV1	Vole_2	100	100
9 5227 12:10 LILE DARKE NMMTS QuiderOry_1 TO_3yest Population_1001 Hot 100 10 5283 12:20 LILE DARKE COLCUSE QuiderOry_1 TO_3yest Population_1001 Hot 100 100 10 5283 12:20 LILE DARKE COLCUSE QuiderOry_1 TO_3yest Population_1001 Hot 100 100 10 5284 12:80 LILE DARKE COLCUSE QuiderOry_1 TO_3yest Population_1001 Hot 100 100 10 529 12:81 EXEMPTION COLCUSE Darketing to the table of the table of ta	7	5318	12:00	11:27	RENNES		QualteTGV_1	TGV_type1	Population_TGV1	Voie_1	100	100
10 5218 12:30 12:28 LILLE BURGPE TOLLCUSE QualityToy_1 Toy_types Population_Toy1 Vele_2 100 100	8	5224	12:21	12:18	LILLE EUROPE	RENNES	QualiteTGY_1	TGV_type1	Population_TGV1	Vole_2	100	100
10 S216 12:30 12:30 CILLE DURCHE MATABLAU QUARTERY I TOY	9	5227	12:21	12:18	LILLE EUROPE	NANTES	QualiteTGV_1	TGV_type1	Population_TGV1	Vole_1	100	100
11 5368 12:48 12:45 MARSEILE ST NAMTES QualteTGV_1 TGV_type1 Population_TGV1 Voie_1 100 100	10	5218	12:30	12:28	LILLE EUROPE	TOULOUSE MATABIAU	QualiteTGV_1	TGV_type1	Population_TGV1	Voie_2	100	100
	11	5368	12:48	12:45	MARSEILLE ST	NANTES	QualteTGV_1	TGV_type1	Population_TGV1	Voie_1	100	100
											B	uld Simula



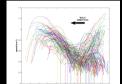
Comparison with statistical models

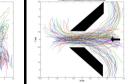


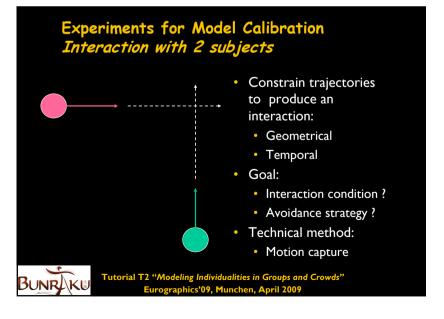
Analysis and Synthesis Approach for Virtual Humans

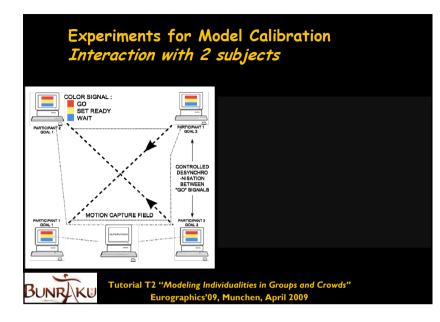

- Use an Analysis/Synthesis approach to model human characteristics:
 - Locomotion, reactive navigation, path planning, ...

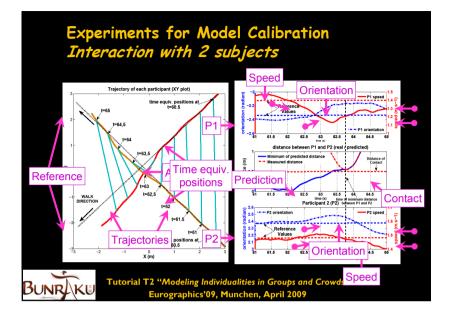
Experimental Studies

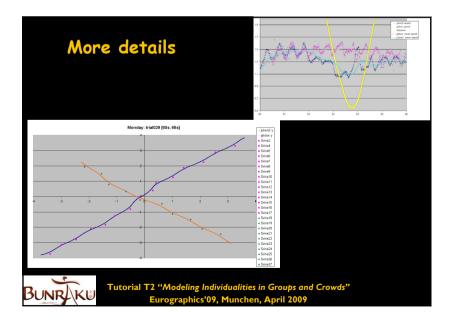

• Study interactions between two persons under different

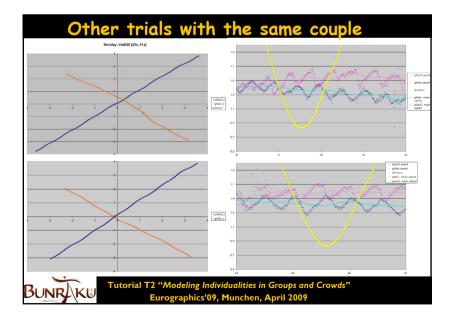



Observation of micro-phenomena in micro-crowds









Experiments for Model Validation Micro-crowd

Problem

Do the rules which are observed for 2 subjects remain valid for more complex interactions?

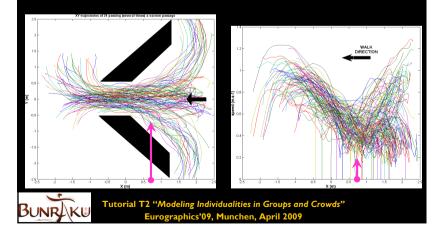
Solution

Observation of crowds microphenomena in « classical situations »

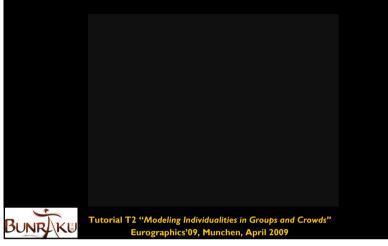
Door crossing,

Corridor,

Crossroad,


• Etc.

BUNRAKU



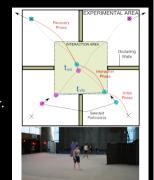
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Experiments for Model Validation Micro-crowd

Experiments for Model Validation Micro-crowd

Experiments for Model Validation Micro-crowd

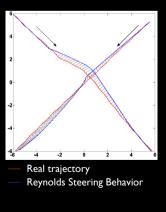
- Navigation in an area with obstacles
- Two scenarios: with or without visibility of the other incoming flow

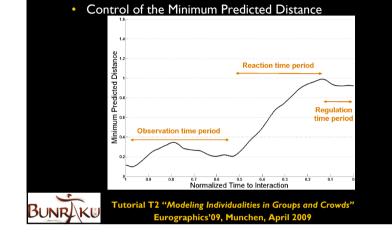


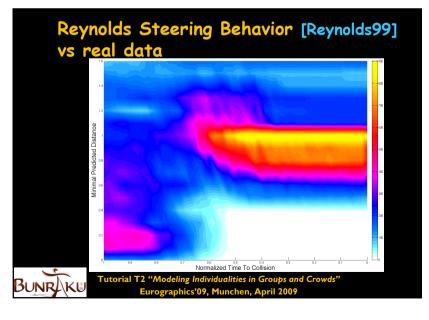
Comparison of crowd simulation models with real data

- Experimental square is 15m long, interaction area is 10m long.
- We randomize participants selection so that they cannot anticipate the direction from which one will appear.
- 429 experimental samples and 62 reference trajectories have been recorded.

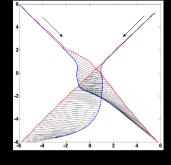
BUNRAKE


BUNRAK


Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009


Reynolds Steering Behavior [Reynolds99] vs real data

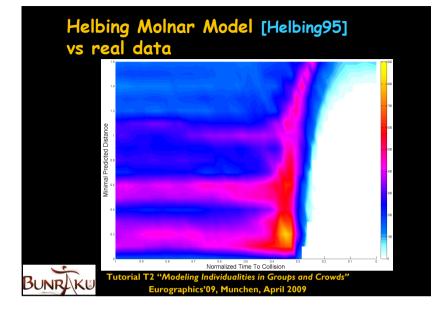
- The Reynolds' method converges toward a correct final distance between walkers.
- Reaction is too abrupt, as mpd is suddenly increased.
- Walkers adapt their motion simultaneously in this approach while in reality, adaptations are not synchronized,



Helbing Molnar Model [Helbing95] vs real data

- The lack of anticipation is clearly observable.
- The minimal distance between walkers is maintained over realistic values.

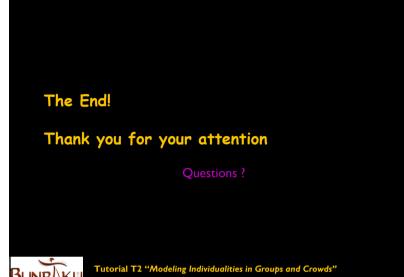
Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009


Conclusion

BUNRA

BUNRAK

- Models of reactive navigation are usually reactive which is not sufficient at low density
- Models do not take into account several steps in the interaction
 - They are usually reacting too late and overmuch
- There is a need for a realistic predictive navigation model
- Recently, multi-layered models have been proposed allowing to combine reactive and cognitive behaviors increasing the realism of resulting simulations by providing goals and motivations to the virtual populace.


Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

Open questions

- What is the model used by a pedestrian to adapt its trajectory to potential interactions with others ?
- Combination of speed and orientation adaptation due to the interaction with a subset of its neighbors
 - How is this combination ?
 - How are filtered the neighbors ? How many are they ?
- We are working in a pluridisciplinary project (Locanthrope) to answer these questions in a near future.

Eurographics'09, Munchen, April 2009

References

[Archea79] J. Archea. The evacuation of non-ambulatory patients from hospital and nursing home fires : A framework for a model. Technical report, November 1979.

[Brilon94] W. Brilon. A new german capacity manual. In The Second International

- Symposium on Highway Capacity, Rahmi Akçelik (editor), pages 152–164, Sydney, Australia, August 1994. Australian Road Research Board Ltd
- [Chenney04] S. Chenney, S. Flow tiles. In Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation. Grenoble, France, August 2004.
- [Donikian04] S. Donikian. Modélisation, contrôle et animation d'agents virtuels autonomes évoluant dans des environnements informés et structurés (Modelling, control and animation of autonomous virtual agents evolving in structured and informed environments). Habilitation to supervise research in computer science, University of Rennes I, 26 august 2004, 236 pages, http://www.irisa.fr/centredoc/publis/HDR/2004/irisapublication.2005-08-03.0437026475
- [Feurtey00] F. Feurtey. Simulating the Collision Avoidance Behavior of Pedestrians. Master Thesis, The University of Tokyo, School of Engineering, February 2000.

[Forsyth99] D. R. Forsyth. Group Dynamics. Belmont, CA: Wadsworth Publishing, 1999.

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

References

- [Fruin71] J. J. Fruin. Pedestrian planning and design. New-York : Metropolitan association of urban designers and environmental planners, Inc., 1971.
- [Goldenstein01] S. Goldenstein, M. Karavelas, D. Metaxas, L. Guibas, E. Aaron, A. Goswami. Scalable nonlinear dynamical systems for agent steering and crowd simulation. Computers and Graphics, 25(6), pp 983–998, 2001.
- [Helbing95] D. Helbing, P. Molnar. Social force model for pedestrian dynamics. Physical Review E 51, 4282, 1995.
- [Helbing00] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape panic. Nature 407, pp 487-90, 2000.
- [Helbing01] D. Helbing, I. Farkas, P. Molnar and T. Vicsek. Simulation of Pedestrian Crowds in Normal and Evacuation Situations. In Pedestrian and Evacuation Dynamics, pp 21-58, Springer, 2001.
- [Henderson71] L. F. Henderson. The statistics of crowd fluids. Nature, 229, pp 381-383, 1971.
- [Klüpfel03] H.L. Klüpfel. A Cellular Automaton Model for Crowd Movement and Egress Simulation. PhD thesis, University of Duisburg–Essen, July 2003.
- [Kwon08] T. Kwon, K.H. Lee, J. Lee, and S. Takahashi. Group motion editing. In ACM SIGGRAPH 2008 Papers, Los Angeles, California, August 2008.
- [Lakoba05] T. I. Lakoba, D. J. Kaup, and N. M. Finkelstein. Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation, 81(5) pp 339–352, 2005.

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

References

- [Lee07] K. H. Lee, M. G. Choi, Q. Hong, J. Lee. Group behavior from video: a data-driven approach to crowd simulation. In SCA '07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 109–118.
- [Lerner07] A. Lerner, Y. Chrysanthou, D. Lischinski. Crowds by example. Computer Graphics Forum (Proceedings of Eurographics'07) 26, (3), 2007.
- [Mallot99] H. A. Mallot. Spatial cognition : Behavioral competences, neural mechanisms and evolutionary scaling. Kognitionswissenschaft, 8(1), pp 40–48, 1999.
- [Milazzo99] J. S. Milazzo, N. M. Rouphail, J. E. Hummer, and D. P. Allen. Quality of service for uninterrupted pedestrian facilities. In Highway Capacity Manual, 78th Annual Meeting of the US Transportation Research Board, Washington, DC, January 1999.
- [Musse99] S. Raupp Musse, M. Kallmann, D. Thalmann. Level of autonomy for virtual human agents. In ECAL '99 : Proceedings of the 5th European Conference on Advances in Artificial Life, pp 345–349, London, UK, 1999. Springer-Verlag.
- [Paris06] S.G. Paris, S. Donikian, N. Bonvalet. Environmental Abstraction and Path Planning Techniques for Realistic Crowd Simulation. Computer Animation and Virtual Worlds, vol. 17, N° 3-4, 2006.
- [Paris07] S. Paris, J. Pettré, S. Donikian. Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach. Computer Graphics Forum, Vol. 26, N° 3, Eurographics'07 Conference Proceedings, September 2007, pp 665-674.

References

- [Paris08] S.G. Paris, D. Lefebvre, S. Donikian. SIMULEM: Introducing Goal Oriented Behaviours in Crowd Simulation. PED2008, 4th International Conference on Pedestrian and Evacuation Dynamics, University of Wuppertall, Germany, February 2008.
- [Pauls75] J. Pauls. Evacuation and other safety measures in high-rise buildings. Volume 81, chapter 1, pp 528–534. ASHRAE Transactions, 1975.
- [Pauls84a] J. Pauls. Development of knowledge about means of egress. In Fire technology, volume 20, number 2, pp 28–40, May 1984.

[Pauls84b] J. Pauls. The movement of people in buildings and design solutions for means of egress. In Fire technology, volume 20, number 1, pp 27–47, February 1984.

- [Peschl71] I. Peschl. Passage capacity of door openings in panic situations. BAUN, 26(2), pp 62– 67, 1971.
- [Polus83] A. Polus, J. Schofer, and A. Ushpiz. Pedestrian Flow and Level of Service, volume 109(1) de Journal of Transportation Engineering, pp 45–56. American Society of Civil Engineers, January 1983.

[Predtechenskii78] V. M. Predtechenskii and A. I. Milinskii. Planning for foot traffic flow in buildings. Amerind Publishing CO Pvt Ltd, New Dehli, India, National Bureau of Standards edition, 1978.

Tutorial T2 "Modeling Individualities in Groups and Crowds" Eurographics'09, Munchen, April 2009

References

[Puskarev77] Puskarev and Zupan. Public transit and land use planning. Indiana University Press, January 1977.

- [Raupp01] S. Raupp Musse and D. Thalmann. Hierarchical model for real time simulation of virtual human crowds. IEEE Transactions on Visualization and Computer Graphics, 7(2), pp 152–164, 2001.
- [Reynolds99] C.W. Reynolds. Steering Behaviors For Autonomous Characters. Game Developer Conference, pp. 763–782, 1999.
- [Schadschneider01] A. Schadschneider. Cellular Automaton Approach to Pedestrian Dynamics Theory. In Pedestrian and Evacuation Dynamics, pp 75-85, Springer, 2001.
- [Shao07] W. Shao, D. Terzopoulos. Autonomous pedestrians. Graphical Models N°69, pp 246–274, 2007.
- [Tana89] Y. Tanaboriboon, J. A. Guyano. Level of service standards for pedestrian facilities in bangkok : A case study. ITE Journal, November 1989.
- [Togawa55] K. Togawa. Study on fire escapes based on observations of multitude currents. Technical report, Ministry of construction, 1955.
- [Treuille06] Adrien Treuille, Seth Cooper, et Zoran Popovi´c. Continuum crowds. In ACM SIGGRAPH'06, pp 1160–1168,
- [Was06] J. Was, B. Gudowski, and P. J. Matuszyk. Social Distances Model of Pedestrian Dynamics. ACRI 2006, LNCS 4173, pp 492–501, 2006, Springer-Verlag.

