

Space of human body shapes

- Allen et al extended their work to the reconstruction and parametrization from large range scans
- Fitting high-resolution template meshes (250) to detailed human body range scans with sparse 3D markers
- Able to morph between individuals, and begin to characterize and explore the space of probable body shapes

Skeleton Fitting

- Find posture and proportion of the scanned model by using position, scale and rotation of each bone of the template
- When applying different joint parameters during fitting skeleton-driven deformation is used to calculate new positions of skin surface according to the transformation of the underlying skeleton.

Synthesizer construction

- Modeling synthesizers (mapping functions):
 - Allow runtime evaluation of the body geometry from the input parameters. The goal is to produce a new deformation of the template model derived through the interpolation of the example shapes.
 - Joint and displacement synthesizers
- As we have high dimensional geometry data and relatively small number of examples, it falls into a scattered data interpolation problem.
- Consider each example as an interpolant
- We adopted GRBF (Gaussian Radial Basis Function) which is reputed to behave well in a mild condition

Hyun extended his previous sweep based approach by adding GPU assisted collision detection for limbs during deformation

- Polygonal mesh approximated by control sweep surfaces.
- According to joint angle changes, sweep surfaces deformed and overlapping parts are blended.
- Anatomical features as elbow-protrusion, skin folding etc are emulated in the GPU

Transformations of the sweep surfaces for deformation
The rigid parts of a limb are represented by tubular sweep surfaces.

MIRALab recent work Modelling any body size

- Based on SCODEF et al method.
- Looks similar to FFD but have much more deformation control for complex models.
- Spatial model deformation is possible. This feature is exactly fitting for anthropometric segmentation of the body model.
- No need to modify all the control points for deformation. Single parameter deforms single segment.
- Deformed ovelapping segments are smoothly blendable. No visual side-effects between segments.
- No need to update surface normals. Displacement is occured through the existing normal vector direction.

What is a "Virtual TryOn"? An (online) application, allowing you to try on virtual garments For consumers Online shopping: "I like this garment, but how does it look on my bod and will it fit?" For designers Rapid prototyping/evaluation of a design in various sizes and with various fabrics

Ongoing developments

- Optimization of the simulation
 - New approaches to simulation
 - "Drive" high resolution garments through simulation of lower resolution garments
 - Utilization of modern hardware
 - Multi-Core CPUs
 - Graphics Processors (GPGPU)
- Customization through multi-grading
 - Localized deformation of garments
 - Editing without changing topology

Facial animation pipeline

- 1. Define a geometric model
- 2. Define for the model an animation structure and a parameterization set
- 3. Animation creation (by vision, optical tracking, AI, manual design)
- 4. Animation of the model according to animation structure and parameters

FACS Action Unit

- Study of face anatomy
- Definition of all muscle actions separately
- Sometimes, more than 1 muscle is responsible for a facial deformation, in this case an AU (Action Unit) includes 2 or 3 muscles
- 1 muscle could create more than 1 AU
- → Action Unit (AU) definition
 - 35 basics AU
 - 11 extended AU (deformations not implying the action of a face muscle, i.e. "tongue out")

Real-Time Individualized Virtual Humans

FACS : description of the movement of

- Mainly developed for facial analysis
- Based on visual facial anatomical movements
- Used in psychology to classify face movements
- Designed to describe facial expression / visual
- Requires a knowledge of muscular face anatomy
- Using FACS for animation synthesis is an

			11
AU No.	FACS Name	Muscular Basis	
13	Cheek puffer	Caninus	To the
14	Dimpler	Buccinnator	A BAR
15	Lip Corner Depressor	Triangularis	
16	Lower Lip Depressor	Depressor Labii	
17	Chin Raiser	Mentalis	
18	Lip Puckerer	Incisivii Labii Superioris,	
		Incisivii Labii Inferioris	
20	Lip Stretcher	Risorius	
22	Lip Funneler	Orbicularis Oris	
23	Lip Tightner	Orbicularis Oris	

MPEG-4 for face (1998)

- MPEG-4 allows for independent encoding of different audio-visual objects (AVO).
- The AVO could be video, audio, 2D or 3D objects
- Specifies a compressed binary representation of the AVO
- IMPORTANT : MPEG4 only specifies the encoder, the "terminal" has the choice to generate an MPEG4 compliant bit stream
- A special AVO is the Face and Body Animation (FBA)
- MPEG4 is a parameterization for network applications
- The FBA object encompasses both 2D and 3D models, which can look realistic as well as cartoon-like.

Real-Time Individualized Virtual Humans

MPEG-4 for face

- Each FAP corresponding to a particular facial action deforms the face from its neutral state
- The value of a particular FAP indicates the magnitude of the deformation
- A "terminal" could use its own animation rules in order to animate the face
- FAP values are defined in facial animation parameter units (FAPU) to be model independent
- FAPU are computed using spatial distances between major features on the model

Real-Time Individualized Virtual Humans

MPEG-4 for face

- 2 of 68 FAPs can be used as two high level parameters:
- Visemes
- Expressions
- High level parameters allow the transmission of fewer parameters
- FAPs are categorized into 10 groups and represent a complete set of basic facial actions including head, tongue and eye movement

Motion Capture

- Capturing real people's performances to animate a virtual character
 - performance-driven animation
- Problems such as calibration, occlusion
- Captured data can be used directly or a statistical analysis can be applied (e.g. Principal Component Analysis)

Active Scanners & Video Cameras

- Active scanners (Laser, structured light)
 - High resolution face capture
 - Capturing subtle changes on face such as wrinkles
- Video cameras (passive scanning)
 - Less expensive and easy capture
 - 2D data needs to be converted to 3D

Limitations

 Far from being intelligent and expressive enough to engage user to a believable interaction

Real-Time Individualized Virtual Humans

 Behaviors not linked very well with content, repetitive and unnatural

Р	ersonality - OCEAN	1102 ⁴	
(KA
	Openness	open to experience new things, being imaginative, intelligent and creative	
	Conscientiousness :	indicates responsibility, reliability and tidiness.	
	Extravertion:	Outgoing, sociable, assertive and energetic to achieve his/hergoals.	
	Agreeableness:	trustable, kind and cooperative considering other people's goals and is ready to surrender his own goals.	
	Neuroticism:	anxious, nervous, prone to depression and lack of emotional stability.	
		Real-Time Individualized Virtual	Humans

Positive Emotions	Negative Emotions	
because something good happened joy)	- because something bad happened (distress)	and the
- about the possibility of something good happening (hope)	- about the possibility of something bad happening (fear)	E Stor
- because a feared bad thing didn't happen (relief)	- because a hoped-for good thing didn't happen (disappointment)	
- about a self-initiated praiseworthy act (pride)	- about a self-initiated blameworthy act (remorse)	
- about an other-initiated praiseworthy act (gratitude)	- about an other-initiated blameworthy act (anger)	
- because one finds someone/something appealing or attractive (love)	- because one finds someone/something unappealing or unattractive (hate)	
- because something good happened to a liked person (happy-for)	 because something bad happened to aliked person (sorry-for) 	
liked person (happy-for) unliked person (gloating)	- because something good happened to an unliked person (resentment)	

Episodic Memory Structure

- Currently, we focus on episodic memory and store the following pieces of information at each interaction session:
 - Name of person interacted p_i
 - Time passed since the session started t_i
 - Starting relationship at the beginning of session
 - Ending relationship at the end of session R,
 - Relationship change during the session $\frac{1}{R}$

Recall probability

Real-Time Individualized Virtual Humans

 R_i^e

What is Long-term Memory?

- Two types:
 - Procedural Memory (related with learning skills like riding a bicycle)
 - Declarative Memory (important for natural communication)
 - Episodic memory
 - represents our expreriences as points on a timeline
 - Semantic memory
 - Derived from episodic memory and it is a structured representation of learned facts and concepts

Scenario

- Eva teaching Geography
- Interaction with two types of students
 - A good and a difficult student
- Eva recognizes them automatically and stores information about them (name, relationship level)
- Eva remembers the level of relationship and answers accordingly

