
EUROGRAPHICS 2006 Tutorial

Real Time Interactive Massive Model Visualization

D. Kasik†1 D. Manocha2 A. Stephens‡3 B. Bruderlin4 P. Slusallek5 E. Gobbetti6 W. Correa7 I. Quilez8

1 The Boeing Company 2 University of North Carolina 3 University of Utah 4 Technical University of Ilmenau
5 Saarland University 6 CRS4 7 IBM 8 VRContext

Abstract

Real-time interaction with complex models has always challenged interactive computer graphics. Such models
can easily contain gigabytes of data. This tutorial covers state-of- the-art techniques that remove current memory
and performance constraints. This allows a fundamental change in visualization systems: users can interact with
huge models in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Tutorial Description

The amount of data produced by today’s engineering design
and scientific analysis applications often exceeds the capa-
bility of conventional interactive computer graphics. Users
produce tens of gigabytes of data while designing a product
or analyzing results. Techniques for examining all this data
simultaneously and interactively are not readily available in
today’s visualization or CAD tools.

Combining specific algorithms, specialized data struc-
tures, and high performance hardware has enabled real-time
visualization and is a significant research area. As a result,
users can see an entire airplane instead of a subsection or full
level-of-detail of a building instead of a simplified form.

This tutorial presents seven different solutions to the prob-
lem. Each instructor will focus on the practical aspects of
their implementation and provide examples, either as movies
or live demos. The tutorial will provide participants with the
knowledge to identify trade- offs and weigh benefits. In ad-
dition, we discuss system implementation issues, the con-
ceptual basis for the work, the impact on the user commu-
nity, how to accelerate user acceptance of the technology,
and methods to increase the amount of test data for the re-
search community.

† Tutorial organizer.
‡ Tutorial notes editor.

Key technical topics include: software techniques to over-
come performance and memory size limitations (e.g., kd-
trees, occlusion culling, multi-threaded programming, par-
allel processor transaction management, memory-mapped
files, display lists, cache coherent layouts); computing ar-
chitecture (e.g., parallel processor architectures, single and
multi- GPU hardware, thin client access to rendering ser-
vices, hardware occlusion culling, cell computers, multi-
core CPUs); and overall system architecture (e.g., prepro-
cessing, large user communities, model configuration man-
agement, network transfer of basic geometry).

2. Instructor Information

The instructors come from academia, start-up companies,
and industry. Each has built an approach that combines one
or more of the above technologies. The tutorial is organized
around the instructor’s technical approach, what parts have
worked, and lessons learned when applying these technolo-
gies to real-world problems.

2.1. Instructor Backgrounds

Dave Kasik is the Boeing Enterprise Visualization Archi-
tect. His research interests include innovative combinations
of basic 3D graphics and user interface technologies and in-
creasing awareness of the impact of visualization technology
inside and outside Boeing. Dave has a BA in Quantitative
Studies from the Johns Hopkins University and an MS in

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org

Kasik et al. / Real Time Interactive Massive Model Visualization

Tutorial Schedule
8:30 9:15 Motivation and Challenges Dave Kasik

9:15 10:05
Interactive View-Dependent Rendering and Shadow Generation
in Complex Datasets Dinesh Manocha

10:20 11:10 Ray Tracing with Multi-Core/Shared Memory Systems Abe Stephens

11:10 12:00 Visibility-guided Rendering to Accelerate 3D Graphics Hard-
ware Performance

Beat Bruderlin

1:00 1:50 Massive Model Visualization using Realtime Ray Tracing Philipp Slusallek

1:50 2:40
GPU-friendly accelerated mesh-based and mesh-less techniques
for output-sensitive rendering of huge complex 3D models. Enrico Gobbetti

2:55 3:45
Interactive Out-Of-Core Visualization of Large Datasets on
Commodity PCs Wagner Correa

3:45 4:35 Putting Theory into Practice Inigo Quilez
4:35 5:00 Panel discussion Moderator: Dave Kasik

Computer Science from the University of Colorado. He is a
member of IEEE, ACM, ACM SIGGRAPH (he has attended
all SIGGRAPH conferences), and ACM SIGCHI. He is a
member of the editorial board for IEEE Computer Graphics
and Applications.

Dinesh Manocha is currently a professor of Computer Sci-
ence at the University of North Carolina at Chapel Hill. He
was selected as an Alfred P. Sloan Research Fellow. He re-
ceived NSF Career Award in 1995, Office of Naval Research
Young Investigator Award in 1996, Honda Research Initi-
ation Award in 1997, and the Hettleman Prize for schol-
arly achievement at UNC Chapel Hill in 1998. He has also
received best paper and panel awards at ACM SuperCom-
puting, ACM Multimedia, ACM Solid Modeling, Pacific
Graphics, IEEE VR, IEEE Visualization, and Eurograph-
ics. He has served on the program committees and editorial
boards of leading conferences in computer graphics and ge-
ometric modeling.

Manocha has been working on large model visualization
for more than 10 years. His research group at UNC Chapel
Hill has published numerous papers on model simplification,
visibility computations, large data management and integrat-
ing these techniques at ACM SIGGRAPH and other confer-
ences. He has also organized SIGGRAPH courses on inter-
active walkthroughs, large model visualization, and GPGPU.

Abe Stephens is a PhD student at the University of Utah
working in the Scientific Computing and Imaging Institute
under the direction of Steven Parker. His work focuses on in-
teractive ray tracing, especially large data visualization. He
has worked closely with Silicon Graphics to improve inter-
active ray tracing on large parallel systems and collaborated
with Intel’s Microprocessor Technology Lab. Abe received
a BS in Computer Science from Rensselaer Polytechnic In-
stitute in 2003.

Beat Bruderlin is professor of Computer Science at the
Technical University of Ilmenau, Germany. His work fo-
cuses on computer geometry with applications to computer
aided design and engineering visualization. Other interests

include new interaction techniques for 3D design. Beat
Bruderlin received his M.S. degree in Physics from the Uni-
versity of Basel and a PhD in Computer Science from the
Swiss Federal Institute of Technology (ETH) âĂŞ Zurich,
Switzerland. He was a faculty member at the University of
Utah, before joining TU Ilmenau. In 2004 he founded 3Din-
teractiverendering software.

Philipp Slusallek is professor for computer graphics and
digital media at Saarland University, Germany. Before join-
ing Saarland University he was visiting assistant professor at
Stanford University. He received a Diploma/MSc in physics
from the University of TuÌĹbingen and a Doctor/PhD in
computer science from the University of Erlangen. Philipp
has published and taught extensively, including a SIG-
GRAPH05 course, about real-time ray tracing. He is the
principal investigator for the OpenRT project, which aims at
establishing real-time ray-tracing as an alternative technol-
ogy for interactive and photorealistic 3D graphics. This work
includes the development of a highly optimized ray trac-
ing software, custom hardware for ray tracing, approaches
to massive model visualization, and real-time lighting simu-
lation algorithms. Recently he co-founded "inTrace", a spin-
off company that commercializes real- time ray tracing tech-
nology.

Enrico Gobbetti is the founder and director of the Visual
Computing (ViC) group at the Center for Advanced Studies,
Research, and Development in Sardinia (CRS4). At CRS4,
Enrico developed and managed a graphics research program
supported through industrial and government grants. His re-
search interests span many areas of computer graphics. His
most recent contributions include a new breed of coarse-
grained adaptive multiresolution techniques for processing
and rendering large scale geometric models. Enrico holds
an Engineering degree (1989) and a Ph.D. degree (1993)
in Computer Science from the Swiss Federal Institute of
Technology in Lausanne (EPFL). For more information, see
www.crs4.it/vic

Wagner Correa is a Research Staff Member with the IBM
Watson Research Center. He is part of the Visualization

c© The Eurographics Association 2006.

Kasik et al. / Real Time Interactive Massive Model Visualization

Systems Group, which recently released the Deep Comput-
ing Visualization (DCV) suite of programs for immersive
and remote visualization. Prior to joining IBM, Wagner was
teaching Computer Graphics at the Federal University of
Minas Gerais (UFMG) in Brazil. Wagner holds a B.S. de-
gree (1994) and an M.S. degree (1996) in Computer Science
from UFMG, and an M.A. degree (1998) and a Ph.D. degree
(2004) in Computer Science from Princeton University.

Inigo Quilez received a degree as a Telecommunications
Engineer from the University of Basque Country (Spain),
with intensification in digital signal processing. He has ex-
tensively worked in real-time computer graphics, within the
"demoscene" since 1998, especially in the subject of ex-
treme procedural content creation and data compression.
Well known in the fractals community, work is still needed to
give aesthetics a more important role in the scientific work.
Since he joined VRcontext in 2003, his work focuses on re-
search and development of photorealistic rendering and mas-
sive model visualization techniques among others, focusing
in shared memory msystems (especially the Silicon Graph-
ics architecture).

2.2. Co-Instructors

In addition to the instructors listed above the following co-
instructors contributed to the tutorial.

• Sung-Eui Yoon, Lawrence Livermore National Labora-
tory.

• Andreas Dietrich, Saarland University.
• Alain Hubrecht, VRContext.
• Fabio Marton, CRS4.

3. Tutorial Summary

The following sections contain tutorial notes and accompa-
nying material.

3.1. Motivation and Challenges

The human visual system provides an extremely efficient
way to communicate both context and detail. The amount
of data that’s being generated is actually exceeding the rate
of change of Moore’s law.

The domains in which data is expanding range from
computer-aided design and manufacturing to arts and en-
tertainment to intelligence analysis. The most effective way
people have to comprehend and communicate the overall im-
plications relies on computer graphics. Clear examples from
specific domains show the effectiveness of interactive, real-
time 3D graphics.

The overall system implications of real-time interac-
tion are essential to ultimately make the technology imple-
mentable. The attendees will get a clear understanding of all
aspects that will make or break the widespread adoption of
the techniques described in the other sections of the tutorial.

Additional References:

• David J. Kasik, Strategies for Consistent Image Partition-
ing, IEEE MultiMedia, vol. 11, no. 1, pp. 32-41, 2004.

• David J. Kasik, William Buxton, David R. Ferguson, Ten
CAD Challenges, IEEE Computer Graphics and Applica-
tions, vol. 25, no. 2, pp. 81-92, Mar/Apr, 2005.

3.2. Interactive View-Dependent Rendering and
Shadow Generation in Complex Datasets

Current GPUs are progressing at a rate faster than Moore’s
Law. In theory, they are capable of achieving peak through-
put of tens of millions of triangles per second. However, they
are optimized for game-like environments and it is a major
challenge to render complex models composed of tens or
hundreds of millions of triangles at interactive rates. We out-
line a number of algorithms to overcome these problems.

We outline techniques to build good scene graph repre-
sentations of complex datasets using partitioning and clus-
tering algorithms. Furthermore, we present an optimization-
based algorithm to compute cache coherent layouts for im-
proved CPU and GPU throughputs. In order to achieve high
frame rates, we only render triangles that the user can ul-
timately see. We present efficient and practical techniques
for view-dependent simplification and occlusion culling on
large models. Furthermore, we describe novel hierarchical
data structures to integrate these algorithms. Finally, we
present novel algorithms for shadow generation. Specifi-
cally, we present subdivided shadow maps, which can over-
come perspective aliasing problems and work well on cur-
rent GPUs.

Finally, we demonstrate the application of our algorithms
to different types of complex models on a commodity desk-
top or laptop. The set of models include large scanned
datasets, isosurfaces extracted from simulation data, CAD
environments of powerplants, airplanes and tankers, and ter-
rain datasets. We also outline many open problems in this
area.

Additional References:

• Sung-Eui Yoon, Brian Salomon, Russell Gayle, Dinesh
Manocha, Quick-VDR: Interactive View-Dependent Ren-
dering of Massive Models, vis, pp. 131-138, 15th IEEE
Visualization 2004 (VIS’04), 2004.

• Yoon, S., Lindstrom, P., Pascucci, V., and Manocha,
Cache-oblivious mesh layouts. ACM Trans. Graph. 24, 3
(Jul. 2005), 886-893.

• Brandon Lloyd, Sung-Eui Yoon, David Tuft, Dinesh
Manocha, Subdivided Shadow Maps. UNC Tech Report
24 (2005).

• Sung-Eui Yoon, Christian Lauterbach, and Dinesh
Manocha. R-LODs: Fast LOD-Based Ray Tracing of
Massive Models. UNC Tech Report (to appear)

c© The Eurographics Association 2006.

Kasik et al. / Real Time Interactive Massive Model Visualization

3.3. Ray Tracing with Multi-core/Shared Memory
Systems

Shared memory computer systems provide a strong platform
for interactive software rendering. They combine a large
number of processors, enormous amounts of memory and
many shared devices across a single system.

Special hardware in these systems provides many facil-
ities that must be implemented by hand on a cluster. Still
multi-processor servers, or even multi-core workstations, be-
have differently from standard single processor desktops and
the graphics programmer must pay attention to the system
architecture in order to obtain optimal performance. The
challenges encountered implementing an interactive ren-
derer on such a system are not well addressed by existing
HPC tools and programming techniques and require the pro-
grammer to interact with the system at a much lower level.

Moving beyond basic ray tracing techniques we provide
detailed examples of how parallel system architecture ef-
fects renderer implementation. This section will attempt to
address three basic questions: How are the user’s expecta-
tions different when rendering on a moderately sized parallel
system? How are parallel systems constructed and how well
suited are their memory systems for interactive rendering?
How does the software design effect the renderer’s ability to
scale on larger systems or larger problems?

3.4. Visibility-Guided Rendering to Accelerate 3D
Graphics Hardware Performance

Hardware accelerators for 3D graphics (GPUs) have become
ubiquitous in PCs and laptops. They are very powerful for
real-time visualization of scenes up to a few million poly-
gons at very high (almost photo-realistic) quality. GPUs have
been successfully applied in computer games and engineer-
ing visualization. However, a straightforward use of GPUs,
as is the current practice, can no longer deal with the ever
larger datasets of fully detailed engineering models such as
airplanes, industrial plants, cars, etc. This puts a severe limi-
tation on the data explosion we currently encounter in indus-
try. Already some large models are 100 to 1000 times larger
than what can be handled by GPUs in real time.

Visibility-guided Rendering is a novel approach for real-
time rendering of very large 3d datasets.

We start by identifying the main differences be-
tween sampling-based rendering (e.g. ray tracing) and
rasterization-based rendering (e.g. hardware-accelerated
OpenGL). By comparing the pros and cons of the two op-
posite approaches at a high abstraction level, we can explain
some of the current limitations of OpenGL and develop ideas
for overcoming these limitations.

The key advantage of VGR is to efficiently determine vis-
ibility of the vast majority of polygons before they are sent
to the graphics hardware. Different culling techniques are

presented which can be used in combination. Spatial data
structures, as well as hardware features of the GPU can be
exploited to implement the culling techniques optimally. The
visibility-guided rendering approach relies heavily on effi-
cient memory management, concurrency between CPU and
GPU, as well as optimal use of low-level OS functionality to
handle very large models.

In the outlook we touch on modern multi GPU hardware
architecture, the use of programmable shaders in the context
of VGR, as well interactive object manipulation functional-
ity. The presentation concludes with a life demo of our soft-
ware.

3.5. Massive Model Visualization using Realtime Ray
Tracing

Real-time ray tracing has become an attractive alternative to
rasterization based rendering, particularly for highly com-
plex data sets including both surface and volume data. Ray
tracing handles massive datasets well because of output sen-
sitivity and the logarithmic complexity of the ray tracing
computations with respect to the scene size. Ray tracing eas-
ily handles huge scenes as long as they fit into main memory.
For even larger data sets, active memory management is nec-
essary to always keep the working set in main memory and
on-demand swap data in and out depending on its visibil-
ity. All these operations require spatial index structures (e.g.
kd-trees) that need to be built out-of-core and often offline.
We will discuss efficient techniques for this task, including
approaches that allow efficient memory management at run-
time. In addition, we will discuss several extensions that are
necessary for efficiently ray tracing large models. An intrin-
sic property of ray tracing is that once a scene can be ray
traced, adding advanced optical effects or lighting simula-
tion is fairly straightforward. We will discuss how such ad-
vanced effects can be used for achieving photorealistic vi-
sualization even of highly complex models such as natural
environments with environment lighting, complex shading,
and efficient anti-aliasing.

Handling dynamic scenes has been a major issue with ray
tracing. We outline two areas where large progress has re-
cently been made: Designing scenes graphs for efficiently
handling changes in very large models and novel index struc-
tures that allow fast updates after changes to the geometry.
Finally, we will discuss trends in hardware and how they will
help in making ray tracing available to a larger and larger set
of applications. In particular we will briefly compare the ca-
pabilities of multi-core CPUs (including the Cell processor),
GPUs, and custom hardware with respect to ray tracing of
complex models.

c© The Eurographics Association 2006.

Kasik et al. / Real Time Interactive Massive Model Visualization

3.6. GPU-Friendly Accelerated Mesh-based and
Mesh-less Techniques for the Output Sensitive
Rendering of Huge Complex 3D Models

In recent years, the large entertainment and gaming market
has resulted in major investments in commodity graphics
chip technology, leading to state-of-the-art programmable
graphics units (GPUs) with greater complexity and computa-
tional density than current CPUs. GPUs are not only power-
ful, ubiquitous, and cheap, but their programmability is lead-
ing to new ways to tackle the large scale data visualization
problems.

This section of the tutorial will discuss GPU friendly out-
put sensitive techniques for harnessing the raw power and
programmability features of these chips to interactively ren-
der very large complex 3D models. In this context, we will
discuss and compare two different approaches: a mesh-based
framework based on multi-scale geometric models (Batched
Multi-Triangulation, IEEE Viz 2005), that is well suited to
models with dense geometric details, and a mesh-less frame-
work (Far Voxels, SIGGRAPH 2005), that handles datasets
that combine complicated geometry and appearance with
a large depth complexity by modeling model appearance
rather geometry.

The tutorial section will be illustrated with practical ex-
amples of the visual inspection of very different kinds of
models, including very large CAD assemblies, terrains, iso-
surfaces, and laser scans visualized on a laptop.

Additional References:

• Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio
Marton, Federico Ponchio, and Roberto Scopigno.
Batched Multi Triangulation. In Proceedings IEEE Visu-
alization. Pages 207-214. IEEE Computer Society Press,
October 2005.

• Enrico Gobbetti and Fabio Marton. Far Voxels - A Mul-
tiresolution Framework for Interactive Rendering of Huge
Complex 3D Models on Commodity Graphics Platforms.
ACM Transactions on Graphics, 24(3): 878-885, August
2005. Proc. SIGGRAPH 2005.

• Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio
Marton, Federico Ponchio, and Roberto Scopigno. Adap-
tive TetraPuzzles - Efficient Out-of-core Construction and
Visualization of Gigantic Polygonal Models. ACM Trans-
actions on Graphics, 23(3): 796-803, August 2004. Proc.
SIGGRAPH 2004.

3.7. Interactive Out-of-Core Visualization of Large
Datasets on Commodity PCs

This section of the tutorial will focus on interactive vi-
sualization of large datasets on commodity PCs. Interac-
tive visualization has applications in many areas, includ-
ing computer-aided design, engineering, entertainment, and
training. Traditionally, visualization of large datasets has re-
quired expensive high-end graphics workstations.

Recently, with the exponential trend of higher perfor-
mance and lower cost of PC graphics cards, inexpensive PCs
are becoming an attractive alternative to high-end machines.
But a barrier in exploiting this potential is the small memory
size of commodity PCs. To address this problem, we will
present out-of-core techniques for visualizing datasets much
larger than main memory.

We will start by presenting out-of-core preprocessing
techniques. We will show how to build a hierarchical de-
composition of the dataset using an octree, precompute co-
efficients used for visibility determination, and create levels
of detail.

We will then present out-of-core techniques used at run-
time. We will describe how to find the visible set using a
fast approximate algorithm followed by a hardware-assisted
conservative algorithm. We will also show how to use multi-
ple threads to overlap visibility computation, cache manage-
ment, prefetching, and rasterization.

We will finish by describing a parallel extension of the
system that uses a cluster of PCs to drive a high-resolution,
multi-tile screen. A thin client process manages interaction
with the user, and a set of server processes render the multi-
ple screen tiles. Large shared file systems (network or server-
attached) provide storage for the complex dataset.

A system based on these techniques is a cost-effective al-
ternative to high-end machines, and can help bring visual-
ization of large datasets to a broader audience.

Additional References:

• W. T. Correa. New Techniques for Out-Of-Core Visual-
ization of Large Datasets. PhD thesis, Princeton Univer-
sity, 2004.

• W. T. Correa, J. T. Klosowski, and C. T. Silva. Out-of-
core sort-first parallel rendering for cluster-based tiled dis-
plays. In Proceedings of PGV 2002 (4th Eurographics
Workshop on Parallel Graphics and Visualization), pages
89-96, 2002.

• W. T. Correa, J. T. Klosowski, and C. T. Silva. Visibility-
based prefetching for interactive out-of-core rendering. In
Proceedings of PVG 2003 (6th IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics), pages
1-8, 2003.

c© The Eurographics Association 2006.

Kasik et al. / Real Time Interactive Massive Model Visualization

3.8. Putting Theory into Practice

Moving academic results to a real product is not always easy.
Not only is a big part of the papers normal focus on very
specific cases but research experiments are also often made
with different constraints than those found in production.
Even when applicable to a product, many techniques have
been only tested in a few well known models used in CG
literature, while customers demand algorithms to work in all
kind of data, from best case models to ill-formed geome-
try, that must not be removed from the dataset and that can
degrade significantly an algorithm’s performance (as accel-
erating data structures).

On the other hand, the kind of data used in most 3D mas-
sive datasets visualization or collision detection research pa-
pers handle high density (e.g., the happy Buddha) or medium
density models (the PowerPlant or the Boeing 777). How-
ever, a product has to also deal with low density massive
models. Low density models make some techniques not ap-
plicable or less efficient and add a new set of problems.

Another common source of problems is that many tech-
niques assume that pre- computation time and effort is not
important for the user. In practice, both the pre- calculation
time and the complexity of the pre-compute process is of
significant concern to production users. From the market-
ing point of view, there is also a resistance present in users
to change to new technologies (even if a lot better than old
ones); and lot of work must be done to give the application
the look and feeling of the tools users are already used to.

Finally, we will demonstrate how a visualization and col-
lision detection on massive model looks like in a real time
application, both using OpenGL and software ray-tracing.

c© The Eurographics Association 2006.

1

1
BOEING is a trademark of Boeing Management Company.
Copyright © 2006 Boeing. All rights reserved.

Motivation and Challenges in Real-time,

Interactive Massive Model Visualization

Dave Kasik
Technical Fellow

The Boeing Company
Seattle WA USA

david.j.kasik@boeing.com
+1-425-830-4276

| 2

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Section Goal

• Provide understanding of:
• Usage scenarios for interactive, massive model

visualization.
• The technology implications of interactive, massive

model visualization.
• How the user community can assist the research

community.

| 3

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Section Outline

• Motivation for effort from a user's perspective,
including sample use cases

• Characterization of user tasks that can be addressed
by visual analysis

• General processing architecture alternatives
• Client-based
• Hybrid client-server
• Server-based

• Contrast of issues between GPU and CPU-based
approaches

• Additional technical challenges:
• Network impact
• Pre-processing
• Version management
• Rigid body motion
• Collision detection

• Pragmatics of getting data released to the research
community

| 4

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Data Explosion

• All storage media produced about 5 exabytes of
new information in 2002.

• 92% was stored on magnetic media, mostly hard
disks.

• This amount of new information is about double
of the amount stored in 1999.

• Information flows through electronic channels
(telephone, radio, TV, and the Internet) contained
~18 exabytes of new information in 2002.

• This is 3 1/2 times more than is stored.
• 98% is voice and data sent telephonically via fixed

lines and wireless

| 5

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

What Do These Numbers Mean?

• Kilobyte (KB) = 1,000 bytes, 103

• 2 KB: Typewritten page

• Megabyte (MB) = 1,000,000 bytes, 106

• Small novel

• Gigabyte (GB) = 1,000,000,000 bytes, 109

• Pickup truck filled with books

• Terabyte (TB) = 1,000,000,000,000 bytes, 1012

• 50,000 trees made into paper
• 2 TB: An academic research library

• Petabyte (PB) = 1,000,000,000,000,000 bytes, 1015

• 200 PB: All printed material

• Exabyte (EB) = 1,000,000,000,000,000,000 bytes, 1018

• 2 EB: Total volume of information generated in 1999
• 5 EB: All words ever spoken by human beings

| 6

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Human Visual Communication Processor

2

| 7

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Buxton’s Conundrum

Moore’s Law God’s Law

| 8

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Use Cases

• What can a user do with interactive
visualization alone?

| 9

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Visual Task Analysis

• Find an object in a complex scene.
• Focus on the found object to better understand

surface characteristics (e.g., smoothness, roughness).
• Once the object is found, look at objects in the

immediately surrounding volume.
• Visually scan the scene.
• Observe dynamics in the entire scene (conventionally

by animation).
• Work with multiple versions of the same set of objects

to compare the two sets.
• More detail in DJ Kasik, “Strategies for Consistent

Image Partitioning”, IEEE Multimedia, Jan-Mar, 2004,
pp. 32-41.

| 10

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Potential Applications

• Design reviews
• Engineering analysis (loads, CFD, etc.)
• Safety
• Survivability
• Part context
• Reverse engineering from massive scans
• Quality assurance inspection
• Manufacturing instructions
• Part catalogs
• Training
• Maintenance instructions
• Sales and marketing
• Basically, any process where quick navigation is needed to

go anywhere in a digital model

| 11

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Concrete Example 1 – Tracing Systems

| 12

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Concrete Example 2 – Maintenance Tasks

3

| 13

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Concrete Example 3 – Design Review

• Find this
in this…

| 14

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

What Make a Visualization Session Interactive?

• Model load time: instantaneous.
• For groups, ‘instantaneous’ translates to less than one

minute.
• For an individual, five minutes just seems like an eternity

unless the person can effectively time share tasks.
• Reality: the faster the better.

• ‘Flying’ time: New transformation matrices that
respond to mouse action.

• Ideally, 16 Hz (the human flicker fusion threshold for video) or
faster.

• Practically, 10 Hz or faster.
• Graphical selection. Feedback appears in .25 seconds

or less.

| 15

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Processing Architecture Alternatives

• Virtual Terminal
• Local Drawing
• Local Drawing and UI
• Remote Data
• Local Data

| 16

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Virtual Terminal

| 17

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Local Drawing

| 18

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Local Drawing and UI

4

| 19

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Remote Data

| 20

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Local Data

| 21

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Rendering Approaches

• GPU vs. CPU
• Or, z-buffer vs. ray tracing

| 22

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Z-Buffer Instant

• Z-buffering works by testing
pixel depth and comparing
the current z-coordinate
with stored data in the z-
buffer that holds
information about each
pixel's last z-coordinate.

• The pixel closest to the
viewer is the one displayed

• Must ‘rasterize’ each
polygon.

• Works on a scan line-by-
scan line basis.

• Simple enough to be done
in hardware.

• Because this is a pseudo-
sort, difficult to be done in
parallel.

Basic Z Buffer

Rasterizing a Polygon

| 23

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Ray-tracing Instant

Fire a ray from the
camera/eye at the scene
and determine what it hits.

Use a shadow ray only
after a ray hits an object.

Fire a reflected ray (if
material properties
warrant) to determine
other colors until
recursion quits.

Easily parallelized.

| 24

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Other Technical Challenges

• Network impact
• Pre-processing
• Collision detection
• Rigid body motion
• Visual model update

5

| 25

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Network Impact

• Obese, emaciated, or somewhere in between?
• Massive 3D data easily causes gigabyte data downloads (obese).
• Real-time interaction easily consumes megabits 10 times per

second (emaciated).

Obese?

Emaciated?

Gigabytes daily

Megabits 10hz

| 26

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Pre-processing

• All current approaches (both GPU and CPU) pre-
process to get interactive performance.

• Routinely costs hours.

| 27

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Version Management

• A detailed design activity may release hundreds of
new part versions nightly.

• The base model easily contains hundreds of
thousands of parts.

• Two issues:
• Pre-processing cost to handle the new versions.
• Methods to select which version should be displayed.

| 28

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Animation

• Rigid body motion allows parts to move relative to one
another.

• Can be the result of all sorts of simulations:
• Mechanisms
• Manufacturing assembly plans
• Training
• …

• Simulations that result in shape deformation are much
more difficult.

| 29

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Collision Detection

• Common task in a design review is to figure out what
objects erroneously share the same space.

• Subtle problem because some tangent conditions
(e.g., parts bolted together) are OK or may be allowed
to collide (e.g., flexible wire sheathing).

| 30

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Pragmatics of Data Release

• Find the data owner.
• Be willing to work through a non-disclosure or

proprietary information agreement.
• Be willing to subtly manipulate the data to remove

intellectual property, export control, military
sensitive, or other concerns that lawyers have.

• Be really patient.

6

| 31

Boeing Technology | Information Technology

Copyright © 2006 Boeing. All rights reserved.

Summary

• Outlined overall problem, usefulness quotient, and
technical issues.

• The rest of the instructors will provide a deeper
technical look and further examine the pragmatics of
large model rendering in production.

| 32Copyright © 2006 Boeing. All rights reserved.

Graphic display
technologies have
traditionally
targeted devices
with midsize screens.
However, devices
with small and large
screen sizes are
gaining popularity,
with users
increasingly
attempting to access
complex images
using small-screen
devices. To display
high-quality images
irrespective of screen
size, new methods of
visualization become
necessary.

C
omputer graphics display technolo-
gy has reached a crossroads. New
devices have dramatically different
display characteristics and contin-

ue to rapidly evolve. The most compelling differ-
ence is screen size, which now ranges from tiny
(as in cell phones or watches) to gargantuan (as
in display walls and theater screens). Such varia-
tion creates significant problems in the design of
images that communicate irrespective of screen
size, especially considering the wide variety of
displayable images. The “Designing for Variable
Screen Sizes” sidebar discusses efforts to integrate
images traditionally designed for midsize screens
into devices with a variety of screen sizes.

As available computing technology expands,
the overall user community has a significantly
larger palette of graphics devices available to
them. As Figure 1 illustrates, most current
research investment aims at medium-sized (10-
to 20-inch) screens. Although people are now
buying numerous devices with small and large
screens, investment in improving the interactive
experience has lagged behind.

Graphical user interfaces (GUIs) dominate
user interaction with midsize screens, but they
neither translate well to small screens nor take
advantage of the expanded area available on
large screens. Adding complexity is the growing
number of people with wide-ranging skill levels,
education, and cultural backgrounds using
devices with a variety of screen sizes. Finally,

many companies’ user population spans the
globe; thus designers, developers, and deliverers
must collaborate to ensure timely delivery of
quality products.

This article deals with a fundamental prob-
lem: How can designers or users themselves par-
tition images to maximize communication
bandwidth to a person viewing the image on a
small screen?

Maximizing communication impact
Virtually any 2D image, series of images that

create a movie, or 3D image can be drawn just
about anywhere. Not all images are created
equally, however, and graphic communication
techniques vary significantly. Massironi’s excel-
lent taxonomy delineates the types of images
people have used to communicate visually
throughout history.1 Every image’s basic goal is
similar: communicate the right information in
an easily consumable format.

Although many graphic styles are available,
the design, analysis, assembly, and maintenance
of complex physical products such as commer-
cial airplanes and satellites use only a few. Boe-
ing and other industrial companies that produce
physical products primarily use two types of rep-
resentational drawing, both subsets of Mas-
sironi’s taxonomy: technical drawings and
descriptive geometry.

These two types of graphic images appear in a
number of different forms. Whereas engineering
drawings must be dimensionally accurate and
provide the textual information necessary for
construction and assembly, other technical draw-
ings don’t require such accuracy. For example,
technical illustrations, which depict parts rela-
tionships for maintenance, and production illus-
trations, which contain instructions for
assembling hydraulic and electrical systems,
don’t require dimensional accuracy.

Early 3D concept drawings represent notions
to customers and initiate more detailed configu-
ration and preliminary design activities. Designers
use descriptive geometry techniques to generate
detailed product models with 3D surfaces and
solids.

Visual task analysis
People who view graphic images of models

representing physical products participate in the
product’s life cycle. Boeing’s typical internal user
community includes sales, design, building, and
maintenance staff. A commercial airplane’s user

32 1070-986X/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society

Strategies for
Consistent
Image
Partitioning

David J. Kasik
The Boeing Company

Content Repurposing

djk3072
Text Box
© 2004 IEEE. Reprinted, with permission, from IEEE Multimedia.

33

Jan
uary–M

arch
 2004

The variety of graphics display devices has significantly
increased since the early 1990s. Announcements of new devices
seem to appear weekly. Advances in midsize graphics devices,
inexpensive memory, and computing processors have largely
removed restrictions on the types of pictures users could draw
(images composed only of lines or text with a limited number of
colors, for example).

Midsize screens
Current devices use raster technology to provide excellent

display quality in terms of color, brightness, and pixel size.
Newer devices (such as IBM’s MD22292A1 liquid crystal dis-
play) come close to achieving a pixel size that attains the min-
imum angle of resolution (between .00833° and .01667°) for
an individual.1 Vendors are developing unique configurations
with midsize screens for special effects such as:

❚ Automatic stereo (http://www.mrl.nyu.edu/projects/
autostereo/)

❚ Multiple parallel planes for true 3D (http://www.3dmedia.
com/products.html)

❚ Specially treated plastic cubes for true 3D (http://3dtl.com)

Small screens
Devices, like users, are becoming increasingly mobile. Cell

phones, personal digital assistants (PDAs), wearable computers
with glasses or head-mounted displays, tablet computers, and
notebook computers rely on small screens and less capable
computers than devices with midsize screens. Small screens
generally have fewer pixels and a limited set of colors.

Such limitations haven’t decreased these devices’ popularity
nor have they discouraged designers from customizing general
devices to build dedicated, special-purpose devices (onboard
navigation aids and barcode scanners, for example). The com-
ponents needed to build portable devices continue to improve;
thus, the only factors that won’t change significantly are the dis-
play size and the number of pixels devices can display.

Boeing supplies cell phones to most of its employees, and
many employees also carry other devices with small screens.
Assembly-line mechanics, quality-assurance inspectors, ship-
ping and receiving personnel, and others use the small devices
to access the corporate graphic images they need to effective-
ly do their jobs.

Large screens
Large-screen devices come in a range of geometric config-

urations. Plasma panels use an alternate display technology.
Projectors, the de facto standard, increase image size on a pla-
nar screen. The Elumens (http://elumens.com) VisionDome
products use a conventional projector with a special lens for a
hemispherical screen. A truncated cylinder surrounds the view-
er’s head in a Panoscope360 (http://panoscope360.com). A
CAVE (http://www.fakespacesystems.com/workspace1.shtml)
projects images onto the planar walls to form a cube.
Holograms (http://www.zebraimaging.com) have specially
etched large-format film to create a full-3D illusion.

Large-screen device problems differ from those of midsize
screens. Because large-screen graphics drivers are based on the
pixel resolution of a midsize screen, users can experience a dra-
matic increase in pixel size depending on their distance from
the screen. This phenomenon increases the viewer’s angle of

Designing for Variable Screen Sizes

continued on p. 34

Future growth

Current investment

1" 4" 72"+10" to 20" 42" to 61"

Small-screen interface Large-screen interface≠ GUI ≠

Accommodate novice to expert users who collaborate.

Figure 1. Users can

choose among a wide

array of devices with

different screen sizes

although most research

investment still goes

toward midsize screens.

community extends far beyond company bound-
aries. For example, airline personnel buy the
product, perform maintenance, and order spare
parts. Partners design and analyze significant air-
plane components. Suppliers formulate proposals
to build many of the parts. Government agencies
determine if the final product performs according
to published regulations and guidelines.

Although current practice still generates a lot
of paper, the user communities rely on computer
graphics in 2D, video, and 3D. A wide variety of
visual tools developed both internally (such as
FlyThru) and externally (such as Dassault
Systemes’ Digital Mock-up Utility) is available to
users. The tools can show or hide objects, apply
texture, identify spatial position, generate multi-

34

IE
EE

 M
ul

ti
M

ed
ia

resolution and reduces brightness (a measure of image crisp-
ness), making the image appear less smooth than it does on a
midsize screen.2

User interface evolution
The standard user interface paradigm for application com-

mand and control has evolved significantly from text com-
mands typed into glass teletypes. Although early graphics
devices supported graphical selection of commands and objects
with lightpens, thumbwheels, or tablets, pervasive use of graph-
ic user interfaces (GUIs) didn’t occur until raster graphics
devices and mouse pointers became inexpensive in the mid-
1980s. GUIs have been the basic interface standard since then.

The fundamental assumptions of a GUI for application com-
mand and control don’t translate well to either small- or large-
screen devices. Not only is screen area a problem on small devices,
but interaction through a keyboard and mouse is also difficult.

Many large companies, startups, and research projects have
suggested ways to interact with small screens. However, most
of the efforts focus on effectively filling out forms and entering
text rather than interacting with complex 2D or 3D graphics.
For example, cell phones have developed enough thumbs-only
10-key typists to sustain text-messaging services. Other compa-
nies are introducing products that allow better interfaces for
form users.

Microsoft, AT&T, IBM, and other large companies, as well
as startups such as Aligo, Cysive, and Trigenix are introducing
products for mobile, small-screen devices that focus on appli-
cations with forms and Web-based interfaces as opposed to
applications in which the user directly interacts with graphics.
Several interesting research projects are based on small-screen
devices, including Geney (http://geney.juxta.com), a tool for
teaching genetics using multiple cooperating PDAs.

Large screens expand the field of view and make both new
interaction styles and devices possible. A GUI is well tuned to
an individual’s interacting with a screen. In fact, the most com-
mon technique for controlling interaction with a large-screen
device is to engage a designated driver using a mouse, key-
board, and midsize screen. The large screen becomes a slave to
the midsize screen, and their displays are identical.

Efforts to explore new user interface strategies for single users
and large screens focus on devices (data gloves and head-mount-

ed displays, for example) that enhance the virtual reality illusion.
VR interactive tools generally offer interaction that is a GUI ana-
logue but driven by a data glove. Two-handed input (see, for
example, a list of Buxton’s work at http://billbuxton.com/papers.
html#anchor1442822) and tangible interfaces (such as the work
by MIT’s Tangible Media group, http://tangible.media.mit.edu)
are interesting possibilities for extending the range of interface
tools for large-screen devices beyond windows, icons, mouse,
and pointer (WIMP).

Some early work (see for example, Cinematrix, http://cine-
matrix.com; HI-Space, http://www.hitl.washington.edu/projects/
hispace/; and Roomware, http://www.ipsi.fhg.de/ambiente/
english/projekte/projekte/roomware.html) investigated alternate
user interfaces that work with groups of users and multiple large-
screen devices.

Integrating graphics and user interaction
Current midsize devices let users efficiently and effectively

control and manipulate 2D, video (that is, a collection of graph-
ic images displayed one after another fast enough to give the
viewer the illusion of motion), and 3D graphic images display-
ing user data in addition to user interface objects. Current large-
screen devices let graphic images communicate effectively. A
significant amount of work is needed to expand the interaction
tools available to a single user and to make the devices more
effective for colocated groups. Promising work is ongoing in
both areas. The next logical extension is interactive techniques
to improve user efficiency.

Similar work for small-screen devices is lagging. Basic inter-
action is limited to text and forms and excludes interaction with
graphic images. Part of this can be attributed to the lack of
interactive tools for entering text and coordinate positions.
However, a more fundamental problem exists: It’s difficult to
understand how to shrink or partition a 2D, video, or 3D graph-
ic image while retaining communication efficiency.

References
1. K.R. Boff, L. Kaufman, and J.P. Thomas, eds., Handbook of

Perception and Human Performance: Sensory Processes and

Perception, vol. 1, John Wiley & Sons, 1986.

2. D. Kasik et al., “Evaluating Graphics Displays for Complex 3D

Models,” IEEE Computer Graphics and Applications, vol. 22, no. 3,

May/June 2002, pp. 56-64.

continued from p. 33

ple concurrent views, and so on. None of the
tools fundamentally change the style in which
the image is rendered.

Once a user has an image and a set of visual
tools, he or she can extract a significant amount
of information using visual analysis techniques.
Users can perform a wide variety of tasks using
visual analysis alone. By observing users at work
and consulting with different groups of users, I
developed a set of typical tasks that can be per-
formed using visual analysis.

First, find an object in a complex scene given

❚ the physical object,

❚ a picture of the object,

❚ a mental image of the object, or

❚ a verbal description of the object.

Second, focus on the found object to better
understand surface characteristics (smoothness
or roughness, for example). A user can determine
characteristics by visually inspecting the object
or by interpreting its physical characteristics
(such as the effects of aerodynamics flow or
stress).

Next, look at objects in the immediate sur-
rounding volume to

❚ identify discrepancies in space consumption.
(Do the pieces occupy too much of the same
space?)

❚ determine interference and overlap. Whether
you do this through direct visual inspection
or by recognizing the results of computing
overlaps in a batch mode, you must perform
a visual analysis to determine whether the
interference is acceptable.

❚ find gaps or voids between objects (that is,
ensure proper clearance). A method to mea-
sure distance between objects often supple-
ments visual gap analysis.

❚ trace a path that connects objects. In an air-
plane, these connections are long, skinny
things like hydraulic tubes and wire bundles.

Next, visually scan the scene to find

❚ misplaced objects,

❚ forgotten objects (“Drat, we forgot a wing!”),

❚ patterns from similar objects or members of a
family of parts,

❚ objects that might not be in a production con-
figuration (debugging or placeholder objects,
for example),

❚ maintenance accessibility or manufacturing
assembly problems, or

❚ a part’s conformance to the design. For exam-
ple, you must periodically examine tools that
are in the field to determine needed upgrades.

The next task involves observing scene
dynamics (typically by animation) to

❚ recognize dynamic interference conditions
(such as display results from kinematics or
mechanisms analysis, vibration, or tolerance
buildup),

❚ follow system flow (fluid flow in hydraulic
tubes, for example),

❚ detect effect of loads, aerodynamic flows, and
so on over time, or

❚ receive instructions about assembly (for man-
ufacturing) and disassembly and reassembly
(for maintenance) sequences.

All these tasks assume a single window dis-
playing one style. It’s also useful to compare mul-
tiple versions of the same set of objects for

❚ subjective preference (for example, “I like the
way that car’s hood reflects the lights on the
showroom floor”) or

❚ net version change.

Boeing’s user community has reasonable
access to devices with small, midsize, and large
screens. Users who need graphic information
delivered directly to a job site are increasingly
interested in small devices. These users perform
only a subset of the visual analysis tasks listed
above: they find objects in complex images,
trace paths, check design conformance, follow
flows, and understand assembly/disassembly/
reassembly sequences and documentation.

35

Jan
uary–M

arch
 2004

Engineers with access to midsize and large
screens, generally in an office environment, per-
form most other tasks during product design and
analysis.

Supporting the thousands of Boeing users
with small-screen devices requires (at a mini-
mum) partitioning graphic images into mean-
ingful chunks.

Seeing and understanding images
Substantial research examines how people

actually see and perceive the physical world.2

Other research3 has determined how light is
transmitted into the eye and what areas of the
brain process the signals.

When a person starts navigating graphic
images, additional brain processing occurs. Siegel
and White differentiate navigation strategies
(landmark, route, and survey) through land-
scapes4 and show that such strategies are hierar-
chically related.5 Other experiments show that
navigation strategies might not be hierarchical;
rather, they depend on whether the user recog-
nizes the landscape in a scene.6

Scientists don’t perfectly understand the cog-
nitive processes a person uses to identify an
image (for example, “Is that image an engine or
a wing?”). Biederman has developed a reasonable
theory7 that describes a four-stage mental
process. A person recognizes a 3D shape during
the first three stages, and he introduces the
notion of generic geometric ions (geons). The
fourth stage determines the 3D shape’s meaning
and doesn’t have a corresponding generic basis
because the meaning depends on a person’s cul-
ture and background.

Partitioning strategies
To develop effective partitioning strategies for

small screens, a designer or image author must
consider the areas discussed previously: limitations
of small screens for the images used in complex
products, tasks involved in visual analysis, and the
fundamentals of human visual processing.

A partitioning strategy for the types of graph-
ic images common in product development must
preserve as much of the images’ communication
impact as possible. I applied Massironi’s more
general graphic communication techniques1 to
develop several principles for partitioning graph-
ic images:

❚ Graphic images that don’t require dimen-
sional accuracy (such as some technical

drawings) can be subtly changed. People
recognize many objects even when they are
subtly redrawn—for example, the 26-char-
acter alphabet is recognizable in many
fonts.

❚ Cultural background impacts communication.
Visually changing a font in the English alpha-
bet doesn’t communicate completely to peo-
ple who only read Chinese or Greek.

❚ Users gather a substantial amount of informa-
tion from an image’s general context.

❚ A complex image, the kind routinely used in
companies like Boeing, forces viewers to scan
multiple zones to identify the most interest-
ing zone. The image author can graphically
enhance areas to attract initial interest.

❚ Graphic images have natural edges that define
structure.

Designers can use any of the partitioning
strategies to adapt graphic images to small
screens. I haven’t found a documented system-
atic approach to the partitioning problem.

Partitioning strategies differ from technologies
that actually break an image into smaller parts.
For example, a now defunct start-up company,
Newstakes, used image processing to break
images into multiple areas. However, Newstakes
users had to know the area’s size, which area to
display first, and so on.

The most straightforward solution to the
problem is to treat a small screen as you do any
other screen: display the entire image (2D, video,
or 3D) and give the user full control of viewing
transformations. If adequate network bandwidth
and local device memory are available, the prob-
lem becomes providing a user interface that
allows extremely fast interaction with local con-
trols that consume only a small amount of
screen space.

Figure 2 shows a typical set of controls for an
engineering drawing display intended for a mid-
size screen. When squeezed to the size of a typi-
cal PDA screen, the user controls alone dominate
the display. The display gives no context, one of
the key principles in graphic image communica-
tion. Other strategies subdivide the picture into
discrete tiles, which helps the user overcome
screen size, device processing power, and net-
work bandwidth limits.

36

IE
EE

 M
ul

ti
M

ed
ia

2D images
Millions of 2D images document essential infor-

mation for existing Boeing airplanes. The vast
majority are technical drawings consisting of lines,
curves, and text, and were intended to be delivered
on nothing smaller than letter-size paper.

A typical PDA screen is 2.25 × 3.0 inches, with
a pixel resolution of 240 × 320. Both measure-
ments affect partitioning strategies.

The most basic display technique is to draw
the whole image in a single tile, as Figure 3 shows.

The graphical viewer provides navigation
tools for panning and zooming. The user can
figure out where to start based on the general
graphical forms on the display device. Zooming
can be problematic for raster images because the
picture quality degrades as the image is magni-
fied. Vector forms (such as computer graphics
metafile [CGM] or scalable vector graphics
[SVG]) retain better image quality because the
raster image is regenerated at each step of the
magnification process.

Most conventional pan tools use sliders to
control x and y; zoom uses a magnifying glass or
numeric value. Both are necessary for images
such as Figure 3, where without them users can’t
read the text.

Conventional pan and zoom tools, however,
rarely provide context. Bier et al. describe addi-
tional zoom techniques that led to the Magic
Lens implementation.8 Other context-preserving
zoom tools are available, such as the Idelix Pliable
Display Technology (http://www.idelix.com).

Partitioning strategies for 2D images. Some
2D graphic image-partitioning strategies split the
initial image into a set of tiles. In multiple tiles,

❚ individual tiles should be of equal size for
cross-tile navigation. The user initially receives
a single tile at a higher zoom level than the
image shown in Figure 2. Users can often
understand information in the first picture,
which avoids having to transmit the entire
image across a low-bandwidth network to a
limited-memory device.

❚ text, especially in technical drawings, repre-
sents a difficult challenge for any tiling
scheme. The rule of thumb is that a text string
with no blanks should stay on a single tile. If a
string won’t fit at an acceptable scale, the best
strategy is to send a tile that’s larger than the
screen and give the user pan and zoom tools.

❚ each tile should slightly overlap its neighbors.
This keeps context as the user navigates to
new tiles and facilitates path following.

❚ any tiling scheme will occasionally fail.
Reverting to a single tile containing the entire
image (under either application or user con-
trol) is an acceptable risk-management
technique.

37

Jan
uary–M

arch
 2004

Figure 2. Typical

engineering drawing

and controls.

Figure 3. Engineering

drawings redrawn for a

2.25” x 3.0” screen.

I’ve developed four strategies based on these
principles.

Strategy 1: Author-defined visual targets. Authors
of graphic images, especially complex images,
typically use heavyweight lines or bold or itali-
cized text to draw attention to a specific region,
such as the bold borders around the number 1 in
Figure 4.

The strategy should identify as many atten-
tion-getting landmarks as possible. If there’s only
one clear landmark on an image, it should be the
first tile the user sees. Otherwise, the strategy
should use a consistent heuristic to determine
which highlight to show the user first (for exam-
ple, the first tile shown contains a landmark
that’s above and to the left of other tiles with
landmarks).

Strategy 2: Follow long horizontal and vertical
lines. Not all graphic images contain attention-
getting cues. In the wiring diagram in Figure 5,
for example, users can infer the tile structure
from the long horizontal and vertical lines.

After strategy 2 determines the basic tile size,
strategy 1’s results will identify the first tile to be
displayed. If the image author didn’t provide a spe-
cific landmark, the display strategy should use a
consistent heuristic (for example, always draw the
tile in the upper left corner first) to start.

Strategy 3: Follow long horizontal and vertical white
space. Figure 3 shows a different technique for visu-
ally finding blocks in a complex graphic image. In
this figure, long horizontal and vertical white
spaces define the tile edges. White space clearly
delineates interesting areas that we can use as tiles.
As in strategy 2, if the image author didn’t establish
a landmark, the strategy should use a consistent
heuristic to determine which tile to display first.

Strategy 4: Follow long, arbitrarily sloped lines.
Another alternative when the author doesn’t pro-
vide landmarks is to supplement the techniques
from strategy 2 (long horizontal and vertical
lines) with the identification of long lines with
arbitrary slopes. Partitioning tiles along long lines
facilitates path following. Again, the strategy
should determine the first tile to display in a con-
sistent manner.

Cross-tile navigation. These four strategies
will likely result in tiles that are slightly larger than
the screen to accommodate nonblank text strings.

Screen area is a significant constraint when
providing context and navigation assistance for
a graphic image that’s split into multiple tiles. As
noted previously, pan and zoom tools for an
individual tile can consume a significant amount
of screen space, although lens tools help in that
situation.

One possible approach to cross-tile navigation
lets users select from a list of tile names. This
forces the user to make an extra selection, com-
plicating path following. The key to providing
some level of context-preserving navigation is to
include navigation aids in each tile so a user need
only take one action to move to the next tile.

A more straightforward technique is to use a
set of dynamically computed navigation arrows,
as Figure 6 shows. Each arrow sits at the physical
edge of the screen.

Users can select the arrows, which indicate
additional tiles in each of eight directions. If a
computer program inserts arrows as it sends each

38

IE
EE

 M
ul

ti
M

ed
ia

Figure 4. Set of assembly routing instructions for hydraulic

tubing. The image author draws viewers’ attention to several

areas by marking them with a 1 in a bold-type circle.

Figure 5. Sample wiring

diagram. The long

horizontal and vertical

lines indicate the

image’s tile structure.

tile to the device, absence of an arrow indicates
that navigation has taken the user to an edge or
corner. This technique gives the user a sense of
the image’s size and a limited sense of context.

Intelligent Zoom9 is an alternate technique
initially used to shrink wall-sized displays of elec-
tric power grid control systems. Intelligent Zoom
overlays a map showing the tiles composing the
image. When a user selects a tile, the other tiles
shrink and the camera seems to enlarge the
selected tile. This technique generally consumes
less screen space than conventional 2D naviga-
tion techniques and provides good visual con-
text. However, the user must make an extra
selection to move between tiles.

Video
Many sources of video exist, from Flash ani-

mations to collections of camera-captured raster
images. Although not required, sound generally
accompanies video sequences.

Thus, video affects two senses. In terms of
small screens, designers must balance the screen-
size problem with the projection-rate problem.
Time dominates screen resolution because the
motion (both picture and sound) conveys criti-
cal information. Local device capacity and net-
work performance drive the strategies more than
maximizing communication impact.

Using strictly local device resources for stor-
age and playback provides the most consistent
video playback rate. However, device resource
limitations make streaming necessary for the
foreseeable future. Streaming can be successful
as long as network bandwidth supports accept-
able video playback rates. Given current and
foreseeable variation in network rates (rates
change during a playback session), there are four
strategies that vary how a source sends individ-
ual frames during a single playback session. In
other words, if the bandwidth is good enough,
send a full resolution picture. If bandwidth
degrades, use one of the following strategies to
change the image quality.

Strategy 1: Make pixels bigger. In this technique,
often used with videophones, the source sends
fewer but larger pixels on a frame-by-frame basis.
The number of pixels transmitted increases or
decreases as network performance varies. For rel-
atively unchanging pictures, some implementa-
tions transmit only deltas.

Strategy 2: Draw visual targets at high resolution.
Strategy 1 for 2D images notes that authors of
graphic images, especially complex images, leave

hints about what’s most important in the scene.
The pixel budget for a single image can be spent
in another way: give greater resolution to graph-
ically important areas and less to others.

Strategy 3: Show full frames at fixed intervals.
Not every video frame must be visible. The easiest
technique is to change the frame rate so that it
shows only every nth frame, but at full resolu-
tion. As bandwidth changes, n’s value changes.

Strategy 4: Show key frames. Video relies on
intraframe coherence to create the illusion of
motion. This means that some frames will be
highly similar to preceding frames. A big change
from one frame to another indicates a new
sequence. By transmitting only key frames, the
images have less movement but still communi-
cate basic information.10

Degrading sound can help manage variable
network speeds. Although voice alone can be
slowed down (think of controls on voicemail sys-
tems), music is often part of the streaming media.
A general strategy dedicates enough available
bandwidth to keep the audio playing at a normal
rate and changes the graphic images to fit into
the remainder. People can more easily adapt to
image changes and still obtain most of the infor-
mation from them.

3D images
Boeing defines its airplanes and many other

complex physical products in three dimensions.
Most of these products are physically larger than

39

Jan
uary–M

arch
 2004

Figure 6. Navigation

arrows on a tile.

any screen. Figure 7 contains a typical image
from a Boeing commercial airplane.

These images fit in Massironi’s descriptive
geometry category. Computer users performing
visual analysis tasks can use interactive tech-
niques to help them understand the data’s 3D
nature. At a minimum, the interactive tech-
niques give a user control of viewing transfor-
mations (scale, rotate, and translate). Computing
these operations on the local device keeps per-
formance consistent.

If implemented, the tiling strategies described
for 2D images become rectangular solid subdivi-
sion strategies. Voxelization techniques can help
determine the solid subdivisions. Understanding
how voxels relate to their neighbors is a difficult
cognitive task, however, because the neighbors
are in 3D, not 2D. It’s also difficult for users to
navigate to a neighbor. Rather than the eight
neighbors in 2D, in 3D they have 26.

Thus, the most effective way to deal with 3D
on a small screen is to rely on user-controlled
viewing transformations and standard tech-
niques for showing context (displaying coordi-
nate axes representing current orientation or
thumbnail views, for example).

Implementation and challenges
When implemented, image partitioning

strategies help users deal with the screen-space
and resolution limitations of small screens.
However, companies like Boeing currently have
millions of digital graphic images, most of which
were designed for midsize to large sheets of paper
or display screens. In addition, authors of video
sequences for training or assembly and mainte-
nance instructions assume that frame rate will be

adequate to depict motion. Manually modifying
either form is impractical.

Thus, we need automated techniques to break
2D graphic images into tiles and analyze video
frames to adapt to varying network performance
levels. Newstakes provided a nontraditional use
of image-processing algorithms to address both
problems.

Automatic 2D partitioning needs methods to
recognize characters (at a minimum, to break on
blanks), find visual targets, and identify regions
bounded by lines or white space.

A Boeing-Newstakes feasibility study sought
to determine whether image processing was prac-
tical for images in the wiring diagram class
shown in Figure 5. The study demonstrated fea-
sibility but ran out of funding before applying
the technology to other types of technical
images, and found no general, published strate-
gies resulting in high-quality partitions.
Newstakes image-processing control algorithms
were cleverly implemented and recognized the
rectangular regularity of wiring diagrams.
However, the study didn’t find a good way to
identify the first tile to be displayed.

The strategies I’ve presented should facilitate
development of image-processing partitioning
and initial position heuristics for all image classes.

Effective automation tools address a signifi-
cant percentage of the legacy data problem.
Individual window managers, applications,
browsers, and browser plug-ins implement local
pan and zoom tools inconsistently, and few pro-
vide an indication of context. This adds to user
confusion, and additional work is needed to pro-
vide a more consistent set of user navigation
tools. Even more variation exists for local 3D
scene navigation.

Finally, I’ve focused on users who only look at
the graphic images. Another large segment of the
user community directly interacts with objects
within the graphic image. Providing effective
graphic selection tools for small screens might
require different solutions from those currently
implemented for larger screens.

Conclusion
The ability to push well beyond the perceived

capabilities of a computing device characterizes
all user communities. The world of graphics
devices has expanded dramatically over the past
few years, and all signs point to an even more
dramatic expansion in the next 5 to 10 years.11

This article starts to address the difficult prob-

40

IE
EE

 M
ul

ti
M

ed
ia

Figure 7. Typical 3D

image of airplane

structure.

lem of finding acceptable methods to deal with
screen-size variations. Instead of approaching the
problem from a technology perspective, my tech-
niques preserve graphic communication impact
for specific visual analysis tasks without exten-
sively modifying existing images or overly con-
straining authors of new images. Adapting visual
content to retain graphic communication impact
is essential to maximize the effectiveness of new
devices.

Acknowledgments
Forrest Warner and Jim Ginn of Boeing pro-

vided invaluable assistance in building the inven-
tory of visual analysis tasks. Bill Buxton of the
University of Toronto collaborated in developing
Figure 1. John Dill of Simon Fraser University and
Brian Fisher of the University of British Columbia
gave me pointers to neurophysiological litera-
ture. Gurminder Singh of the Naval Postgraduate
School introduced me to Newstakes technology.
Terry Porlier helped solidify early drafts of this
article. The technical reviewers and IEEE editors
gracefully pointed to areas that let me substan-
tially improve the writing quality. MM

References
1. M. Massironi, The Psychology of Graphic Images:

Seeing, Drawing, Communicating, Lawrence

Erlbaum Assoc., 2002.

2. J.J. Gibson, The Perception of the Visual World,

Houghton Mifflin, 1950.

3. D.H. Hubel and T.N. Wiesel, “Brain Mechanisms of

Vision,” Scientific Am., vol. 241, no. 3, Sept. 1979,

pp. 150-162.

4. A.W. Siegel and S.H. White, “The Development of

Spatial Representations of Large-Scale

Environments,” Advances in Childhood Development

and Behavior, H.W. Reese, ed., vol. 10, Academic

Press, 1975, pp. 9-55.

5. P.W. Thorndyke and B. Hayes-Roth, “Differences in

Spatial Knowledge Acquired from Maps and

Navigation,” Cognitive Psychology, vol. 4, 1982, pp.

560-589.

6. V. Aginsky et al., “Two Strategies for Learning a

Route in a Driving Simulator,” J. Environmental

Psychology, vol. 17, 1997, pp. 317-331.

7. I. Biederman, “Recognition-by-Components: A

Theory of Human Image Understanding,”

Psychological Rev., vol. 94, no. 2, 1987, pp. 115-

147.

8. E.A. Bier et al., “A Taxonomy of See through

Tools,” Proc. Computer–Human Interaction (CHI 94),

ACM Press, 1994, pp. 358-364.

9. L. Bartram et al., “The Continuous Zoom: A

Constrained Fisheye View Method for Visualizing

and Navigating Large Information Spaces,” Proc.

User Interface Software and Technology, ACM Press,

1995.

10. V. Vasudevan, G. Singh, and M. Jesudoss, “Creating

a Slide Show Presentation from Full Motion Video,”

US patent 09/215,004, Patent and Trademark

Office, Washington, D.C., 1999.

11. S. Ortiz Jr., “New Monitor Technologies Are on

Display,” Computer, vol. 36, no. 2, Feb. 2003, pp.

13-16.

David J. Kasik is the Boeing

Commercial Airplanes (BCA)

Information Systems architect for

software engineering, geometry

and visualization, and user inter-

face technology. He’s currently

working to understand the impact of large-screen

devices on a large group of engineers and the usefulness

of small-screen devices for untetherable factory users.

Kasik has a BA in quantitative studies from The Johns

Hopkins University and an MS in computer science

from the University of Colorado. He’s a member of the

ACM, ACM Siggraph, ACM Sigchi, and the IEEE.

Readers may contact the author at Boeing

Commercial Airplanes, PO Box 3707, Seattle, WA

98124; david.j.kasik@boeing.com.

For further information on this or any other computing

topic, please visit our Digital Library at http://computer.

org/publications/dlib.

41

Jan
uary–M

arch
 2004

The world is enamored with the number
10. Perhaps it’s because arithmetic is a lot

easier when the number 10 is part of an operation. Or
maybe David Letterman and many others have finally
achieved a long term impact on society with their top
and bottom 10 lists.

Ivan Sutherland used the number 10 to bring signifi-
cant consistency to hidden surface
algorithms for computer graphics in
his classic paper.1 It’s in honor of
Sutherland—developer of the orig-
inal Sketchpad application, the fore-
runner of today’s computer-aided
design (CAD) applications—that we
describe our 10 CAD challenges. The
concept of CAD itself has expanded
into computer-aided manufacturing
(CAM) and computer-aided engi-
neering (CAE). Basic CAD tech-
niques are reapplied in a number of
places, including electrical and

mechanical product development, buildings, and enter-
tainment. In this article, we focus on mechanical prod-
uct development.

CAD, CAM, and CAE generate massive amounts of
data that must be clearly organized and placed under
strict configuration control. The CAD industry also pro-
vides support to these functions through product lifecy-
cle management (PLM) systems. In assessing the
state-of-the-art CAD, we’re examining a reasonably
mature, respected, and accepted form of technology. The
industry’s multibillion dollar yearly revenues have been
reasonably flat for the past few years. For an introduc-
tion to CAD’s history, see the “Brief CAD History” sidebar.

We could place our 10 challenges in a number of dif-
ferent categories. We’ve chosen three: computational
geometry, interactive techniques, and scale. Given our
knowledge of the state of the art, the categories we
would have chosen 10 years ago would likely be differ-
ent. Each of the categories presents an opportunity to
expand CAD’s penetration to new user communities and
increase its long term impact.

Geometry represents the kernel data form that a
designer uses to define a physical product in any CAD
application. Correct assembly of the geometric shape,
structure, and system components are the basis for fig-
uring out how to produce the complete product
(through CAM) and how the product will respond once
in service (through CAE). Only a few commonly used
libraries implement computational geometry algo-
rithms, an indication of the technology’s relative matu-
rity. Our analysis identified three specific geometry
challenges:

■ geometry shape control;
■ interoperability across CAD, CAM, and CAE applica-

tions; and
■ automatically morphing geometry in a meaningful

way during design optimization.

The key component of all CAD applications is the end
user. Users’ success or failure in interacting with CAD
products ultimately governs the success of the products
themselves. We extend the meaning of interactive tech-
niques for this article to include more than low-level input
device, display, and human factor issues. We deliberate-
ly include the way users work with the application to
accomplish a work task. Using this extension lets us define
three difficult challenges with interactive techniques:

■ the order and flow of the tasks a user performs to
accomplish something,

■ the relationships among tasks in a complex design
environment, and

■ the manner in which old designs can effectively seed
new ones.

The third category describes the challenge of scale.
In many ways, the CAD market has reached a plateau
just because it has not yet discovered ways of going
beyond its current limits. We introduce scale challenges
that we have observed as the definition of the current
limits of CAD penetration. Should these challenges be
addressed in a meaningful way, larger growth in CAD

Survey

We discuss the significant

technical challenges facing

the CAD industry and

research community and

present an approach to

address these issues.

Editor: Frank Bliss

David J. Kasik
The Boeing Company

William Buxton
Buxton Design

David R. Ferguson
DRF Associates

Ten CAD
Challenges

2 March/April 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

djk3072
Text Box
© 2005 IEEE. Reprinted, with permission, from IEEE Computer Graphics and Applications.

business will likely occur. The four scale challenges
include

■ finding ways to cope with vastly larger quantities of
data,

■ communicating key concepts to user communities tra-
ditionally outside the CAD community,

■ reliably migrating data to new versions of software
and hardware as product life spans increase, and

■ improving productivity for geographically distributed
project teams.

As we built this set of challenges, we realized that the
sum of the challenges was greater than we expected.
Therefore, we suggest an approach that can help others
understand and manage the changes needed. We believe
that the technical challenges we’ve identified will lead
to fundamental changes in the way people work.

Geometry
Geometry lies at the core of all CAD/CAM/CAE sys-

tems and, while not the only item of interest in product
design and development, it’s the sine qua non of design.
Geometry includes both the algorithms and mathe-
matical forms used to create, combine, manipulate, and
analyze the geometric properties of objects: points, lines
(curves), surfaces, solids, and collections of objects.

Geometry begets three fundamental questions: What
are the objects to be represented? What mathematical
forms and approximations will be used to represent
them? How will information about the representation
be computed and used?

Given the power and generality of current design sys-
tems, we can imagine that all issues related to these
questions had been adequately answered. However, this
is not the case. We discuss three geometry challenges
(shape control, interoperability, and geometry in design
exploration) that still require extensive research and
development.

History
To illustrate the evolution of geometry methods and

usage we focus on five time periods: pre and early 19th
century and early, mid, and late 20th century. In each
of these periods there was a fundamental shift in the
methods and usage of geometry driven by new design
requirements.

Prior to the 19th century, the major use of geometry
was to define and maintain line drawings for manufac-
turing and records keeping. The tools and methods were
rudimentary: lines were constructed by ruler and com-
pass methods and curves were traced from a draftsman’s
or loftsman’s spline, a thin wooden or metal strip bent
and held to a desired shape using weights (see Figure 1).

In the early 19th century, these methods were aug-
mented with descriptive geometry, primarily using sec-
ond degree algebraic equations, to provide more precise
mathematical descriptions and increase accuracy and
precision in engineering drawings. The objects of inter-
est were still lines, but descriptive geometry required
new tools (for example, slide rules and tables) to aid in
calculating various curve properties (such as point loca-

tion). Descriptive geometry changed from curves drawn
on paper to precise mathematical formulas from which
any point on a curve could be calculated accurately.

The next major advance took place early in the 20th

IEEE Computer Graphics and Applications 3

Brief CAD history
CAD was one of the first computer graphics applications in both

academia and industry. Ivan Sutherland’s Sketchpad at the
Massachusetts Institute of Technology and the DAC-1 project at
General Motors both started in the early 1960s. Industry developed
its own CAD applications, delivered on multiuser mainframes, in
the late 1960s and 1970s. The 1980s turnkey systems bundled
hardware and software. Current CAD implementations separate
hardware and software components. As a result, CAD software
most often executes locally on powerful Unix or Wintel
workstations with specialized 3D accelerator hardware and stores
data on distributed servers.

Even though engineering drawings were the dominant output of
now defunct CAD vendors—for example, Lockheed’s CADAM and
commercial companies like AD2000, Applicon, Autotrol,
ComputerVision, Gerber IDS, Intergraph, Matra Datavision, and
VersaCAD—through the 1980s, early stages of design relied on a
variety of unique curve and surface forms. Customized systems
were used in aerospace for surface lofting (such as TX-95 at
Boeing) and surface design (such as CADD at McDonnell-Douglas)
and in automotive industry for surface fitting—such as Gordon
surfaces (General Motors), Overhauser surfaces and Coons patches
(Ford), and Bezier surfaces (Renault). Current CAD applications rely
on more general geometric forms like nonuniform rational b-
splines (NURBS).

Solid modeling also started in the late 1960s and early 1970s but
from different roots. Larry Roberts worked at MIT to automatically
identify solids from photographs. The Mathematics Application
Group, Inc. used combinatorial solid geometry to define targets for
nuclear incident analysis and subsequently developed ray traced
rendering and solid modeling in Synthavision. Other efforts (for
example, TIPS from Hokkaido University, Build-2 from Cambridge,
(Part and Assembly Description Language PADL) from University
of Rochester) had limited industrial impact.

Solid modeling is the 1990s preferred technique for defining 3D
geometry in small through large companies, and good modeling
software is readily available. The use of 3D is common in computer
animation, aerospace, automotive, (and is becoming acceptable
for building architecture), and 2D is also used effectively.

1 Early mean-
ing of spline
weights. (Cour-
tesy of Dave
Ferguson)

century. Catalogs describing functionality and applica-
tion of particular families of curves in engineering began
appearing. The catalogs were based on careful scientific
analysis and engineering experimentation. For example,
the National Advisory Committee for Aeronautics
(NACA) generated a catalog of curves that classified air-
foil shapes according to flow properties (see Figure 2 and
http://www.centennialofflight.gov/essay/Evolution_of_
Technology/airfoils/Tech5G1.htm and http://www.
centennialofflight.gov/essay/Evolution_of_Technology/
NACA/Tech1.htm). Objects became more than curves;
they also had attached properties that described their
appropriate use in various design activities. Design could

now begin with curves known a priori to have properties
needed for a viable design.

In the 1940s, Roy Liming at North American Aircraft
introduced actual surface representations in his conic
lofting system.2 These were not like today’s surface rep-
resentations, but his system did provide for complete
surface definitions rather than simply a family of lines.
It was now possible to think of mathematically com-
puting mass, aerodynamic, and hydrodynamic proper-
ties. At this point, geometry began changing from
describing a physical object to becoming the base for
calculating engineering characteristics. This lessened
the dependence on physical models and began the push
toward virtual design. Tools also began changing. With
the increased emphasis on analysis, calculators and
computers became required tools.

Liming’s conic lofting methods proved their worth in
the design of the P51 Mustang airplane (see Figure 3).
Liming boasted that the Britain-based Mustangs could
fly to Berlin and back because their surface contours did
not deviate from the mathematical ideal.3 However, it
was not possible to visualize the geometry without a
physical prototype or mock-up.

Modern graphics systems made it possible to display
3D geometry. Designers could visually inspect designs to
find mismatched or ill-fitting parts and shape defects.
The new display technologies required radical change
in how geometry was represented: Everything in a
design had to have a precise mathematical representa-
tion. Gone were the line drawings used by draftsmen.
The old algebraic methods of descriptive geometry were
displaced by mathematical splines, NURBS, tensor prod-
uct splines, and other analytically based forms.

Having a complete mathematical description brought
another fundamental change. Previously, the preferred
method of constructing a curve or a surface was highly
intuitive: lay out sequences of points; construct curves
that pass through the points; and then construct a sur-
face from the curves by cross-plotting, conic lofting, or
some other means. Using purely mathematical algo-
rithms to interpolate or approximate opened up new
possibilities: Curves could be defined by approximating
a sequence of points, surfaces could be defined by clouds
of points, and geometry could be constrained directly
to satisfy engineering constraints (for example, clear-
ances and shape).

Geometric methods and objects used to support prod-
uct design and definition have changed significantly. As
design objectives and systems continue to respond to
the ever-increasing need to design rapidly, efficiently,
and virtually, geometric methods will need to meet the
challenges and change accordingly.

Challenge 1: Shape control
The success that graphics had in forcing everything

to have a precise mathematical representation actually
increased concern over inflections. The hand-drawn and
hand-constructed methods, including Liming, had
implicit control of shape whereas the new, polynomial
and piecewise polynomial methods (splines, B-splines,
and so on) did not. Inflections in a curve passing through
a sequence of data points are possible using polynomi-

Survey

4 March/April 2005

2 NACA Cata-
log of Airfoil
Shapes. (Cour-
tesy US Centen-
nial of Flight
Commission)

3 P51 Mustangs.

als or piecewise polynomials even though the data
points do not suggest inflections. Therefore, it became
important to devise algorithms that not only fit points
but also allowed shape control. Shape control defines
the occurrence and position of inflection points (points
at which the signed curvature of a planar curve
changes). The control is needed for both engineering
and manufacturing optimization.

Researchers have proposed various schemes for shape
control. Most failed because there were always cases for
which the methods failed to properly preserve shape.
Many methods exist for detecting shape anomalies after
the fact, and a person must fix the anomalies by hand.
Removing the person in the loop lets geometry pass
directly to other applications for optimization. The chal-
lenge becomes finding algorithms that avoid anomalies
in the first place.

Attempts to modify the methods used previously to
account for shape control did not work in general, and
it wasn’t until the 1980s that we realized the basic prin-
ciples of those methods were wrong.4 Although nonlin-
ear methods4 have proven themselves in a variety of
shape control situations, most of these methods have
not made their way into commercial CAD systems.

Challenge 2: Interoperability
Current CAD systems do not integrate well with CAE

analysis (such as structural mechanics, fluid dynamics,
and electromagnetics).5 For example, computational
fluid dynamics (CFD) must interrogate geometry quick-
ly and reliably. Most CFD codes construct a computa-
tional grid from the geometry. Building the grid reliably
means that there should be no unintended holes in the
geometry—that is, the geometry should be what CFD
practitioners refer to as watertight. Real geometry from
CAD systems is rarely watertight.

Geometry from one CAD system is difficult to trans-
late reliably into another. Estimates peg the cost of inter-
operability in the US auto industry at $1 billion per year.6

Holes, translation error, and other problems arise
from two major sources: floating-point arithmetic and
tolerances. Floating-point arithmetic, which forces
approximations in numerical calculation, is addressable
theoretically but not practically. We could impose high-
er precision (double, triple, and so on) to drive down
the resulting errors. Or we could change to a rational
arithmetic system and eliminate the need for floating
point. Digital floating-point arithmetic is a research area
by itself.7

Tolerances control the accuracy of computed solu-
tions and are a fact of life in today’s CAD systems. A sim-
ple example involves calculating the curve of
intersection between two surfaces. When the algebraic
equations representing the geometry are simple (for
example, a plane or a circle), a closed form solution for
the intersection exists. However, closed form solutions
generally do not exist for operations on equations of a
sufficiently high degree (for example, intersecting two
bicubic surfaces). Computing the intersection curve uses
approximation, a problem independent of precision.
Some CAD systems will recompute intersection curves
if more accuracy is needed. This doesn’t solve the prob-

lem, especially if the intersection curve is used to gen-
erate other geometry.

Tolerances are needed to control the approximation.8

Too loose a tolerance can give results that are fast but
incorrect. Too tight a tolerance can result in poor per-
formance or failure to converge. Even seemingly simple
surface-to-surface intersections become difficult
because of choosing tolerances.

Tolerances determine the success of downstream
engineering (CFD, finite element) and manufacturing
(numerical control programming, quality assurance)
analyses. Selecting a tolerance that guarantees a high
probability of success requires that the geometry gen-
erator understand the kinds of analyses to be employed,
the environment of the analyses, and even the specific
software to be used a priori.

In summary, digital arithmetic and current math the-
ory are insufficient to perform reliably for complex
geometry operations and to interoperate well with
downstream analysis software. The geometry must be as
watertight as possible for downstream use, and algo-
rithms cannot result in topological inconsistencies (for
example, self-intersections and overlaps). The challenge
is to find ways to deal with poor results. Perhaps a new
math theory that has closed-form solutions for complex
surface operations and supports watertight represen-
tations for downstream analysis is the way to address
this challenge.

Challenge 3: Design exploration
Automated design exploration through multidisci-

plinary optimization presents the third challenge.
Design optimization requires that geometry remains
topologically valid as parameters are perturbed while
preserving the designer’s intent. There are two aspects
to consider: how to parameterize the geometry for
downstream analysis and how to structure geometry
algorithms to support continuous morphing, a key to
any optimization process. The former is primarily an
engineering function, which we do not discuss here.

Morphing is a requirement that CAD systems do not
currently support. Morphing algorithms today allow the
hole in the upper block to flip into the lower block when
the edges of the two blocks align. This is fine geometri-
cally. However, this is a disaster for optimization,
because the geometry does not morph continuously
with the parameters.9

The challenge is to design and build geometry sys-
tems that ensure the continuity of morphing operations.
Morphing continuity differs from geometric continuity.
Geometry often has discontinuities (for example, tan-
gents) that must be preserved during morphing. Mor-
phing continuity means that the geometry doesn’t
change suddenly as parameters change.

Parameter values must be simultaneously set to rea-
sonable values to ensure valid geometry for analysis and
optimization. Automating morphing is a challenge
because CAD systems have evolved as interactive sys-
tems that let users fix poor results. Design optimization
needs a geometry system that automatically varies para-
meters without user guidance and yet maintains design
integrity and intent.

IEEE Computer Graphics and Applications 5

Multidisciplinary design causes us to rethink the geo-
metric design process as well as the algorithms. For exam-
ple, many CAD systems use a piecewise quadratic or cubic
algorithm for defining a curve through a sequence of
points. These algorithms will not reproduce an embed-
ded straight line exactly. Preserving embedded line seg-
ments forces the curve fit algorithm to be modified
whenever three successive points lie on or are near (deter-
mined by some system tolerance) a straight line.

Figure 4 contains a second example of geometry that
seems reasonable but causes problems during morph-
ing. Consider the surface H(x, y, z) = y − ax2 = 0 so its
intersection with the z= 0 plane is described by the func-
tion f(x) = ax2. Parameter a is a shape parameter that
varies according to an optimization process. Suppose
the algorithm for approximating intersection curves
uses piecewise straight lines and the fewest join points
possible to achieve a certain tolerance. Now suppose the
tolerance is 0.5. For values of a approximately equal to
1, the approximation will alternate between a function
with constant value 0.5—that is, a spline with no
knots—and a piecewise linear function—that is, a spline
with one interior knot. In other words, varying the para-
meter a from slightly less than 1 to slightly greater than
1 causes the model to change discontinuously. As a pass-
es through the value 1, the intersection curve not only
changes shape (the blue line morphs to the red line in
Figure 4), but its properties (for example, arc length)
change discontinuously. This algorithm design produces
good static approximations but fails during morphing.

Summary
Addressing the geometry challenges outlined here

will not be just a simple task of going through and
improving or deleting offending algorithms. It also
requires a fundamental rethinking of how geometry
design systems should work.

Interactive techniques
Significant improvements in interaction are not going

to be achieved by making more efficient menus or a bet-
ter mouse. Rather, they are going to depend on rethink-
ing the nature of the process. Three specific challenges
result:

■ changing the order of workflow,
■ understanding the concept of place in the workplace,

and
■ intentional design.

History
Interaction technology has evolved slowly over the past

40 years. Input devices have not changed significantly.
Physical buttons, such as keyboards, functions keys, voice,
fingers, and so on, let people talk to the machine. Graph-
ical pointers come in numerous shapes and sizes and let
us move in two or three dimensions, with similar resolu-
tion to early devices. The graphical user interface has
remained essentially unchanged since 1984.

Displays have gotten a lot smaller and a lot larger.
Smaller displays are ubiquitous because of the phe-
nomenal growth in the cell phone industry; larger dis-
play penetration is steadily growing. The basic
resolution of display devices (number of units per square
inch) is about the same as Sutherland’s Sketchpad was
in the early 1960s.

Improvements have been achieved largely by adding
new functionality, enhanced graphic design, and better
flow of control. However, systems are not easier to use,
and the demands on the user today might be even high-
er than 20 years ago. The complexity of designs, data,
and geometry are growing as fast, or faster, than the
power of the tools to handle it.

Nevertheless, some things are changing, and these
changes will afford the potential to break out of this sit-
uation. For example, more than 10 years ago, Nicholas
Negroponte challenged people to imagine what would
be possible if bandwidth was essentially free. The only
thing that matched how amazing and unlikely that con-
cept was at the time was its prescience.

The parallel challenge today would be, “Imagine what
would be possible if screen real-estate were essentially
free.” Already, paper movie posters are being replaced
by $10,000 plasma panels. Imagine the potential impact
when the cost of a comparable display drops two orders
of magnitude and it is cheaper to mount a 100 dpi dis-
play on your wall than it is to mount a conventional
whiteboard today.

Large displays will be embedded in the architecture of
our workspace. We will stroll through and interact with
such spaces with agile small, portable, wireless devices.
And many of the changes that are going to affect the
future of CAD will emerge from the evolving behavior
of both people and devices as they function within them.

Within this context, a divide-and-conquer approach
will be used to address the complexity posed by today’s
CAD systems. While power will come in numbers, most
will be relatively inexpensive and target a particular
function. The isolated gadgets that first emerge as add-
ons to existing systems will morph into the keystones of
a new mosaic of integrated technologies that will trans-
form the process.

To realize the potential of this, the following three
challenges involve thinking about evolution in a human,
not technology, centric way.

Challenge 4: Reversing engineering
Important changes do not result from doing the same

things faster or for less money. They come when you flip
approaches and methods on their head, that is, we must
constantly ask ourselves, Do we do things the way that
we do today because it is the right way, or because it’s

Survey

6 March/April 2005

4 Blue curve
morphs discon-
tinuously into
red curve.
(Courtesy
Boeing)

the only way that we knew how when we started?
The inertia of the status quo blinds us to the recogni-

tion that major changes, such as those due to Moore’s
law, open up different and desirable approaches. If we
overcome that inertia, we can explore other approaches.

In the field of aerodynamics, for example, it’s truly
important to get designs that are efficient and safe. Gov-
ernment agencies such as NASA and companies such as
Boeing spend millions of dollars on tools, such as wind
tunnels and CFD analysis, that help them test such sys-
tems. However, these tests typically come late in the
design process. Now combine this fact with one of the
most basic rules of design: The later in the process that
a mistake is detected, the more expensive it is to fix.10

Replacing this rigorous testing at the back end is not
the answer, but it would be more efficient if technology
existed that allowed preliminary tests on their desktop
or even on their PDA. Designers could then catch bad
designs much earlier in the process. This would also help
them discover, explore, refine, and understand the most
promising designs as early in the process as possible.

This approach to CFD could be applied to a number of
other parts of the CAD workflow. Consider the ability to
introduce elements such as stress testing, volume or
strength calculations, and so on, earlier in the workflow.
This would allow designers to consider the intercon-
nection and interoperability of parts much earlier in the
design cycle than is currently the case.

Adding simulation earlier into the design process will
enable consideration of behavior, rather than just form,
to play into the process. The fundamental change in
workflow is the essential interactive technique that will
make the geometry design exploration challenge of the
previous section a useful and usable capability.

Challenge 5: Everything in its place
There was a time when someone’s location in a CAD

environment indicated their current job. For example, in
an automotive design studio, there is often one location
where people deal with interiors, another contains the
full-sized clay models, and some other location is set up
for exploring colors.

However, the typical modern CAD environment con-
tains a uniform sea of anonymous cubicles or desks. In
general, anyone walking through such a space will not
likely be able to tell if they are in the accounting or the
engineering department. Because people don’t move
around anyhow and are essentially anchored to their
desk, this organization isn’t important in some ways.
Yet, in the midst of all of this, we hear an ever-louder call
for collaboration. We also hear the emergence of ubiq-
uitous computing. How do these two points relate, if at
all, in terms of transforming the CAD workplace?

To begin with, ubiquitous computing will break the
chain that anchors the engineer to a general-purpose
workstation. This change will not just enable but neces-
sitate the designer to move from one specialized area
to another in a manner harkening back to the best of
past practice.

Not only will the workspace be broken up into spe-
cialized areas with specialized tools, but these tools will
also consist of a combination of private and public dis-

plays and technologies. Some will be mobile and others
embedded in the environment. Examples of the latter
would include large format displays that function as dig-
ital corkboards, surfaces where you can view large parts
on a 1:1 scale, and areas where you can generate phys-
ical parts using a 3D printer.

The physical mobility of a person and data can great-
ly impact agility of thought. Mobility brings increased
opportunity for collaboration and increased visibility of
a particular activity. Rather than design a system that
lets us send more email or documentation to the person
at the other side of the studio, the studio should be
designed so that we have a greater probability and oppor-
tunity to bump into and work with that person face to
face. If we are going to have work-across sites, then link-
ing designers’ efforts must be linked automatically as a
consequence of undertaking a particular activity.

Our notion of space is not about making things more
abstract or virtual. Rather, it concerns the recognition
and exploitation of the attributes and affordances of
movement and location in a technology-augmented
conventional architectural space. We discuss the impact
of collaboration among the geographically distributed
in challenge 10.

The challenge to future systems is as much about
human–human interaction as it is about new forms of
interaction between human and machine.

Challenge 6: What we do
CAD companies might view themselves as primarily

purveyors of tools for the creation of high-quality 3D
models. Consequently, if they want to grow their busi-
ness, they might conclude that they should make a bet-
ter, more usable modeler.

However, this stream of thought might be as wrong
as it is reasonable. Consider the following questions:

■ Is there a shortage of trained people to fill the existing
demand for creating 3D models?

■ Are there things that need to be modeled that cannot
be built by existing users with their current skills and
tools?

■ Is there a huge untapped market for 3D models wait-
ing for an easy-to-use modeling package that takes
little training to use?

In general, the basic answer to all of these questions
is “No.” It’s not modeling—at least in the sense that it
exists in today’s CAD packages—that lies behind any of
the fundamental challenges outlined in this article.

In fact, it might well be that all of these questions are
poorly posed, since they all assume that the intent of the
user is modeling. It is not. Rather, it’s getting a product
or a part made. Modeling is just one way of doing so,
and in many cases, not always the best way.

We are then challenged to answer this better ques-
tion: What besides modeling from scratch might enable
us to achieve our product design? A good answer to that
question should lead to a more innovative and effective
solution than today’s design-from-scratch modeling
approach..

Our favorite recourse in such cases is to look to the

IEEE Computer Graphics and Applications 7

past. In this case, the clue lies in Figure 2, the NACA cat-
alog of airfoil sections. As we discussed previously, such
catalogs let designers build an aircraft by selecting com-
ponents with known properties rather than working
from scratch.

We suggest moving back to this approach—but with
appropriate modifications. As product complexity
increases, the CAD process will subdivide into those spe-
cialists who design and build components (often out of
subcomponents) and those who make larger assemblies
out of them. However, the components in future CAD
systems will not be fixed objects made up of what com-
puter scientists might call declarative data. Rather, they
will include a strong procedural component.

The basic problem is that objects, even those as sim-
ple as an airfoil, don’t easily scale. If you make exactly
the same form, but larger, the plane might not fly. A sim-
ple example is the hummingbird. It can definitely fly.
However, if you scaled it up in size by a factor of 10, it
could not.

In this object-oriented process, designers generally
do more than just select components and plug them into
a larger assembly. Rather, they take components and
transform them into what is needed. The components
act as a starting point, something designers work from,
rather than start from scratch.

Given that physical products don’t scale, one key
aspect of component design is the component’s embed-
ded capacity to be transformed along meaningful and
desired dimensions, while maintaining specific toler-
ance, performance characteristics, manufacturability,
maintainability, and so on.

Embedded in the component catalog, therefore, are
just not the parts, but the knowledge of how parts can be
transformed while maintaining essential properties.
Consequently, the tools of the CAD engineer not only
help the designer find the appropriate components but
also support transforming them in such a way as to
maintain the desired properties.

Finding, cloning, modifying, morphing, and adapt-
ing will largely replace constructing from scratch. In so
doing, the assumption is that methods such as aerody-
namic testing, stress analysis, and others, can occur in
advance for each component and carry over into an
assembly. This approach transforms the current prac-
tices of who does what, where, when, why, and how.

Summary
Emerging user-interface technology will allow us to

transform how we work. Furthermore, the new tech-
nology can help us implement the transformation with-
out any major discontinuity with respect to current
practice.

Our sense and analysis of interaction needs to switch
from how we interact with a specific computer or pack-
age to how we interact as people, how we interact with
change, and how we interact with our materials—at
what level, in what way, and to what objective.

Scale
The challenge of scale is one that scientists and engi-

neers continue to encounter as they push the limits of

macro- and nanotechnology. Moore’s law governs the
expansion of computing hardware’s limits. Advanced
hardware lets us produce larger quantities of data. Soft-
ware advances tend to lag behind more powerful hard-
ware, yet we seem to be able to consume computing
hardware resources at a rate that always leaves
CAD/CAM users begging for larger storage capacity,
greater network bandwidth, and better performance.

Managing scale results in a delicate balancing act of
knowing when “good enough” occurs. While there are
numerous dimensions of scale in CAD/CAM/CAE, the
primary areas of challenge today include

■ Sheer data quantity that can exceed a project team’s
software, hardware, and cognitive capacity.

■ Making critical data comprehensible to other users.
■ Keeping data meaningful as product life spans

become longer.
■ Collaboration with a geographically distributed work-

force.

The challenges of scale in this section derive from
experience at Boeing, a large and varied aerospace man-
ufacturer. While Boeing does not represent the norm,
similar problems exist in automobile production, ship-
building, and other manufacturing companies. More
importantly, solving a Boeing-sized problem has often
resulted in breakthroughs that have profoundly affect-
ed smaller efforts.

History
Scale has grown as the overall process of designing,

building, and maintaining complex products has
changed.

Humans have designed and built extraordinarily com-
plex artifacts throughout history. The seven wonders of
the ancient world are clear examples: Roman aqueducts
still deliver water service to Italian cities, and the Great
Wall of China still stands, acting as a tourist destination
and is clearly visible from the ground and Earth orbit.

Documentation on the ancient design process is
sketchy, but became more formal during the Renais-
sance. Leonardo da Vinci’s sketches of various mechan-
ical possibilities captured a more formal depiction and
allowed designers to analyze possible configuration
strengths and weaknesses before construction started.
These practices continued to evolve into highly accurate
renderings documented as engineering drawings in the
first half of the 20th century. The evolution of compu-
tational geometry described earlier has taken us to the
point we are now in the 21st century.

The challenges we discuss in the rest of this section
are the direct result of change in the fundamental
design-analyze-build-maintain process. Until the latter
part of the 20th century, highly complex projects fea-
tured integrated design-build teams. Slave labor was
the dominate force in the earliest build teams, and on-
site designers oversaw every detail of construction.
Large efforts took a long time and involved thousands of
workers. There has been a desire to decrease construc-
tion time and the number of people ever since.

As increased specialization in individual aspects

Survey

8 March/April 2005

became more prevalent, principal design and assem-
bly continued to exist within close geographic prox-
imity. Consider the evolution of design-build at
Boeing. Boeing’s first airplanes were designed and
built in the Red Barn (see Figure 5). As build problems
occurred, engineers could walk to the factory to make
on-site corrections.

As automation and the complexity of the product
increased, later airplane generations continued to be
designed and built in the relatively close proximity of
the Puget Sound region in Washington. Boeing located
the engineers designing the 737 and 757 within min-
utes of the Renton assembly plant; Everett housed the
747, 767, and 777. These engineers were responsible for
the design of all of the major sections of all airplanes.

With the 787, its next-generation airplane, Boeing is
distributing the design, manufacture, and assembly of
major subsections across the world. Each major suppli-
er will deliver preassembled sections of the airplane to
final assembly, rather than delivering smaller compo-
nents as occurred with previous models. This approach
will dramatically reduce final assembly times. Comput-
ing and communications systems are mandatory for this
to occur, and huge amounts of data must be integrated
and managed. Because the design is completely digital
and 3D, a larger variety of people will look at images of
the data during the 787’s life cycle. Time and distance
complete the notion of scale: mechanical products built
today have longer and longer life times, and geograph-
ic distance separates people.

Challenge 7: Understanding vast quantities of
data

Design, engineering, manufacturing, and mainte-
nance processes have routinely existed in virtual isola-
tion from one another. Part of the scope challenge
relates to data, especially as products become complex.
Another part relates to people because the graphics
vocabulary used in the design process is dramatically
different from the one used when the product is being
manufactured and assembled.

Early efforts in product design used the waterfall
model. In this apprach, designers handed drawings to
engineers for analysis leading to design improvements.
The drawings then made their way to manufacturing
planners, people making and assembling parts, and oth-
ers responsible for production maintenance. The late
1980s saw a change in the designer-engineering analy-
sis interface because of the advent of 3D modeling sys-
tems with enough capacity to generate and manage an
entire commercial airplane. Downstream users contin-
ued with master definitions represented as 2D drawings.

Initial efforts to deal with issues like manufacturabil-
ity and maintainability focused on integrated design-
build teams. The team members used different
applications and kept data in segregated areas with dif-
ferent configuration management schemes.

CAD/CAM software vendors are starting to address
this problem with product lifecycle management (PLM)
systems that extend previous product data management
(PDM) systems. PLM systems let companies store cus-
tomer requirements, design geometry, engineering

analysis results, manufacturing plans, factory process
designs, maintenance designs, and so on, in a single
repository that infuses configuration management
throughout.

PLM systems are difficult to sell. The essential bene-
fit (managing data across key aspects of a manufactur-
ing company) generates more cost in each individual
area but decreases overall product costs through forced
pre-facto integration and better configuration manage-
ment and visibility. PLM systems compete with other
large corporate systems for managing personnel, enter-
prise resource planning (ERP), supply chain manage-
ment (SCM), and so on. Personnel management, PLM,
ERP, and SCM systems all replicate significant portions
of the same data. Finally, getting new technology sold,
especially when the technology works behind the
scenes, is always a difficult problem.

The real problems occur after product integration
becomes institutionalized. Integrated products must be
examined from a number of different views. Each group
has a different purpose and wants to believe that their
view is the master. For example, a commercial airplane
has the following views:

■ As-designed view (engineering bill of materials). The
relationships among individual components reflect a
logical organization of the data (primarily geometry)
as modified to satisfy engineering improvements for
aerodynamics, structural strength, weight, and so on.

■ As-ordered view (manufacturing bill-of-materials).
The relationships among individual components
reflect the parts that must be ordered and the specif-
ic attributes (including geometric definition) needed
to successfully acquire the parts. Concepts like alter-
nate suppliers are important in this view.

■ As-delivered view. This view contains information
about the physical configuration turned over to a cus-
tomer after the assembly process is complete. Some
components might have been replaced (for example,
a supplier changed) or modified during assembly.

IEEE Computer Graphics and Applications 9

5 Boeing Red Barn. (Courtesy Boeing)

■ As-owned view. The actual components in a final prod-
uct change over time. Components get routinely
replaced or repaired as maintenance occurs.

Each of these views is essential during a product’s life-
cycle and each wants to be master. Providing each view
without negatively impacting the integrity of the under-
lying data poses a difficult challenge.

In terms of sheer storage space, the amount of data
needed to faithfully represent a product and to show
how decisions were reached in its design is expanding by
decimal orders of magnitude. The data ranges from mar-
keting intelligence about customers to versions of com-
plex geometry to multiple data sets from engineering
analysis runs to manufacturing planning scripts to sen-
sors monitoring manufacturing processes, physical test-
ing, and real-time product health.

In addition to managing multiple configurations and
views, people face a challenge when they have to inter-
pret this vast quantity of information. For example, tech-
nology is on the horizon that will allow real-time
display11,12 of an entire commercial airplane model.
Humans have a finite ability to comprehend complexi-
ty, and understanding how to best display the data in a
meaningful way requires extensive work.

Challenge 8: Appropriate designs for other uses
and users

This challenge focuses on the large number of people
who are removed from the data creation and analysis
process and rely on the digital product definition for their
own job tasks. These people participate in sales, fabri-
cation, assembly, certification, maintenance, and prod-
uct operation. In the case of a commercial airplane, the
user community extends far beyond company bound-
aries. For example, airline personnel buy Boeing prod-
ucts, perform maintenance, order spares, train pilots and
attendants, and so on. Partners design and analyze sig-
nificant airplane components. Suppliers formulate pro-
posals to fabricate parts and assemble components.
Government agencies certify that the final product per-
forms according to published regulations and guidelines.

Many of these groups have their own graphic vocab-
ulary because different information must be communi-
cated to different audiences. Consider the following
examples.

Engineers and designers com-
monly use images like Figure 6a.
The colors are meaningful in terms
of the engineering and design func-
tions of individual components, but
not for manufacturing or mainte-
nance. This is a significant change
from practice prior to 1990, where
the master communication mecha-
nism was the engineering drawing
(see Figure 6b). The authority
image for certification, manufactur-
ing, and maintenance is still the
engineering drawing. Communicat-
ing via the engineering drawing to
a maintenance engineer causes a

radical transformation, as Figure 6c shows.
Figures 6b and 6c are clear illustrations of this chal-

lenge. The two represent exactly the same 3D geome-
try. However, the graphic styles are dramatically
different. Tools are commonly available to work with
the base 3D model—for example, make everything in a
scene translucent but objects of interest; show and hide;
rotate, scale, and translate; and measure. We can gen-
erate the basic 3D hidden line image for Figure 6c, do
some early guesses to explode parts, and so on.

These tools fundamentally change the basic style in
which the graphic image is rendered, and some might
even produce engineering drawings. None contains an
ability to adapt an image for specific uses or users. There-
fore, the challenge lies in knowing how to draw the
image to communicate to a specific user community
because the communication techniques and standards
vary significantly from community to community and
from company to company.

As a result, companies spend significant amounts of
time and labor retouching or redrawing images.
Automation also offers the possibility of providing new
types of images that might be more task appropriate.

Generating the initial image itself presents a signifi-
cant challenge. The taxonomy of effective graphic images
(Figure 6 represents a small subset) is much larger. Mas-
sironi13 has developed an excellent taxonomy that delin-
eates the types of images and the fundamental graphic
techniques people have used to communicate visually.

Challenge 9: Retrieving data years later
Today’s product specifications for tolerance, fit, reli-

ability, and so on, are greatly different than they were
40 years ago. For example, the Boeing 707 successful-
ly introduced commercial aviation to the jet age. Yet the
707’s part fit was loose enough that it received the nick-
name “the flying shim.” On the other hand, the first Boe-
ing 777 fit together so precisely (largely due to the use
of CAD/CAM techniques from 10 years ago) that the
number of discrepancies needing redesign was sub-
stantially less than what had appeared to be an
extremely optimistic early prediction. Rather than the
multiple mock-ups needed for previous models, the 777
manufacturing mock-up flew as part of the flight certi-
fication process. Similar stories exist in the automotive
and other industries.

Survey

10 March/April 2005

6 Communicating data: (a) solid shaded image, (b) engineering drawing, and (c) stylized
maintenance image. (Courtesy Boeing)

(a) (b) (c)

One constant remains: the engineering drawing
serves as the design, manufacturing, and certification
authority. While we realize that the engineering draw-
ing has its limits, it has another important attribute: It
can be archived for long periods of time and still be
understood. The Mylar film that Boeing uses for its per-
manent records lasts longer than the 50-year life span
of commercial airplanes.

In contrast, consider the challenge if the archives were
stored digitally. The media itself is not the problem
because it can be routinely copied to new media. The
real challenge is changing software versions. Users rou-
tinely expect that some percentage of their data will not
migrate successfully from one version to the next. Some
algorithms will be tweaked, and what worked in the last
version doesn’t in the next (or vice versa). A substantial
version change or choosing a different software suppli-
er means massive amounts of data conversion and
rework. The net result is that companies cannot afford
to change to a new system version from the same vendor
until years after initial release, let alone change to a new
vendor entirely. As the amount of configuration-man-
aged data increases, the data migration challenge
becomes even more pronounced.

Challenge 10: Limited by the speed of light
Challenge 5 discussed the impact of users being

released from the constraints of single user desktop and
laptop computers into an environment where work-
spaces can be shared. This challenge addresses the users
working in a geographically distributed environment,
where walking across the hall becomes impossible.

A continued debate rages about the internationaliza-
tion of large and small businesses throughout the world.
In spite of specific national interests and boundaries,
companies (many of which are small and mid-sized) are
acquiring design, manufacturing, assembly, mainte-
nance, and customer support service help throughout
the world. The incentives range from specific technical
skills to trade offsets to cheaper labor.

Doing effective distance collaboration for 3D design,
which lacks the immediacy and extensive cues of a face-
to-face session, is a long-term research and cultural chal-
lenge. The key productivity aspect for improved design
cycle time is collaboration across a number of different
stakeholders. There are a wide variety of collaboration
models and a reasonable amount of research done in
computer-supported collaborative work. Researchers
are starting to pay attention to collaborative task analy-
sis.14 However, research on how to make such efforts
more effective on a global scale is in its infancy, and the
cognitive effects of distance on a collaborative 3D work
environment have not been addressed.

Summary
This final set of challenges indicates that the way

groups of people work on design problems and the
longevity of the electronic versions of their products is
undergoing a dramatic change. The magnitude of the
challenges these changes are causing is at least as great
as getting people to adopt CAD in the first place because
the challenges impact the fundamental way people work.

How to proceed: Spurn the incremental
We conclude by suggesting an approach that can

address our 10 challenges. The basic CAD business
model is incremental refinement, and it can only take
us so far.

Incremental refinement is based on bringing out the
n + 1st version, where the new version release has
improvements. For this model to work, the incremental
improvement for releasen, ∆In, must be greater than
some threshold value, VT, which represents the mini-
mum improvement that will still motivate a company to
purchase the new version.

The cost of achieving that degree of improvement
increases with each release and can be approximated by

In other words, to keep the incremental value of
releasen high enough to motivate purchases, the cost of
those improvements is on the order of the cost of those
of the second release (that is, the first upgrade), raised
to the order’s nth power.

Two factors contribute to this cost picture. First, as sys-
tems go through successive releases, they grow in com-
plexity. This negatively affects their malleability and
increases the cost of adding value or refactoring the soft-
ware or basic functionality. It’s not just the number of lines
of code or additional features that cause this. As a system
approaches maturity, the legacy of the initial underlying
architecture, technologies, and paradigms creates a
straightjacket that severely affects the cost of change.

Next, as products mature, the software more or less
works as intended and markets approach saturation. For
most users, the current version of the software is good
enough. Changes increasingly tend toward tweaks and
tuning rather than major improvements. Or they are
directed at more specialized functions needed by a
smaller segment of the market. Consequently, there is
less to motivate most customers to upgrade.

As the product reaches late maturity, the accumulat-
ed impact is that development costs increase while the
size of the addressable market decreases. Software sales
are no longer sufficient to cover the growing develop-
ment costs. At this point, companies increasingly rely
on annual support contracts, a model difficult to sus-
tain. At best, the switch to support revenue delays the
collision of technology costs and economic viability.
Even when a company totally reimplements its product
for a new version, the tasks the user performs are gen-
erally the same as in the previous version and often give
less functionality than the last version of the old system.

The CAD industry is reaching this state. How do we
get to the next level, the one that should address these
challenges?

Order-of-magnitude approach
If incremental refinement won’t work, perhaps it will

come from some new breakthrough. Perhaps some new
invention will magically appear and save the day. The
National Academy of Science recently released a report
that studied the genesis of a large number of technolo-
gies, including graphical user interfaces, portable com-

∆ ≥ ⇒ ∆ = ∆I VT I I
n n

On$ $
2

IEEE Computer Graphics and Applications 11

munication, relational databases, and so on. For each,
it looked at how long that technology took to get from
discovery to a $1 billion industry. The average was
about 20 years.15 This suggests that any technologies
that are going to have impact over the next 10 years are
already known and have probably been known for at
least 10 years.

We believe that the answer is not new technologies
but new insights into technologies that are already
known, whose potential is perhaps not appreciated, or
which have so far not been technically or economically
feasible. The engineering of significantly better prod-
ucts should come from fresh insights on what is already
known or knowable.

By analogy, think about the marks on the door frame
of the kitchen closet where parents record the growth
of their children. Without that documentation, espe-
cially because you live with them day-to-day, you gen-
erally don’t notice the changes. Long after it has actually
happened, by measuring them again, you notice that
they have passed on to the next stage of growth. This
also happens in living with technology.

Our observation leads to the order-of-magnitude
(OOM) rule, which says: If anything changes by an order
of magnitude along any dimension, it is no longer the
same thing.

OOM is a way to measure significance of the types of
changes needed to meet the technical challenges we’ve
described. Exploiting this rule forces us to notice OOM
changes and understand their implications. However,
it also lies in teasing out less obvious, but meaningful
dimensions, along which to test for such OOM changes.

Because we have all been so intimately involved with
these challenges and CAD technology, we have not
taken the time to create the measures that allow us to
see where profound changes have already occurred and
where they need to occur. We believe that the approach-
es needed to address the 10 challenges are most likely to
result from rethinking things from a human-centric
rather than a technology-centric perspective.

Conclusion
The next wave in CAD will come about largely

through the cumulative effect of the introduction of a
number of small, lightweight technologies that collec-
tively form a synergistic mosaic, rather than due to the
introduction of some monolithic new technology. The
value of this approach is that it can be introduced incre-
mentally, without requiring some disruptive disconti-
nuity in skills and production. Thus, change will occur
through radical evolution. That is, incremental evolu-
tionary change will happen in a way that leads us to a
radically new approach to working.

There will be changes in how we do things, and these
will significantly affect the nature of CAD systems and
how they function. We suggest that using OOM offers a
strategy to cause revolution in an evolutionary manner.
Ultimate success will happen if and only if all of the tech-
nical areas in which OOM changes occur are kept in bal-
ance. We conclude that institutionalizing radical
evolution is the top CAD challenge we face in 2005,
2015, and beyond. ■

References
1. I. Sutherland, R. Sproull, and R. Schumacker, “A Charac-

terization of Ten Hidden-surface Algorithms,” ACM Com-
puting Surveys, vol. 6, no. 1, Mar. 1974, pp. 1-55.

2. R.A. Liming, Practical Analytic Geometry with Applications
to Aircraft, Macmillan Company, 1944.

3. P. Garrison, “How the P-51 Mustang Was Born,” Air & Space
Magazine, Aug./Sept. 1996.

4. D.R. Ferguson, P.D. Frank, and A.K. Jones, “Surface Shape
Control Using Constrained Optimization on the B-spline
Representation,” Computer Aided Geometric Design, vol. 5,
no. 2, 1988, pp. 87-103.

5. R.T. Farouki,“Closing the Gap between CAD Model and
Downstream Application,” SIAM News, vol. 32, no. 5, 1999,
pp. 303-319..

6. Research Trianagle Inst., Interoperability Cost Analysis of
the US Automotive Supply Chain, Nat’l Inst. of Science &
Technology, March 1999; http://www.mel.nist.gov/
msid/sima/interop_costs.pdf.

7. C. M. Hoffmann, Geometric and Solid Modeling: An Intro-
duction, Morgan Kaufmann, 1989.

8. D.R. Ferguson et al., “Algorithmic Tolerances and Seman-
tics in Data Exchange,” Proc. 13th ACM Symp. Computa-
tional Geometry, ACM Press, 1997, pp. 403-405.

9. V. Shapiro, Current Limitations of CAD Systems; http://sal-
cnc.me.wisc.edu/Research/parametric/limits.html.

10. F. Brooks, The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley, 1975.

11. W. Baxter et al., “GigaWalk: Interactive Walkthrough of
Complex Environments,” Proc. Eurographics Workshop on
Rendering, ACM Int’l Conf. Proceeding Series, 2002, pp.
203-214.

12. I. Wald, C. Benthin, and P. Slusallek, “Distributed Interac-
tive Ray Tracing of Dynamic Scenes,” Proc. IEEE Symp. Par-
allel and Large-Data Visualization and Graphics (PVG), IEEE
Press, 2003.

13. M. Massironi, The Psychology of Graphic Images: Seeing,
Drawing, Communicating, Lawrence Erlbaum Assoc., 2002.

14. D. Pinelle, C. Gutwin, and S. Greenberg, “Task Analysis
for Groupware Usability Evaluation: Modeling Shared-
Workspace Tasks with Mechanics of Collaboration,” ACM
Trans, Computer–Human Interaction, vol. 10, no. 4, 2003,
pp. 281-311.

15. Computer Science and Telecommunications Board, “Com-
puter Science and Telecommunications Board of the
National Research Council,” Innovation in Information
Technology, National Academies Press, 2003.

DD aavviidd JJ.. KKaa ss ii kk is an architect for
software engineering, geometry and
visualization, and user-interface
technology at the Boeing Commercial
Airplanes Group Information Sys-
tems. His research interests include
an innovative combination of basic

technologies and increasing awareness of the impact of
computing innovation outside the computing communi-
ty. Kasik has a BA in quantitative studies from the Johns
Hopkins University and an MS in computer science from

Survey

12 March/April 2005

the University of Colorado. He is a member of ACM, ACM
Siggraph, and ACM SIGCHI and received a Siggraph Spe-
cial Recognition Award in 1992 for acting as Liaison to the
Exhibitor Advisory Committee. Contact him at
David.j.kasik@boeing.com.

WWiilllliiaamm BBuuxxttoo nn is principal of his
own boutique design and consulting
firm, Buxton Design, where his time
is split between working for clients,
writing, and lecturing. He is also a
chief scientist for Bruce Mau Design
of Toronto, and is an associate pro-

fessor in the Department of Computer Science at the Uni-
versity of Toronto. Buxton has a B.Mus. from Queens
University and an MSc in computer science from the Uni-
versity of Toronto. He received the 1995 Canadian
Human–Computer Communications Society Award, the
2000 New Media Visionary of the Year Award, and is a
member of the CHI Academy. Contact him at bill@bill-
buxton.com.

DD aavviidd RR.. FFee rrgguussoonn was Boeing’s
leader in geometry research and
development until his retirement. His
research interests include the mathe-
matics of curves and surfaces with
special emphasis on nonlinear meth-
ods for geometric construction. Fer-

guson has a BS in mathematics from Seattle University,
and an MS and PhD in mathematics from the University of
Wisconsin. He is an editor of Computer Aided Geometric
Design. Contact him at drf.assoc@comcast.net.

For further information on this or any other computing
topic, please visit our Digital Library at http://www.com-
puter.org/publications/dlib.

IEEE Computer Graphics and Applications 13

 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Quick-VDR:
Interactive View-Dependent
Rendering of Massive Models

Sung-Eui Yoon
Brian Salomon
Russell Gayle

Dinesh Manocha

University of North Carolina at
Chapel Hill

http://gamma.cs.unc.edu/QVDR The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Goal

• Interactive display of complex
and massive models at high
image fidelity
♦Models from CAD, scientific simulation, and

scanning devices
♦High primitive counts
♦Irregular distribution of geometry

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CAD Model –
Power Plant

12 million
triangles

Irregular
distribution

Large occluders

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Isosurface from Turbulence
Simulation (LLNL)

100 million
triangles

High depth
complexity

Small occluders

Many holes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Scanned Model –
St. Matthew

372 million
triangles

Highly
tessellated

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Problems of current
representation

• High cost of refining and
rendering the geometry

• High memory footprint
• Complicate integration with

other techniques
♦occlusion culling and out-of-core

management

 2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Main Contribution

• New view-dependent rendering
algorithm

Clustered Hierarchy of
Progressive Meshes (CHPM)

Out-of-core construction
and rendering

Integrating occlusion culling
and out-of-core management

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Realtime Captured Video –
Power plant

Pentium IV
GeForce FX
6800 Ultra

1 Pixel of Error

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Previous Work

• Geometric simplification
♦View-dependent simplification

• Out-of-core simplification
• Occlusion culling
• Hybrid algorithms

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Geometric Simplification

• Static [Cohen et al. 96 and Erikson et
al. 01]

• View-dependent [Hoppe 97; Luebke
et al. 97; Xia and Varshney 97]

• Surveyed in Level of Detail book
[Luebke el al. 02]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

View-Dependent Simplification

• Progressive mesh [Hop96]
• Merge tree [Xia and Varshney 97]
• View-dependent refinement of

progressive meshes [Hoppe 97]
• Octree-based vertex clustering

[Luebke and Erikson 97]
• View-dependent tree [El-Sana and

Varshney 99]
• Out-of-core approaches [Decoro and

Pajarola 02; Lindstrom 03]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Out-of-core Simplification

• Static [Lindstrom and Silva 01;
Shaffer and Garland 01; Cignoni
et al. 03]

• Dynamic [Hoppe 98; Prince 00;
El-Sana and Chiang 00;
Lindstrom 03]

 3

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Occlusion Culling

• A recent survey is in [Cohen-Or
et al. 03]

• Image-based occlusion
representation
♦[Greene et al 93, Zhang et al, 97,

Klosowski and Silva 01]

• Additional graphics processors
♦[Wonka et al. 01, Govindaraju et al. 03]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

• Combine model simplification
and occlusion culling techniques
♦UC Berkeley Walkthrough [Funkhouser

96]
♦UNC MMR system [Aliaga 99]

• Integrate occlusion culling with
view dependent rendering
♦[El-Sana et al. 01; Yoon et al. 03]

Hybrid Approaches

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• CHPM representation
• Building a CHPM
• Interactive display
• Implementation and results
• Conclusion and future work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• CHPM representation
• Building a CHPM
• Interactive display
• Implementation and results
• Conclusion and future work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Clustered Hierarchy of
Progressive Meshes (CHPM)

• Novel view-dependent
representation

• Cluster hierarchy

• Progressive meshes

PM1

PM3

PM2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Clustered Hierarchy of
Progressive Meshes (CHPM)

• Cluster hierarchy
♦Clusters are spatially localized mesh regions
♦Used for visibility computations and out-of-

core rendering

 4

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Clustered Hierarchy of
Progressive Meshes (CHPM)

• Progressive mesh (PM) [Hoppe
96]
♦Each cluster contains a PM as an LOD

representation

PM: Vertex
splits

Base mesh
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Two-Levels of Refinement

• Coarse-grained view-dependent
refinement
♦Provided by selecting a front in the

cluster hierarchy

Front

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Two-Levels of Refinement

• Coarse-grained view-dependent
refinement
♦Provided by selecting a front in the

cluster hierarchy

Cluster-split

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Two-Levels of Refinement

• Coarse-grained view-dependent
refinement
♦Provided by selecting a front in the

cluster hierarchy

Cluster-split Cluster-collapse

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Two-Levels of Refinement

• Fine-grained local refinement
♦Supported by performing vertex splits in

PMs

Vertex split 0

Vertex split 1

Vertex split n

⋯
..

PM

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Simplification Error Bound

• Conservatively compute object
space error bound given screen
space error bound

• Perform two-levels of refinement
based on the error bound

 5

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Main Properties of CHPM

• Low refinement cost
♦1 or 2 order of magnitude lower than a

vertex hierarchy

• Alleviates visual popping
artifacts
♦Provides smooth transition between

different LODs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Video – Comparison CHPM
with Vertex Hierarchy

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• CHPM representation
• Building a CHPM
• Interactive display
• Implementation and results
• Conclusion and future work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview of Building a
CHPM

Cluster decomposition

Cluster hierarchy
generation

Hierarchical simplification

Input model

CHPM

Performed
in out-of-core

manner

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview of Building a
CHPM

Cluster decomposition

Cluster hierarchy
generation

Hierarchical simplification

Input model

CHPM
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Decomposition

• Cluster
♦Main unit for view-dependent refinement,

occlusion culling, out-of-core
management
♦Spatially localized portion of the mesh
♦Equally sized in terms of number of

triangles

 6

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Decomposition

• Similar to [Ho et al. 01; Isenburg
and Gumhold 03]

Graph
between cells

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

An Example of Cluster
Decomposition

Each cluster contains
 4K triangles

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview of Building a
CHPM

Cluster decomposition

Cluster hierarchy
generation

Hierarchical simplification

Input model

CHPM
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Hierarchy
Generation - Properties

1. Nearly equal cluster size
2. High spatial locality
3. Minimum shared vertices
4. Balanced cluster hierarchy

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Hierarchy
Generation - Algorithm

• Node
♦Corresponds to a cluster
♦Weighted by the number of vertices

• Edge
♦Made if clusters share vertices
♦Weighted by the number of shared

vertices

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Hierarchy
Generation - Algorithm

Leaf clusters

Root cluster

2nd level clusters

3rd level clusters

 7

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview of Building a
CHPM

Cluster decomposition

Cluster hierarchy
generation

Hierarchical simplification

Input model

CHPM
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Out-of-core Hierarchical
Simplification

• Simplifies clusters in a bottom-
up manner

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Out-of-core Hierarchical
Simplification

• Simplifies clusters in a bottom-
up manner

PM1 PM2

PM5

PM3 PM4

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boundary Simplification

CB

Cluster hierarchy

A D

E F
dependency

B C DA

Boundary constraints

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boundary Simplification

CB

Cluster hierarchy

A D

E F
dependency

B C DA

FE

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boundary Constraints

• Common problem in many
hierarchical simplification
♦[Hoppe 98; Prince 00; Govindaraju et al.

03]
♦Degrades the quality of simplification
♦Decrease rendering performance at

runtime
♦Aggravated as a depth of hierarchy

increases

 8

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boundary Constraints

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boundary Constraints

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Dependencies

• Replaces preprocessing
constraints by runtime
dependencies

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Dependencies

CB

Cluster hierarchy

A D

E F

dependency

B C DA

E F

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Dependencies

CB

Cluster hierarchy

A D

E F

dependency

B C DA

E F

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Dependencies at
Runtime

CB

Cluster hierarchy

A D

E F

dependency
Cluster-splitForce

cluster-split

 9

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cluster Dependencies
227K triangles 19K triangles92% triangles

reduced

After posing
cluster

dependencies

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• CHPM representation
• Building a CHPM
• Interactive display
• Implementation and results
• Conclusion and future work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Traverse and update previous active cluster list

View-Dependent Refinement

Active Cluster List (ACL)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

cluster-split

View-Dependent Refinement

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

cluster-collapse

View-Dependent Refinement

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

View-Dependent Refinement

Vertex split 0

Vertex split 1

Vertex split n

⋯
..

The PM contained within a
cluster is refined prior to
rendering

current
refinement

 10

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Occlusion Culling

• Exploit temporal coherence
♦Use visible clusters from the previous

frame as potentially visible set (PVS) in
the current frame

• Cluster bounding boxes tested
using occlusion queries

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Rendering Algorithm

1. Refine Active Cluster
List

2. Render PVS as an
occluder set

PVS is rendered. The
depth map is the
occlusion representation

Traverse the ACL and
apply split and collapse
operations

3. Compute new PVS and
newly visible set

Test boxes of clusters
on ACL using occlusion
queries

4. Render newly visible s
et

Rendering newly visible set
completes the final image

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Out-of-core Rendering

• Entire hierarchy stored in
memory
♦Takes 5MB in St. Matthew model

• PMs stored on disk

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Out-of-core Rendering

• Fetch PMs as necessary
♦Buffer for LOD Changes
♦Latency for visibility events

• PMs replaced using LRU policy

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

LOD Prefetching

Not Visible

Visible

LOD Prefetched

Front

LOD Prefetched

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Visibility Prefetching

• Occlusion events are difficult to
predict

• We use a frame of latency to
reduce stalling

• The rendering algorithm is
reordered using a pair of
offscreen buffers

 11

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Latency

1. Refine Active
Cluster List

2. Render PVS as an
occluder set

3. Compute new PVS
and newly visible set

1. Refine Active
Cluster List

2. Render PVS as an
occluder set

3. Compute new PVS
and newly visible set

Frame i Frame i+1

4. Render newly
visible set

4. Render newly
visible set

4. Render newly
visible set

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• CHPM representation
• Building a CHPM
• Interactive display
• Implementation and results
• Conclusion and future work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Implementation

• Use GL_ARB_vertex_buffer_object
to manage PM data in GPU
memory
♦5% of PMs change refinement level

• Implemented on Windows XP
♦Uses virtual memory through memory

mapped files [Lindstrom and Pascucci 02]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Live Demo – Isosurface

• Alienware
laptop
♦ 3.2GHz Pentium

IV PC with 2GB
main memory
♦Quadro FX

Go5700 with
128MB GPU
memory

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Live Demo – St. Matthew

• Alienware
laptop
♦ 3.2GHz Pentium

IV PC with 2GB
main memory
♦Quadro FX

Go5700 with
128MB GPU
memory

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Test Configuration

Dell Precision Workstations
♦Dual 3.2 GHz Pentium IV PC with 1 GB

main memory
♦GeForce FX 6800 Ultra with 128MB of

video memory

 12

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Processing Time and
Storage Requirement

512

256

32

Memory
footprint used

(MB)

10.2

2.8

0.5

Processing
Time

(hour)

12.8Power
plant

100Isosurface

372
St.

Matthew

Triangles
(M)

Model

Processing 30M triangles per an hour

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Processing Time and
Storage Requirement

• CHPM requires 88MB per million
vertices
♦Low compared to 224MB (Hoppe’s VDPM)

and 108MB (XFastMesh)
♦Compression on PMs can further improve

the memory overhead and storage
overhead

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Runtime Performance

850K

819K

542K

Avg #
Tris

600MB291
St.

Matthew

600MB2720Isosurface

400MB281
Power
plant

Memory
footprint

Frame
rate

Pixels of
error

Model

Image resolution is 512 × 512

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Timing Breakdown

2%4%94%St. Matthew

1%5%94%Isosurface

1%13%86%Power plant

Refinement
Occlusion

CullingRenderingModel

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Refinement Comparison

28 msec223CHPM

1,065 msec4.2M
Vertex

Hierarchy

Total
Refinement

Time

Num
Dependency

Checks
Method

1M Triangle Isosurface

38X
speedup

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Frame Rate - Isosurface

2X
speedup

 13

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Limitations

• Latency
♦Reduces stalls but no guarantee
♦Excludes latency-sensitive applications

• Requires high temporal
coherence

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Advantages

• Refinement time
• Performance comparable to

static LOD systems
• Combines out-of-core, VDR, and

occlusion culling
• General
♦CAD, scanned, isosurface models

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Conclusion

• Quick-VDR: view-dependent
rendering of massive models
♦Generates crack-free and drastic high

quality simplification by cluster
dependencies
♦Provides two levels of refinement using

CHPM
♦Applies to a wide variety of massive

models

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Ongoing and Future Work

• Compression
• Consider dynamic effects
♦ Shadows
♦ Lighting

• Occlusion event prediction

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Application to Collision
Detection

• Fast Collision Detection
Between Massive Models
Using Dynamic
Simplification
♦Presented in Symposium of

Geometric Processing, 2004

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Acknowledgements

• Anonymous donor for power
plant model

• LLNL ASCI VIEWS for isosurface
model

• Digital Michelangelo Project at
Stanford University for the St.
Matthew model

 14

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Acknowledgements

• DARPA
• Army Research Office
• Intel Corporation
• Office of Naval Research
• National Science Foundation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

• Naga Govindaraju
• Martin Isenburg
• Stefan Gumhold
• Mark Duchaineau
• Peter Lindstrom
• Members of Walkthru group

Acknowledgements

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Questions?

Project URL:
http://gamma.cs.unc.edu/QVDR

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Quick-VDR:
Interactive View-Dependent
Rendering of Massive Models

Sung-Eui Yoon
Brian Salomon
Russell Gayle

Dinesh Manocha

University of North Carolina at
Chapel Hill

http://gamma.cs.unc.edu/QVDR

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Realtime Captured Video –
ST. Matthew

Pentium IV
GeForce FX
6800 Ultra

1 Pixel of Error

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comparison with
TetraPuzzles

Wide variety of
models

scanned modelsModels

YesHasn’t been testedOcclusion culling

Using cluster
dependencies

(implicit)
dependencies

Handling boundary
constraints

CHPM, close to
VDR

Hierarchies of
tetrahedron, close

to static LOD
Representation

Quick-VDRTetraPuzzles

 15

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Live Demo – Power plant

• Alienware
laptop
♦ 3.2GHz Pentium

IV PC with 2GB
main memory
♦Quadro FX

Go5700 with
128MB GPU
memory

Quick-VDR: Interactive View-Dependent Rendering of Massive Models
Sung-Eui Yoon Brian Salomon Russell Gayle Dinesh Manocha

University of North Carolina at Chapel Hill
{sungeui,salomon,rgayle,dm}@cs.unc.edu

http://gamma.cs.unc.edu/QVDR

Abstract

We present a novel approach for interactive view-dependent ren-
dering of massive models. Our algorithm combines view-dependent
simplification, occlusion culling, and out-of-core rendering. We
represent the model as a clustered hierarchy of progressive meshes
(CHPM). We use the cluster hierarchy for coarse-grained selective
refinement and progressive meshes for fine-grained local refine-
ment. We present an out-of-core algorithm for computation of a
CHPM that includes cluster decomposition, hierarchy generation,
and simplification. We make use of novel cluster dependencies
in the preprocess to generate crack-free, drastic simplifications
at runtime. The clusters are used for occlusion culling and
out-of-core rendering. We add a frame of latency to the rendering
pipeline to fetch newly visible clusters from the disk and to avoid
stalls. The CHPM reduces the refinement cost for view-dependent
rendering by more than an order of magnitude as compared to
a vertex hierarchy. We have implemented our algorithm on a
desktop PC. We can render massive CAD, isosurface, and scanned
models, consisting of tens or a few hundreds of millions of tri-
angles at10−35 frames per second with little loss in image quality.

Keywords: Interactive display, view-dependent rendering, occlu-
sion culling, external-memory algorithm, levels-of-detail

1 Introduction

Recent advances in acquisition, modeling, and simulation technolo-
gies have resulted in large databases of complex geometric models.
These gigabyte-sized datasets consist of tens or hundreds of mil-
lions of polygons. The enormous size of these datasets poses a
number of challenges in terms of interactive display and manipula-
tion on current graphics systems.

View-dependent simplification and rendering have been actively
researched for interactive display of large datasets [Hoppe 1997;
Luebke and Erikson 1997; Xia et al. 1997]. These algorithms have
many appealing properties because they compute different levels-
of-detail (LODs) over different regions of the model. The selection
of appropriate LODs is based on view-position, local illumination
and other properties such as visibility and silhouettes. Most view-
dependent algorithms precompute a vertex hierarchy of the model
and perform incremental computations between successive frames.
This reduces the “popping” artifacts that can occur while switching
between different LODs. The algorithms generally maintain a cut,
or active vertex front, across the hierarchy and use it for mesh re-
finement. The front is traversed each frame and is updated based
on the change in view parameters. In order to preserve the local
topology, dependencies are introduced between simplification op-
erations.

Current representations and refinement algorithms for view-
dependent rendering do not scale well to large models composed
of tens or hundreds of millions of triangles. The refinement cost is
a function of the front size and may be prohibitively expensive for
massive models. Furthermore, resolving dependencies in the vertex
hierarchy can be expensive (e.g. hundreds of milliseconds or more
per frame).

In addition to reducing the refinement cost, it is necessary to
integrate view-dependent simplification algorithms with occlusion
culling and out-of-core rendering. Occlusion culling computes a set
of potentially visible primitives during each frame and is needed
to handle high depth complexity models. Out-of-core rendering
techniques operate with a bounded memory footprint and are re-
quired to render massive models on commodity graphics systems

Figure 1:This image shows the application of Quick-VDR to a complex isosurface
(100M triangles) generated from a very high resolution 3D simulation of Richtmyer-
Meshkov instability and turbulence mixing. The right inset image shows a zoomed
view. The isosurface has high depth complexity, holes, and a very high genus. Quick-
VDR can render it at11− 21 frames per second on a PC with NVIDIA GeForce
FX5950 card and uses a memory footprint of 600MB.

with limited memory. Algorithms for occlusion culling and out-
of-core techniques also perform computations based on the view
parameters. However, no known algorithms integrate conservative
occlusion culling and out-of-core rendering with vertex hierarchies.

Main Contributions: We present a new view-dependent rendering
algorithm (Quick-VDR) for interactive display of massive models.
We use a novel scene representation, aclustered hierarchy of pro-
gressive meshes(CHPM). The cluster hierarchy is used for coarse-
grained view-dependent refinement. The progressive meshes pro-
vide fine-grained local refinement to reduce the popping between
successive frames without high refinement cost.

Our rendering algorithm uses temporal coherence and occlusion
queries for visibility computations at the cluster level. We account
for visibility events between successive frames by combining fetch-
ing and prefetching techniques for out-of-core rendering. Our ren-
dering algorithm introduces one frame of latency to fetch newly
visible clusters from the disk and to avoid stalling the pipeline.

Quick-VDR relies on an out-of-core algorithm to compute a
CHPM that performs a hierarchical cluster decomposition and sim-
plification. We introduce the concept ofcluster dependenciesbe-
tween adjacent clusters to generate crack-free and drastic simplifi-
cations of the original model.

We have implemented and tested Quick-VDR on a commodity
PC with NVIDIA 5950FX Ultra card. To illustrate the generality of
our approach we have highlighted its performance on several mod-
els: a complex CAD environment (12M triangles), scanned mod-
els (372M triangles), and an isosurface (100M triangles). We can
render these models at10 − 35 frames per second using a limited
memory footprint of400 − 600MB.

Advantages: Our approach integrates view-dependent simplifica-
tion, conservative occlusion culling, and out-of-core rendering for
high quality interactive display of massive models on current graph-
ics systems. As compared to prior approaches, Quick-VDR offers
the following benefits:

1. Lower refinement cost: The overhead of view-dependent re-
finement in the CHPM is one to two orders of magnitude lower

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 1

(c) 2004 IEEE. Reprinted, with permission, from
(Proceedings of the conference on Visualization '04, Pages: 131 - 138; ISBN:0-7803-8788-0)

than vertex hierarchies for large models.
2. Massive models:We are able to compute drastic simplifications

of massive models, using hierarchical simplification with cluster
dependencies, necessary for interactive rendering.

3. Runtime performance: Quick-VDR renders CHPMs using a
bounded memory footprint and exploits the features of current
graphics processors to obtain a high frame rate.

4. Image quality: We significantly improve the frame rate with lit-
tle loss in image quality and alleviate popping artifacts between
successive frames.

5. Generality: Quick-VDR is a general algorithm and applicable
to all types of polygonal models, including CAD, scanned, and
isosurface.

Organization: The rest of the paper is organized in the following
manner. We give a brief overview of related work in Section 2 and
describe our scene representation and refinement algorithm in Sec-
tion 3. Section 4 describes our out-of-core algorithm to generate a
CHPM for a large environment. We present the rendering algorithm
in Section 5 and highlight its performance in Section 6. We com-
pare our algorithm with other approaches in Section 7 and discuss
some of its limitations.

2 Related Work

We give a brief overview of the previous work in view-dependent
rendering, out-of-core rendering, occlusion culling, and hybrid ap-
proaches to massive model rendering.

2.1 View-Dependent Simplification

View-dependent simplification of complex models has been an ac-
tive area of research over the last decade. View-dependent render-
ing originated as an extension of the progressive mesh (PM) [Hoppe
1996]. A PM is a linear sequence of increasingly coarse meshes
built from an input mesh by repeatedly applying edge collapse op-
erations. It provides a continuous resolution representation of an
input mesh and is useful for efficient storage, rendering, and trans-
mission.

Xia and Varshney [1997] and Hoppe [1997] organized the PM as
a vertex hierarchy (or view-dependent progressive mesh (VDPM))
instead of a linear sequence. Luebke and Erikson [1997] developed
a similar approach employing octree-based vertex clustering opera-
tions and used it for dynamic simplification. El-Sana and Varshney
[1999] extended these ideas using a uniform error metric based on
cubic interpolants and reduced the cost of runtime tests.

The Multi-Triangulation(MT) is a multiresolution representation
that has been used for view-dependent rendering [L. De Floriani
1997]. Pajarola [2001] improved the update rate of runtime mesh
selection by exploiting properties of the half-edge mesh represen-
tation and applied it to manifold objects. El-Sana and Bachmat
[2002] presented a mesh refinement prioritization scheme to im-
prove the runtime performance.

2.2 Out-of-core Computation and Rendering

Many algorithms have been proposed for out-of-core simplifica-
tion. These include [Lindstrom and Silva 2001; Shaffer and Gar-
land 2001; Cignoni et al. 2003b] for generating static LODs. Hoppe
[1998] extended the VDPM framework for terrain rendering by de-
composing the terrain data into blocks, generating a block hierarchy
and simplifying each block independently. Prince [2000] extended
this out-of-core terrain simplification to handle arbitrary polygonal
models.

El-Sana and Chang [2000] segment a mesh into sub-meshes
such that the boundary faces are preserved while performing edge-
collapse operations. DeCoro and Pajarola [2002] present an exter-
nal data structure for the half-edge hierarchy and an explicit pag-
ing system for out-of-core management of view-dependent render-
ing. Lindstrom [2003] presents an approach for out-of-core simpli-
fication and view-dependent visualization. Cignoni et al. [2003a]
present an efficient method for out-of-core rendering of terrain data.

2.3 Occlusion Culling

The problem of computing portions of the scene visible from a
given viewpoint has been well-studied [Cohen-Or et al. 2001].

Figure 2:Scan of Michelangelo’s St. Matthew.This9.6GB scanned model consists
of 372M triangles. The right inset image shows clusters in color from a64K cluster
decomposition of the model. Quick-VDR is able to render this model at13−23 frames
per second using a memory footprint of600MB.

Many specialized object-space algorithms have been developed for
architectural models or urban environments. For general environ-
ments, image-based occlusion representations are widely used and
the resulting algorithms use graphics hardware to perform visibil-
ity computations [Greene et al. 1993; Zhang et al. 1997; Klosowski
and Silva 2001]. In some cases, additional graphics processors have
been used for visibility computations [Wonka et al. 2001; Govin-
daraju et al. 2003]. All of these algorithms load the entire scene
graph into main memory.

2.4 Hybrid Algorithms for Rendering Acceleration

Many hybrid algorithms have been proposed that combine model
simplification with visibility culling or out-of-core data manage-
ment. The Berkeley Walkthrough system [Funkhouser et al. 1996]
combines cells and portals based on visibility computation algo-
rithms with static LODs for architectural models. The MMR sys-
tem [Aliaga et al. 1999] combines static LODs with occlusion
culling and out-of-core computation and is applicable to models
that can be partitioned into rectangular cells. The QSplat sys-
tem [Rusinkiewicz and Levoy 2000] uses a compact bounding vol-
ume hierarchy of spheres for view-frustum and backface culling,
level-of-detail control and point-based rendering. Erikson et al.
[2001] and Samanta et al. [2001] use hierarchies of static LODs
(HLODs) and view-frustum culling. Govindaraju et al. [2003] inte-
grate HLODs and conservative occlusion culling for interactive dis-
play of large CAD environments. Yoon et al. [2003] presented an
in-core algorithm to combine view-dependent simplification with
conservative occlusion culling. El-Sana et al. [2001] combined
view-dependent rendering with approximate occlusion culling. The
iWalk system [Correa et al. 2002] partitions the space into cells
and performs out-of-core rendering of large architectural and CAD
models on commodity hardware using non-conservative occlusion
culling.

3 Overview

In this section we introduce some of the terminology and represen-
tations used by Quick-VDR. We also give a brief overview of our
approach for out-of-core hierarchical simplification and rendering.

3.1 View-Dependent Rendering of Massive Datasets

Most of the prior work on view-dependent simplification and ren-
dering of large datasets uses vertex hierarchies such as VDPM.
These approaches augment each edge collapse withdependencyin-
formation related to the local neighborhood at the time of the edge
collapse during construction. This information is used to prevent
“fold-overs” whereby a face normal is reversed at runtime. How-
ever, many issues arise in applying these approaches to massive
datasets composed of tens or hundreds of millions of triangles.
Traversing and refining anactive vertex frontacross a vertex hier-
archy composed of tens of millions of polygons can take hundreds
of milliseconds per frame. Also, resolving the dependencies can
lead to non-localized memory accesses which can be problematic
for out-of-core rendering. Moreover, performing occlusion culling
and out-of-core rendering using vertex hierarchies can become ex-
pensive.

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 2 of 8

Figure 3: Power Plant.A rendering of the power plant model using our runtime
algorithm. This model consists of over 12M triangles and has high depth complexity.
It is rendered at an average of33 FPS using400MB of main memory by our system.

3.2 Scene Representation

We propose a novel representation, a clustered hierarchy of pro-
gressive meshes (CHPM), for view-dependent rendering of massive
datasets. The CHPM consists of two parts:

Cluster Hierarchy: We represent the entire dataset as a hierarchy
of clusters, which are spatially localized mesh regions. Each clus-
ter consists of a few thousand triangles. The clusters provide the
capability to perform coarse-grained view-dependent (or selective)
refinement of the model. They are also used for visibility computa-
tions and out-of-core rendering.

Progressive Mesh:We precompute a simplification of each cluster
and represent a linear sequence of edge collapses as a progressive
mesh (PM). The PMs are used for fine-grained local refinement and
to compute an error-bounded simplification of each cluster at run-
time.

We refine the CHPM at two levels. First we perform a coarse-
grained refinement at the cluster level. Next we refine the PMs of
the selected clusters. The PM refinement provides smooth LOD
transitions.

3.2.1 Cluster Hierarchy

Conceptually, a cluster hierarchy is similar to a vertex hierarchy.
However, every node of a cluster hierarchy represents a set of ver-
tices and faces rather than a single vertex. At runtime, we maintain
an active cluster list(ACL), which is similar to an active front in
a vertex hierarchy and perform selective refinement on this list via
the following operations:

• Cluster-split: A cluster in the active cluster list is replaced by
its children.

• Cluster-collapse:Sibling clusters are replaced by their parent.

These operations are analogous to the vertex split and collapse in
a vertex hierarchy but provide a more coarse-grained approach to
selective refinement.

3.2.2 Progressive Meshes and Refinement

A PM is a mesh sequence built from an input mesh by a sequence
of edge collapse operations. The inverse operation, a vertex split,
restores the original vertices and replaces the removed triangles. We
use the notationM0

A to represent the most simplified orbase mesh
of clusterA. Moreover,M i

A is computed by applying a vertex split
operation toM i−1

A (as shown in Fig. 4). Each PM is stored as a
base mesh and a series of vertex split operations. For each cluster
in the ACL we select the position in the edge collapse sequence
that meets the allowed error for the cluster with the least number
of faces. We take advantage of temporal coherence by starting with
the position from the previous frame. In practice, refining a PM is
a very fast operation and requires no dependency checks.

The PMs allow us to perform smooth LOD transitions at the level
of a single cluster. In order to perform globally smooth LOD tran-
sitions we require that the changes to the ACL between successive
frames are also smooth. If clusterC is the parent of clustersA and
B, we set the highest resolution mesh approximation of clusterC ’s
PM to be the union of the base meshes of clusterA andB’s PMs.
That is,Mk

C = M0
A

⋃
M0

B (see Fig. 4). Therefore, the cluster-
collapse and cluster-split operations introduce no popping artifacts.

ACL

Frustum Culled Cluster

Occluded Cluster

Visible Cluster

Inactive Cluster

PMC: M0
C? M1

C? …Mk
C

A B

C

Mk
C=M0

A» M0
B

PMA: M0
A? M1

A? …Mi
A

PMB: M0
B? M1

B? …Mj
B

indicates vertex split

Figure 4:CHPM: Clustered Hierarchy of Progressive Meshes.At runtime the active
cluster list (ACL) represents a front in the cluster hierarchy containing the clusters of
the current mesh (left). Clusters on the ACL are classified as visible, frustum culled,
or occlusion culled. The PMs (right) of visible clusters are refined to meet the screen
space error bound by selecting a mesh from the PM mesh sequence. When the ACL
changes, smooth LOD transitions occur because the most refined mesh of each PM is
equal to the union of the base meshes of its children.

3.3 Simplification Error Bounds

A key issue is computation of errors associated with the LODs gen-
erated at runtime. Each cluster contains progressive mesh that can
be refined within a range of object space error values. We refer to
this range as theerror-rangeof a cluster and is expressed as a pair:
(min-error, max-error). Themax-erroris the error value associated
with the base mesh (M0) and themin-error is the error value asso-
ciated with the highest resolution mesh (e.g.M i

A, M j
B , andMk

C in
Fig. 4).

The allowed runtime error is expressed in screen-space as a
pixels-of-error(POE) value. Using the POE value and the mini-
mum distance between a cluster and the viewpoint, we compute the
maximum object-space error that is allowed for the cluster, called
theerror-bound. View-dependent refinement of each cluster based
on theerror-boundwill be explained in Sec. 5.1.

3.4 Preprocess

Given a large dataset, we compute a CHPM representation. Our
out-of-core algorithm begins by decomposing the input mesh into
a set of clusters. To support transparent accesses on a large mesh
during simplification, we preserve all inter-cluster connectivity in-
formation. The clusters are input to a cluster hierarchy generation
algorithm which builds a balanced hierarchy in a top-down manner.
We perform out-of-core hierarchical simplification using the cluster
hierarchy.

Each cluster should be independently refinable at runtime for ef-
ficiency and out-of-core rendering. For this reason, boundary con-
straints on simplification are introduced during hierarchical simpli-
fication. While guaranteeing crack-free simplifications at runtime,
these constraints can prevent drastic simplification and may dra-
matically increase the number of faces rendered at runtime. To al-
leviate these problems we introducecluster dependenciesthat allow
boundary simplification while maintaining crack-free rendering at
runtime. The role of the dependencies in simplification is detailed
in Sec. 4.4 and at runtime in Sec. 5.2.

3.5 Rendering Algorithm

Quick-VDR uses the CHPM as a scene representation for out-
of-core view-dependent rendering and occlusion culling. Coarse-
grained selective refinement is accomplished by applying cluster-
split and cluster-collapse operations to the ACL. Cluster dependen-
cies assure that consistent cluster boundaries are rendered and that
we are able to compute drastic simplifications. We use temporal co-
herence to accelerate refinement and to perform occlusion culling.

Quick-VDR uses the operating system’s virtual memory man-
ager through a memory mapped file for out-of-core rendering. In
order to overcome the problem of accurately predicting the oc-
clusion events, we introduce one frame of latency in the runtime
pipeline. This allows us to load newly visible clusters to avoid
stalling the rendering pipeline.

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 3 of 8

4 Building a CHPM

In this section we present an out-of-core algorithm to compute CH-
PMs for massive models. Our algorithm proceeds in three steps.
First, we decompose the input mesh into a set of clusters. The
decomposition occurs in several passes to avoid loading the entire
input mesh at once. Next, we construct the cluster hierarchy by
repeatedly subdividing the mesh in a top-down manner. Finally,
we compute progressive meshes for each cluster by performing a
bottom-up traversal of the hierarchy.

4.1 Cluster Decomposition

The clusters form the underlying representation for both the prepro-
cessing step as well as out-of-core view-dependent rendering with
occlusion culling. We decompose the model into clusters, which
are spatially localized portions of the input mesh. The generated
clusters should be nearly equally sized in terms of number of trian-
gles for several reasons. This property is desirable for out-of-core
mesh processing to minimize the memory requirements. If the clus-
ter size as well as the number of clusters required in memory at one
time are bounded, then simplification and hierarchy construction
can be performed with a constant memory footprint. Moreover,
enforcing spatial locality and uniform size provides higher perfor-
mance for occlusion culling and selective refinement.

The out-of-core cluster decomposition algorithm proceeds in
four passes. The first three passes only consider the vertices of the
original model and create the clusters while the fourth assigns the
faces to the clusters. We use a variation of the cluster decomposition
algorithm for out-of-core compression of large datasets presented in
[Isenburg and Gumhold 2003]. However, our goal is to decompose
the mesh for out-of-core processing and view-dependent rendering.
As a result, we only compute and store the connectivity informa-
tion used by the simplification algorithm. The four passes of the
algorithm are:

First vertex pass: We compute the bounding box of the mesh.
Second vertex pass:We compute balanced-size clusters of ver-

tices (e.g.2K vertices). Vertices are assigned to cells of a uniform
3D grid which may be subdivided to deal with irregular distribu-
tion of geometry. A graph is built with nodes representing the non-
empty cells weighted by vertex count. Edges are inserted between
each cell and itsk nearest neighbors using an approximate nearest
neighbor algorithm [Arya and Mount 1993] (e.g.k=6). We use
a graph partitioning algorithm [Hendrickson and Leland 1995] to
partition the graph and compute balanced-size clusters.

Third vertex pass: Based on the output of the partitioning, we
assign vertices to clusters and reindex the vertices. The new index
is a cluster/vertex pair that is used to locate the vertex in the de-
composition. A mapping is created that maps the original vertex
indices to the new pair of indices. This mapping can be quite large
so it is stored in a file that can be accessed in blocks with LRU pag-
ing to allow the remainder of the preprocess to operate in a constant
memory size.

Face pass:In the final pass, we assign each face to a single clus-
ter that contains at least one of its vertices. The mapping file created
in the previous pass is used to locate the vertices. The vertices of
faces spanning multiple clusters are marked as constrained for sim-
plification. These vertices make up the boundaries between clusters
and are referred to asshared verticeswhile the remaining vertices
are referred to asinterior vertices.

The resulting cluster decomposition consists of manageable
mesh pieces that can be transparently accessed in an out-of-core
manner for hierarchy generation and simplification, while preserv-
ing all the original connectivity information. Different clusters
computed for the St. Matthew model are shown in Fig. 2.

4.2 Cluster Hierarchy Generation

In this section, we present an algorithm to compute the cluster hi-
erarchy. The clusters computed by the decomposition algorithm
described in the previous section are used as the input to hierarchy
generation. Our goal is to compute a hierarchy of clusters with the
following properties:

Nearly equal cluster sizeAs previously discussed, consistent clus-
ter size is important for memory management, occlusion culling,
and selective refinement. Clusters at all levels of the hierarchy must
possess this property.
Balanced cluster hierarchy During hierarchical simplification,
cluster geometry is repeatedly simplified and merged in a bottom
up traversal. The hierarchy must be well balanced so that merged
clusters have nearly identicalerror-ranges.
Minimize shared vertices The number of shared vertices at the
cluster boundary should be minimized for simplification. Other-
wise, in order to maintain consistent cluster boundaries, the sim-
plification will be over-constrained and may result in lower fidelity
approximations of the original model.
High spatial locality The cluster hierarchy should have high spatial
locality for occlusion culling and selective refinement.

We achieve these goals by transforming the problem of comput-
ing a cluster hierarchy into a graph partitioning problem and com-
pute the hierarchy in a top down manner. Each cluster is repre-
sented as a node in a graph, weighted by the number of vertices.
Clusters are connected by an edge in the graph if they share ver-
tices or are within a threshold distance of each other. The edges
are weighted by the number of shared vertices and the inverse of
the distance between the clusters, with greater priority placed on
the number of shared vertices. The cluster hierarchy is then con-
structed in a top-down manner by recursively partitioning the graph
into halves considering the weights, thus producing a binary tree.
The weights guide the partitioning algorithm [Karypis and Kumar
1998] to produce clusters with spatial locality while tending to-
wards fewer shared vertices. The top down partitioning creates an
almost balanced hierarchy.

4.3 Out-of-Core Hierarchical Simplification

We simplify the mesh by traversing the cluster hierarchy in a
bottom-up manner. Each level of the cluster hierarchy is simpli-
fied in a single pass so the simplification requiresdlog2(n) + 1e
passes wheren is the number of leaf clusters. During each pass
only the cluster being simplified and clusters with which it shares
vertices must be resident in memory.

Simplification operations are ordered by a priority queue based
upon quadric errors [Garland and Heckbert 1997]. We build the
progressive meshes (PMs) for each cluster by applying “half-edge
collapses”. The half-edge collapse, in which an edge is contracted
to one of the original vertices, is used to avoid creation of new ver-
tices during simplification. Edges adjacent to shared vertices are not
collapsed during simplification. The edge collapses and associated
error values are stored along with the most refined mesh of a PM.
After creating the PM, theerror-rangeof the cluster is computed
based on the errors of the PM’s original and base mesh.

When proceeding to the next level up the hierarchy, the mesh
within each cluster’s PM is initialized by merging the base meshes
of the children. Constraints on vertices that are shared by two clus-
ters being merged are removed thereby allowing simplification of
the merged boundary. Since the intermediate clusters should be
nearly the same size as the leaf level clusters, each cluster is sim-
plified to half its original face count at each level of the hierarchy.

As simplification proceeds, a file is created for the progressive
mesh of each cluster. However, handling many small files at run-
time is inefficient. The PM files are merged into one file which can
be memory mapped to allow the OS to perform memory manage-
ment of the PMs and optimize disk access patterns during runtime
rendering. The file is stored in a breadth first manner in an attempt
to match the probable access pattern during runtime refinement.

4.4 Boundary Constraints and Cluster Dependencies

In order to support out-of-core rendering and to allow efficient
refinement at runtime, the PMs of each cluster should be inde-
pendently refinable while still maintaining a crack-free consistent
mesh. To achieve this, our algorithm detects the shared vertices and
restricts collapsing the edges adjacent to them during hierarchical
simplification. As simplification proceeds up the hierarchy, these
constraints are removed because the clusters sharing the vertices
have been merged.

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 4 of 8

While these constraints assure crack-free boundaries between
clusters at runtime, they can be overly restrictive. After simpli-
fying several levels of the hierarchy most of the vertices in the base
mesh of the PM are shared vertices. As illustrated in Fig. 5 this
problem arises along boundaries between clusters that are merged
at higher levels in the hierarchy. This can degrade the quality of
simplification, and impedes drastic simplification. In Fig. 5 notice
that the boundaries between clustersA andB and clustersC andD
are merged in the next level of the hierarchy (E andF). However,
the boundary betweenB andC is not merged until higher up the
hierarchy, but it is already drastically under-simplified compared to
the interior. This constraint problem is common to many hierar-
chical simplification algorithms that decompose a large mesh for
view-dependent rendering [Hoppe 1998; Prince 2000] or compute
hierarchies of static LODs (HLODs) [Erikson et al. 2001; Govin-
daraju et al. 2003; Samanta et al. 2001].

We introducecluster-level dependenciesto address this con-
straint problem. The intuition behind dependencies is that precom-
puted simplification constraints on shared vertices can be replaced
by runtime dependencies. During hierarchical simplification, we
may collapse an edge adjacent to a shared vertex. The clusters
sharing that vertex are marked as dependent upon each other. This
boundary simplification occurs on the merged mesh prior to PM
generation for the cluster. In Fig. 5 clustersE andF are marked
dependent and thereby allow the boundary to be simplified.

At runtime, splitting a cluster forces all its dependent clusters to
split so that the boundaries are rendered without cracks. Likewise,
a parent cluster cannot be collapsed unless all of its dependent clus-
ters have also been collapsed. In Fig. 5, clustersE andF must be
split together and clustersA, B, C, andD must be collapsed to-
gether (assumingE andF are dependent). For example, if clusters
B andF are rendered during the same frame, their boundary will
be rendered inconsistently and may have cracks.

Although cluster dependencies allow boundary simplification,
we need to use them carefully. Since splitting a cluster forces its
dependent clusters to split, dependencies will cause some clusters
to be rendered that are overly conservative in terms of theirerror-
bound. Furthermore, the boundaries change in one frame which
may cause popping artifacts. This can be exacerbated by “chained”
dependencies in which one cluster is dependent upon another clus-
ter which is in turn dependent upon a third cluster, and so on.

To avoid these potential runtime problems, we prioritize clusters
for boundary simplification. At each level of hierarchical simplifi-
cation the clusters are entered into a priority queue. Priorities are
assigned as the ratio of average error of shared vertices to the av-
erage error of interior vertices. A cluster,A, is removed from the
head of the priority queue. For each cluster,B, that shares at leastj
(e.g. 5) vertices withA we apply boundary simplification between
A andB if the following conditions are met:

1. A andB will not be merged within a small number of levels up
the cluster hierarchy (e.g., 2).

2. A andB have similarerror-range.
3. A dependency betweenA andB will not introduce a chain (un-

less all the clusters in the chain share vertices).

This is repeated for each cluster in the priority queue. The first
condition avoids creating dependencies between clusters that are
resolved within only a few additional hierarchy levels. The second
condition discourages dependencies between those clusters that are
unlikely to be simultaneously present in the ACL at runtime. The
third condition prevents long dependency chains and preserves se-
lective refinement at the cluster level. The cluster dependencies en-
sure that a sufficient number of shared vertices are collapsed at each
level of the hierarchy while still generating and rendering crack-free
simplifications at runtime.

5 Interactive Out-of-Core Display

In the previous section, we described an algorithm to compute the
CHPM. In this section, we present a novel rendering algorithm that
uses the CHPM for occlusion culling, view-dependent refinement
and out-of-core rendering. The entire representation including the

CB

Cluster Hierarchy

A D

E F

Level n

Level n+1

Cluster B Cluster C Cluster DCluster A

Cluster E Cluster F

Cluster E Cluster F

Level n (Base Mesh)

Level n+1 (Most Refined Mesh, No Dependency)

Level n+1 (Most Refined Mesh, With Dependency)

dependency

interior vertex
shared vertex

Figure 5:Dependencies.After simplifying leveln of the hierarchy the boundaries
AB, BC, and CD are all under-simplified because they are constrained. When
initializing the base meshes ofE andF prior to simplifying leveln + 1, two of these
boundaries,AB andCD, are no longer constrained because they have been merged.
The boundary BC was not merged and will remain under-simplified. We can, however,
simplify the faces along this boundary if we markE andF as dependent.

PMs is stored on the disk. We load the coarse-grained cluster hi-
erarchy into main memory and keep a working set of PMs in main
memory. The cluster hierarchy without the PMs is typically a few
megabytes for our benchmark models (e.g.5MB for St. Matthew
model). We perform coarse-grained refinement at the cluster level
and fine-grained refinement at the level of PMs. We introduce a
frame of latency in the rendering pipeline in order to fetch the PMs
of newly visible clusters from the disk and avoid stalls in the ren-
dering pipeline.

5.1 View-Dependent Refinement

Our algorithm maintains an active cluster list (ACL), which is a cut
in the tree representing the cluster hierarchy. During each frame, we
refine the ACL based on the current viewing parameters. Specifi-
cally, we traverse the ACL and compute theerror-boundfor each
cluster. Each cluster on the active front whoseerror-boundis less
than themin-error of its error-range is split because the PM can-
not meet theerror-bound. Similarly, sibling clusters that have a
greatererror-boundthanmax-errorare collapsed. Each PM in the
ACL is refined prior to being rendered by choosing the mesh in
the PM mesh sequence with the lowest face count that meets the
error-bound.

5.2 Handling Cluster Dependencies

Our simplification algorithm introduces dependencies between the
clusters so that we can simplify their boundaries during the prepro-
cess. We use these dependencies to generate a crack-free simpli-
fication at runtime. Cluster-collapses occur to reduce the polygon
count in the current refinement. However, prior to collapsing a pair
of sibling clusters we must check the parent’s dependencies. If the
children of any dependent clusters cannot also be collapsed, then
the initial cluster collapse cannot occur. These checks occur at the
cluster level and are relatively inexpensive.

5.3 Rendering Algorithm

Our rendering algorithm combines occlusion culling, view-
dependent refinement, and out-of-core rendering. We first explain
the sequence of operations performed during each frame for occlu-
sion culling and view-dependent refinement. After that we present
the algorithm for out-of-core rendering by introducing one frame
of latency. This extra frame time is used to load the PMs of newly
visible clusters from the disk.

5.4 Conservative Occlusion Culling

We exploit temporal coherence in occlusion culling. Each frame
our algorithm computes a potentially visible set of clusters (PVS)
and a newly visible set (NVS), which is a subset of the PVS. The

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 5 of 8

PVS for framei is denoted asPV Si and the NVS asNV Si. An
occlusion representation (ORi), represented as a depth buffer, is
computed by renderingPV Si−1 as an occluder set. UsingORi

we determinePV Si. The overall rendering algorithm is:
Step 1: Refine ACL. The ACL is refined as described in Sec. 5.1
based on the camera parameters for framei.
Step 2: RenderPV Si−1 to computeORi: We refine clusters in
PV Si−1 based on the viewpoint, compute a simplification for each
cluster and render them to computeORi. ORi is represented as
a depth map that is used for occlusion culling. These clusters are
rendered to both the depth and color buffers.
Step 3: ComputeNV Si and PV Si: The bounding boxes of all
the clusters in the ACL are tested for occlusion againstORi. This
test is performed with hardware occlusion queries at the resolution
of image precision.PV Si contains all the clusters with visible
bounding boxes, whileNV Si contains the clusters with visible
bounding boxes that were not inPV Si−1.
Step 4: RenderNV Si: The PMs of clusters inNV Si are refined
and rendered, generating the final image for framei.

5.5 Out-of-Core Rendering

Our algorithm works with a fixed memory footprint of main mem-
ory and graphics card memory. The entire cluster hierarchy is in
main memory and we fetch the PMs of the clusters needed for the
current frame as well as prefetch some PMs of clusters for subse-
quent frames. Additionally, we store the vertices and faces of active
clusters in GPU memory. By rendering the primitives directly from
GPU memory, AGP bus bandwidth requirement is reduced and we
obtain an increased triangle throughput.

Our out-of-core rendering algorithm uses the paging mechanism
of the operating system by mapping a file into read-only logical ad-
dress space [Lindstrom and Pascucci 2002]. To fully take advantage
of this mechanism, we store our view-dependent representation in a
memory coherent manner, as described in Sec 4.3. We use two sep-
arate threads: a fetch thread and a main thread. The fetch thread is
used to prepare data for PMs that are likely to be used in the future.
This thread provides hints to OS and converts the PM data to the
runtime format while a main thread handles refinement, occlusion
culling, and rendering.

5.5.1 LOD Prefetching

When we update clusters in the ACL by performing cluster-collapse
and cluster-split operations, the children and parent clusters are ac-
tivated. The PMs of these clusters may not be loaded in the main
memory and GPU memory. This can stall the rendering pipeline.
To prevent these stalls whenever a cluster is added to the ACL we
prefetch its parent and children clusters. Thus, we attempt to keep
one level of the hierarchy above and below the current ACL in main
memory.

5.5.2 Visibility Fetching

Predicting visibility or occlusion events is difficult, especially in
complex models with high depth complexity and small holes. As a
result, our algorithm introduces a frame of latency in the rendering
pipeline and fetches the PMs of the newly visible cluster in the ACL
from the disk.

In our rendering algorithm visibility events are detected in Step
3, and the newly visible clusters are added toNV Si (Sec. 5.4).
These clusters are then rendered in Step4, which will likely not
allow enough time to load these clusters without stalling. Step2,
renderingORi, is the most time consuming step of the rendering
algorithm. Therefore, we delay the rendering ofNV Si until the
end of Step2 of the next frame and perform rendering ofPV Si−1

and fetching PMs from the disk in parallel using a fetch thread. Our
rendering pipeline is reordered to include a frame of latency thereby
increasing the time allowed to load a cluster to avoid stall.

During framei we perform Steps1 through3 of the rendering
algorithm with the camera parameters for framei. However, we
perform Step4 for frame i − 1 and generate the final image for
framei − 1. The overall pipeline of the algorithm proceeds as:1i,
2i, 3i, 4i−1, 1i+1, 2i+1, 3i+1, 4i, . . ., wherenj refers to Stepn

NVSi

1i Refine ACL

2i Render PVSi-1 to ORi

3i Compute NVSi & PVSi

4i-1 Render NVSi-1

PVSi

Frame i Frame i+1

Buffer 0 Buffer 1

1i+1 Refine ACL

2i+1 Render PVSi to ORi+1

3i+1 Compute NVSi+1 & PVSi+1

4i Render NVSiNVSi-1

PVSi-1

NVSi+1

PVSi+1

Figure 6: Our Rendering Pipeline.In framei occlusion culling is performed for
framei but the final image for framei − 1 is displayed. This allows extra time for
loading the PMs of newly visible clusters. Two off-screen buffers facilitate this inter-
leaving of successive frames. The partial rendering of framei is stored in one buffer
while occlusion culling for framei + 1 occurs in the other buffer.

of framej (as shown in Fig. 6). In this reordered pipeline, the PM
of a cluster inNV Si can be loaded anytime from step3i until step
2i+1 when it must be rendered forORi+1. However, rendering the
already loaded PMs inOR consumes most of the frame time, so
there is almost a full frame time to loadNV S.

To implement this pipeline, we use a pair of off-screen buffers.
One buffer holds the partial rendering of a frame from Step2 so
that it may be composited with the newly visible clusters in Step4
the following frame. The odd numbered frames use the first buffer
while the even-numbered frames use the second buffer, so that each
consecutive pair of frames can render to separate buffers. Fig. 6
illustrates how the buffers are used for two consecutive frames.

6 Implementation and Performance

In this section we describe our implementation and highlight its
performance on massive models.

6.1 Implementation

We have implemented our out-of-core simplification and runtime
system on a dual2.4GHz Pentium-IV PC, with1GB of RAM and a
GeForce Ultra FX5950 GPU with128MB of video memory. Our
system runs on Windows XP and uses the operating system’s vir-
tual memory through memory mapped files. Windows XP imposes
a 2GB limitation for mapping a file to user-addressable address
space. We overcome this limitation by mapping a32MB portion
of the file at a time and remapping when a PM is required from
outside this range.

We use the METIS graph partitioning library [Karypis and Ku-
mar 1998] for cluster computation. We use NVIDIA OpenGL ex-
tension GLNV occlusionquery to perform occlusion queries. We
are able to perform an average of approximately400K occlusion
queries per second on the bounding boxes.

We achieve high throughput from graphics cards by storing the
mesh data on the GPU, thereby reducing the data transferred to
the GPU each frame. We use the GLARB vertexbuffer object
OpenGL extension that performs GPU memory management for
both the vertex and the face arrays. However, we generate some
new faces during each frame by performing vertex splits or edge
collapse operations during local refinement of each PM. In prac-
tice, only a small number of PMs require refinement during each
frame. As a result, we only transmit the faces of these PMs to the
GPU and the other faces are cached in the GPU memory.

6.2 Massive Models

Our algorithm has been applied to three complex models, a coal-
fired power plant composed of more than12 million polygons and
1200 objects (Fig. 3), the St. Matthew model consisting of a sin-
gle 372 million polygon object (Fig. 2), and an isosurface model
consisting of100 million polygons also originally represented as a
single object (Fig. 1). The details of these models are shown in Ta-
ble 1. We generated paths in each of our test models and used them
to test the performance of our algorithm. These paths are shown in
the accompanying video.

6.3 Performance

We have applied our out-of-core CHPM generation preprocess to
each of the models. Table 1 presents preprocessing time for each

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 6 of 8

Model PP Isosurface St. Matthew

Triangles (M) 12.2 100 372

Original Size (MB) 485 2, 543 9, 611
Num Clusters (K) 5.8 32 65
Memory footprint used (MB) 32 256 512
Size of CHPM (MB) 625 3, 726 13, 992
Processing time (min) 64 350 2, 369

Table 1: PreprocessPreprocess timings and storage requirements for test models.
We are able to compute a CHPM for each environment using our out-of-core algorithm
and a memory footprint of32− 512MB.

model on the PC. Hierarchical simplification takes approximately
85% of the preprocess time. The remainder of the time is dominated
by the face pass of the cluster decomposition. This pass makes
random accesses to the out-of-core vertex index mapping table to
locate face vertices in the cluster decomposition. We could use an
external sort of the mapping table to improve access patterns as in
[Lindstrom and Silva 2001].

We are able to render all these models at interactive rates (10-30
frames per second) on a single PC. Fig. 7 illustrates the perfor-
mance of the system on a complex path in isosurface model. Table
2 shows the average frame rate, front size, and number of edge col-
lapse and vertex split operations performed for paths in each of our
test models. Table 3 shows the average breakdown of the frame
time for each model. Rendering costs dominate the frame time.

6.3.1 Out-of-core

Our system relies on the underlying operating systems virtual mem-
ory management for paging of PMs and, as discussed in Sec. 5.5.2,
uses a frame of latency to hide load times of newly visible clusters.
The frame rates of a sample path of the isosurface model are shown
in Fig. 7.

6.3.2 Occlusion culling

Occlusion culling is very important for rendering models with high
depth complexity such as the power plant and isosurface models.
Fig. 7 highlights the benefit of occlusion culling by comparing the
frame rate of our system over a path with occlusion culling enabled
and disabled. On average the frame rate is25 − 55% higher when
occlusion culling enabled.

7 Comparisons and Limitations

In this section, we analyze the performance of Quick-VDR. We also
highlight the benefits over prior approaches and describe some of
its limitations.

Refinement Cost of CHPMs vs. Vertex Hierarchies:Most of the
earlier algorithms for view-dependent simplification use a vertex
hierarchy. These algorithm compute an active vertex front in the
hierarchy and handle dependencies at the vertex or edge level.

We compared the refinement cost of CHPM with an implementa-
tion of a vertex hierarchy (VDPM) for an isosurface with about1M
triangles (see Table 4). We have observed that CHPM refinement
cost is one-two orders of magnitude lower, even without occlusion
culling. This lowered cost is due to the following factors:

1. Our clusters consist of thousands of triangles. As a result, the
size of ACL is typically more than one-two orders of magnitude
smaller than the size of active front in a vertex hierarchy.

2. We perform coarse-grained refinement operations at the clus-
ter level and use a single conservative error bound for an entire
cluster. Therefore, refinement of individual PMs is much faster
than it would be by performing per-vertex computations across
an active vertex front.

3. Handling dependencies at the cluster level is significantly
cheaper than those at the vertex level.

Conservative Occlusion Culling:Quick-VDR performs conserva-
tive occlusion culling up to image precision. The occlusion com-
putations are performed at the cluster level. The size of ACL is
typically a few hundred clusters so performing occlusion culling

Model POE Avg Avg Front Avg Avg
FPS Size # Ecol/Vsplit # Tri(K)

Power plant 1 33 1219 410 403
Isosurface 40 16 937 164 765
St. Matthew 1 17 366 802 771

Table 2: Runtime Performance:We highlight the performance on the three bench-
marks. The average frame rate, average front size, and average number of edge col-
lapse and vertex splits are presented for a sample path in each model. All the data is
acquired at512× 512 resolution. We use a400MB memory footprint for the power
plant model and600MB for other models.

Model Refining Occlusion Culling Rendering
Power plant 3.6% 10.7% 85.7%
Isosurface 1.9% 1.9% 96.2%
St. Matthew 4.2% 1.4% 94.4%

Table 3: Runtime Timing Breakdown.This table shows the percentage of frame
time spent on the three major computations of the runtime algorithm. More than85%
of the time is spent in rendering the potential occluders and visible primitives.

takes1 − 10% of the total frame time.

Storage Overhead:Our CHPM implementation requires on aver-
age88MB per million vertices. This is low compared to Hoppe’s
[1997] VDPM representation (224MB) and XFastMesh (108MB)
[DeCoro and Pajarola 2002]. Moreover, CHPM can easily repre-
sent models with non-manifold topologies.

Out-of-Core Computation: Our out-of-core preprocess is able to
construct a CHPM from large datasets using a constant-sized mem-
ory footprint. Moreover, our hierarchical simplification algorithm
produces nearly in-core quality progressive meshes and preserves
the mesh connectivity.

Our current implementation does not achieve the same perfor-
mance of [Lindstrom 2003] in terms of triangles simplified per sec-
ond. Lindstrom [2003] applies external-memory sorts to his out-
of-core data structures to improve the access patterns and we can
also use them to improve the performance of our system. However,
Lindstrom [2003] does not preserve all the faces and vertices in the
leaf level of the hierarchy.

Quick-VDR introduces a frame of latency to fetch PMs of
the newly visible cluster from the disk. This is needed to take
into account the visibility events that can occur between succes-
sive frames. Earlier algorithms that combine visibility computa-
tions with out-of-core rendering decompose large CAD environ-
ments into rectangular cells and do not introduce additional latency
[Aliaga et al. 1999; Correa et al. 2002]. However, it may not be
easy to decompose large isosurfaces for visibility-based prefetch-
ing. Moreover, the MMR system [Aliaga et al. 1999] uses image-
based impostors and can introduce additional popping artifacts. The
iWalk system [Correa et al. 2002] performs approximate occlusion
culling.

Application to Massive Models: Our algorithm has been applied
to complex models composed of a few hundred million polygons.
In contrast, view-dependent algorithms were applied to scanned
models with8 − 10 million triangles [DeCoro and Pajarola 2002],
2M triangle isosurface and the power plant model [Yoon et al. 2003]
or were combined with approximate occlusion culling [El-Sana and
Bachmat 2002]. Lindstrom’s algorithm [2003] does not perform oc-
clusion culling and has been applied it to a47M triangle isosurface.
It is difficult to perform a direct comparisons with these approaches
as they used an older generation of the hardware and it may not have
the same set of features (e.g. occlusion queries). Yoon et al. [2003]
also used clusters for occlusion culling. However, their underly-
ing representation is a vertex hierarchy and their algorithm does not
scale to massive models. The main reasons for the high frame-rate
performance of Quick-VDR on massive models are:

• Low refinement cost during each frame.
• High GPU throughput obtained by rendering PMs directly from

GPU memory
• Significant occlusion culling based on the cluster hierarchy.
• Out-of-core computations at the cluster level.

Limitations The main limitation of our approach is one frame of

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 7 of 8

Method Vertex Hierarchy CHPM
Num Dependency Checks 4.2M 223
Refinement Time(ms) 1, 221 32

Table 4: Refinement Performance.A comparison of refinement cost between a
CHPM and vertex hierarchy in a1M triangle isosurface. This table measures the
time to fully refine the mesh from the base mesh.

latency in the rendering pipeline. Our visibility fetching scheme
ameliorates the stalling problem but does not eliminate the prob-
lem. The set of dynamic LODs or simplifications computed by the
CHPM could be smaller than the ones computed using a full ver-
tex hierarchy. This is because of our decomposition of the model
into a cluster and representation of each cluster as a linear sequence
of edge collapses. Moreover, cluster dependencies that force us to
perform additional cluster-split operations might cause popping ar-
tifacts. We use one error bound for the entire cluster. As a result our
simplification error bounds can be more conservative as compared
to the ones used in vertex hierarchies and we may render more tri-
angles per frame to guarantee the screen-space POE bound. Our
occlusion culling algorithm assumes high temporal coherence be-
tween successive frames. Its effectiveness varies as a function of
coherence between successive frames.

8 Conclusion and Future Work

We have presented Quick-VDR, a novel algorithm for view-
dependent rendering of massive models. Quick-VDR represents
the scene using a CHPM and provides us with the ability to per-
form coarse-grained as well as fine-grained refinement. It sig-
nificantly reduces the refinement cost as compared to earlier ap-
proaches based on vertex hierarchies. The cluster hierarchy enables
occlusion culling and out-of-core rendering. Quick-VDR relies on
an out-of-core algorithm to compute a CHPM and combines view-
dependent simplification, occlusion culling and out-of-core render-
ing. Quick-VDR has been applied to massive models with a few
hundred million triangles and can render them at interactive rates
using commodity graphics systems.

Many avenues for future work lie ahead. In addition to overcom-
ing the limitations of the current approach, we would like to use
geomorphing [Hoppe 1996] to smooth the popping artifacts. More-
over, the two level refinement could be extended to consider view-
dependent effects such as specular highlights, silhouettes and shad-
ows. We would also like to explore methods for predicting occlu-
sion events so that we can further improve our out-of-core compu-
tation and eliminate the frame of latency in the rendering pipeline.
Finally, we would like to use the CHPM representation for mul-
tiresolution compression and collision detection between massive
models.

References

ALIAGA , D., COHEN, J., WILSON, A., ZHANG, H., ERIKSON, C., HOFF, K., HUD-
SON, T., STUERZLINGER, W., BAKER, E., BASTOS, R., WHITTON, M., BROOKS,
F., AND MANOCHA, D. 1999. MMR: An integrated massive model rendering sys-
tem using geometric and image-based acceleration. InProc. of ACM Symposium on
Interactive 3D Graphics, 199–206.

ARYA , S.,AND MOUNT, D. M. 1993. Approximate nearest neighbor queries in fixed
dimensions. InProc. 4th ACM-SIAM Sympos. Discrete Algorithms, 271–280.

CIGNONI, P., GANOVELLI , F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND

SCOPIGNO, R. 2003. Planet-sized batched dynamic adaptive meshes (p-bdam). In
IEEE Visualization.

CIGNONI, P., MONTANI , C., ROCCHINI, C., AND SCOPIGNO, R. 2003. External
memory management and simplification of huge meshes. InIEEE Transaction on
Visualization and Computer Graphics.

COHEN-OR, D., CHRYSANTHOU, Y., AND SILVA , C. 2001. A survey of visibility
for walkthrough applications.SIGGRAPH Course Notes # 30.

CORREA, W., KLOSOWSKI, J., AND SILVA , C. 2002. iwalk: Interactive out-of-core
rendering of large models. InTechnical Report TR-653-02, Princeton University.

DECORO, C., AND PAJAROLA, R. 2002. Xfastmesh: View-dependent meshing from
external memory. InIEEE Visualization.

EL-SANA , J., AND BACHMAT, E. 2002. Optimized view-dependent rendering for
large polygonal dataset.IEEE Visualization, 77–84.

EL-SANA , J.,AND CHIANG , Y.-J. 2000. External memory view-dependent simplifi-
cation.Computer Graphics Forum 19, 3, 139–150.

EL-SANA , J.,AND VARSHNEY, A. 1999. Generalized view-dependent simplification.
Computer Graphics Forum, C83–C94.

Figure 7: Frame Rate in Isosurface Model.Frame rates are shown for a sample
path using our system. For comparison we show our system without occlusion culling.

EL-SANA , J., SOKOLOVSKY, N., AND SILVA , C. 2001. Integrating occlusion culling
with view-dependent rendering.Proc. of IEEE Visualization.

ERIKSON, C., MANOCHA, D., AND BAXTER, B. 2001. Hlods for fast display of
large static and dynmaic environments.Proc. of ACM Symposium on Interactive 3D
Graphics.

FUNKHOUSER, T., KHORRAMABADI , D., SEQUIN, C., AND TELLER, S. 1996. The
ucb system for interactive visualization of large architectural models.Presence 5, 1,
13–44.

GARLAND , M., AND HECKBERT, P. 1997. Surface simplification using quadric error
bounds.Proc. of ACM SIGGRAPH, 209–216.

GOVINDARAJU, N., SUD, A., YOON, S., AND MANOCHA, D. 2003. Interactive
visibility culling in complex environments with occlusion-switches.Proc. of ACM
Symposium on Interactive 3D Graphics, 103–112.

GREENE, N., KASS, M., AND M ILLER , G. 1993. Hierarchical z-buffer visibility. In
Proc. of ACM SIGGRAPH, 231–238.

HENDRICKSON, B., AND LELAND , R. 1995. A multilevel algorithm for partitioning
graphs. InSuper Computing.

HOPPE, H. 1996. Progressive meshes. InProc. of ACM SIGGRAPH, 99–108.
HOPPE, H. 1997. View dependent refinement of progressive meshes. InACM SIG-

GRAPH Conference Proceedings, 189–198.
HOPPE, H. 1998. Smooth view-dependent level-of-detail control and its application

to terrain rendering. InIEEE Visualization Conference Proceedings, 35–42.
ISENBURG, M., AND GUMHOLD , S. 2003. Out-of-core compression for gigantic

polygon meshes. InACM Trans. on Graphics (Proc. of ACM SIGGRAPH), vol. 22.
KARYPIS, G., AND KUMAR , V. 1998. Multilevel k-way partitioning scheme for

irregular graphs.Journal of Parallel and Distributed Computing.
KLOSOWSKI, J., AND SILVA , C. 2001. Efficient conservative visiblity culling us-

ing the prioritized-layered projection algorithm.IEEE Trans. on Visualization and
Computer Graphics 7, 4, 365–379.

L. DE FLORIANI , P. MAGILLO , E. P. 1997. Building and traversing a surface at
variable resolution. InIEEE Visualization.

L INDSTROM, P., AND PASCUCCI, V. 2002. Terrain simplification simplified: A gen-
eral framework for view-dependent out-of-core visualization. InIEEE Transaction
on Visualization and Computer Graphics, 239–254.

L INDSTROM, P., AND SILVA , C. 2001. A memory insensitive technique for large
model simplification. InProc. of IEEE Visualization, 121–126.

L INDSTROM, P. 2003. Out-of-core construction and visualization of multiresolution
surfaces. InACM Symposium on Interactive 3D Graphics.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent simplification of arbitrary
polygon environments. InProc. of ACM SIGGRAPH.

PAJAROLA, R. 2001. Fastmesh: Efficient view-dependent mesh. InProc. of Pacific
Graphics, 22–30.

PRINCE, C. 2000.Progressive Meshes for large Models of Arbitrary Topology. Mas-
ter’s thesis, University of Washington.

RUSINKIEWICZ, S.,AND LEVOY, M. 2000. Qsplat: A multiresolution point rendering
system for large meshes.Proc. of ACM SIGGRAPH.

SAMANTA , R., FUNKHOUSER, T., AND L I , K. 2001. Parallel rendering with k-
way replication. IEEE Symposium on Parallel and Large-Data Visualization and
Graphics.

SHAFFER, E., AND GARLAND , M. 2001. Effient adaptive simplification of massive
meshes. InProc. of IEEE Visualization.

WONKA , P., WIMMER , M., AND SILLION , F. 2001. Instant visibility. InProc. of
Eurographics.

X IA , J., EL-SANA , J.,AND VARSHNEY, A. 1997. Adaptive real-time level-of-detail-
based rendering for polygonal models.IEEE Transactions on Visualization and Com-
puter Graphics 3, 2 (June), 171–183.

YOON, S., SALOMON , B., AND MANOCHA, D. 2003. Interactive view-dependent
rendering with conservative occlusion culling in complex environments.Proc. of
IEEE Visualization.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, K. 1997. Visibility culling
using hierarchical occlusion maps.Proc. of ACM SIGGRAPH.

Quick-VDR: Interactive View-Dependent Rendering of Massive Models (Video included) Page 8 of 8

 1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cache-Oblivious Mesh
Layouts

Sung-Eui Yoon, Peter Lindstrom
Valerio Pascucci, Dinesh Manocha
1: University of North Carolina - Chapel Hill
2: Lawrence Livermore National Laboratory

1

1

2

2

http://gamma.cs.unc.edu/COL

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Goal

• Compute cache-coherent layouts
of polygonal meshes
♦For geometric processing and

visualization
♦Handle any kinds of polygonal models

(e.g., irregular geometry)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Motivation

• High growth rate of computational
power of CPUs and GPUs

0
5
10
15
20
25
30
35
40
45
50

Disk

access

speed

RAM

access

speed

CPU

speed

Growth rate
during 1993 – 2004

Courtesy:
http://www.hcibook.com/e3/online/moores-law/ The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Memory Hierarchies and
Caches

CPU or
GPU

Fast memory
or cache

Slow memory

Block
transfer

Disk

106nsAccess time: 102ns100ns

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cache-Coherent Layouts

• Cache-Aware
♦Optimized for particular cache

parameters (e.g., block size)

• Cache-Oblivious
♦Minimizes data access time without any

knowledge of cache parameters
♦Directly applicable to various hardware

and memory hierarchies

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

82 million triangles
Irregular distribution of geometry

CAD Model –
Double Eagle Tanker Model

 2

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Isosurface and Scanned
Models

Isosurface
100M triangles

St. Matthew
372M triangles

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Main Contribution

• Algorithm to compute cache-
oblivious layouts of polygonal
meshes

Cache-oblivious metric

Multilevel optimization
framework

Applicable to
hierarchical representations

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Live Demo – View-
Dependent Rendering (VDR)

GeForce Go
6800 Ultra

• Based on multiresolution hierarchy
♦Dynamically computes simplification
♦Cache-oblivious layout is used to minimize

GPU vertex cache misses

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Related Work

• Cache-coherent algorithms
• Mesh layouts

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cache-Coherent Algorithms

• Cache-aware [Coleman and
McKinley 95, Vitter 01, Sen et al.
02]
• Cache-oblivious [Frigo et al. 99,

Arge et al. 04]

Focus on specific problems such as
sorting and linear algebra computations

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mesh Layouts

• Rendering sequences
♦Triangle strips
♦[Deering 95, Hoppe 99, Bogomjakov and

Gotsman 02]

• Processing sequences
♦[Isenburg and Gumhold 03, Isenburg and

Lindstrom 04]

Assume that access pattern
globally follows the layout order!

 3

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mesh Layouts

• Space-filling curves
♦[Sagan 94, Velho and Gomes 91, Pascucci

and Frank 01, Lindstrom and Pascucci 01,
Gopi and Eppstein 04]

Assume geometric regularity!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• Overview
• Cache-oblivious metric
• Results

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• Overview
• Cache-oblivious metric
• Results

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Overview

Multilevel optimization
Cache-oblivious metric

Local permutations

va

vb vd
vc

Input graph

va vb vd vc
Result 1D layout

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Graph-based
Representation

• Undirected graph, G = (V, E)
♦Represents access patterns of

applications

• Vertex
♦Data element
♦(e.g., mesh vertex or mesh triangle)

• Edge
♦Connects two vertices if they are likely to

be accessed sequentially

va

vb vd
vc

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Problem Statement

• Vertex layout of G = (V, E)
♦One-to-one mapping of vertices to indices

in the 1D layout

• Compute a that minimizes the
expected number of cache misses

!

:! |}|, ... ,1{ V!V

va

vb vd
vc

! va vb vd vc
1 2 3 4

 4

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Local Permutation

Vertex layout

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Terminology

• Edge span of (va, vb)
|)()(|

ba
vv !! "=

Layout mapping
1)(=

a
v!

5)(=
c
v!

4|)()(| =!
ca
vv ""

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Terminology

•
♦Set of edges having edge span i in the

layout

i
E

4),(Evv
ca
!

4

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Terminology

• Edge span distribution
♦ where i is in [1, n]||

i
E

Edge span
1

Number
of edges

2 3 4

1

1

1

1

4

2

3

4

1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cache Miss Ratio Function
(CMRF),

• Probability of a cache miss for a
given edge span i

0

1Cache miss ratio =
Probability to have

 a cache miss

Edge span

i
p

1 n-1i

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Number of Cache Misses at
Runtime

• Estimated by multiplying two
factors
♦Runtime edge span distribution
♦CMRF

 1D Layout:

Edge span 2 Edge span 4 Edge span 2

+ +()

 5

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Number of Cache Misses at
Runtime

 1D Layout:

Edge span 2 Edge span 4 Edge span 2

+ +

Runtime edge span
 distribution CMRF

()

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Expected Number of Cache
Misses

♦Approximate runtime edge span
distribution with one of the layout

!
"

=

1

1

||
n

i

ii pE

 Edge span distribution of the layout

The number
of vertices

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• Overview
• Cache-oblivious metric
• Results

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Cache-Oblivious Metric

• Decides if a local permutation
reduces number of cache misses
♦Probabilistic formulation
♦Reduces to geometric volume computation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Does a Local Permutation
Decrease Cache Misses?

!
"

=

1

1

||
n

i

ii pE !
"

=

#+>
1

1

|)||(|
n

i

iii pEE
?

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Does a Local Permutation
Decrease Cache Misses?

!
"

=

1

1

||
n

i

ii pE !
"

=

#+>
1

1

|)||(|
n

i

iii pEE

0||
1

1

!
"

=

<#
n

i

ii pE

 6

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Monotonocity of CMRF, i
p

• Assume CMRF is a monotonically
increasing function of edge span

0

1
Cache miss

ratio

Edge span

i
p

1 ∞i

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Exact Cache-Oblivious
Metric

0||
1

1

!
"

=

<#
n

i

ii pE

where

All the possible cache
configurations

1...0
1221
!!!!!! "" nn

pppp

Monotonicity of CMRF

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Geometric Formulation

where

0||
1

1

!
"

=

<#
n

i

ii pE

1...0
1221
!!!!!! "" nn

pppp

 Half hyperspace
p2

p10

Closed hyperspace

p2

p10
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Geometric Volume
Computation

• Assume each CMRF to be equally
likely

• Half hyperspace (blue area)
♦Space of CMRFs that reduce cache misses

p2

p10
where

0||
1

1

!
"

=

<#
n

i

ii pE

1...0
1221
!!!!!! "" nn

pppp

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Geometric Volume
Computation

Time complexity
♦Exact: [Lasserre and Zeron 01]
♦Approximate: [Kannan et al. 97]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

p2

p10

Fast and Approximate
Volume Comparison

• Define a top polytope in closed
hyperspace
• Compute the centroid, C, of the

top polytope

Top polytope Centroid, C

 7

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

p2

p10

Fast and Approximate
Volume Comparison

• Use the centroid for approximate
volume comparison
♦The volume containing the centroid is likely

to be larger

Centroid, C

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Bound of Approximation

• 0.1% ~ 0.3% compared to the
exact metric

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Final Approximate Metric

Centroid

Pack non-zero to 1,…, m

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Layout Optimization

• Find an optimal layout that
minimizes our metric
♦Combinatorial optimization problem

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Multilevel Minimization

Step 1:
Coarsening

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Multilevel Minimization

Step 2:
Ordering of coarsest graph

 8

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Multilevel Minimization

Step 3:
Refinement and

local optimization

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

• Overview
• Cache-oblivious layouts
• Results

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Layout Computation Time

• Process 70 million vertices per
hour
♦Takes 2.6 hours to lay out St. Matthew

model (372 million triangles)
♦2.4GHz of Pentium 4 PC with 1 GB main

memory

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Edge Span Distributions of
Different Layouts

Cache-oblivious layout

Spectral layout

Original layout

Edge span

N
um

be
r o

f e
dg

es

>

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Applications

• View-dependent rendering
• Collision detection
• Isocontour extraction

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

View-Dependent Rendering

• Layout vertices and triangles of
CHPM [Yoon et al. 04]
♦Reduce misses of GPU vertex cache

 9

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

View-Dependent Rendering

47 M/s

90 M/s

106 M/s

Our
layout

22 M/s82M
Double
Eagle

Tanker

20 M/s100MIsosurface

23 M/s372M
St.

Matthew

Simplification layout
[Yoon et al. 04]

of Tri.Models

4.5X

2.1X

Peak performance: 145 M tri / s on
GeForce 6800 Ultra

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Realtime Captured Video – St.
Matthew Model

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comparison with Other
Rendering Sequences

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

8 16 32 64

Vertex cache size

Cache

miss ratio

(misses

per

triangle)

Our layout

Universal rendering sequences
[Bogomjakov and Gotsman 2002]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comparison with Other
Rendering Sequences

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

8 16 32 64

Vertex cache size

Cache

miss ratio

(misses

per

triangle)

Our layout

[Hoppe 99]
Optimized for 16 vertex cache size

with FIFO replacement

Optimized for no particular cache size

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Performance during View-
Dependent Rendering

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

100% 75% 50% 25% 10%

Resolution

 Cache miss

ratio

(given cache

size 32) Our layout

[Hoppe 99]

Optimized for various resolutions

Optimized for full resolution

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comparison with Space Filling
Curve on Power Plant Model

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

8 16 32 64

Vertex cache size

Cache miss

ratio

Our layout

Space filling curve (Z-curve)

 10

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Collision Detection

• Bounding volume hierarchies
♦Widely used to accelerate the

performance of collision detection
♦Traversed to find contacting area
♦Uses pre-computed layouts of OBB trees

[Gottschalk et al. 96]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Rigid Body Simulation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Collision Detection Time

2X on average

Depth-first layout

Cache-oblivious layout

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Isocontour Extraction

• Contour tree [van
Kreveld et al. 97]
• Use mesh as the

input graph
• Extract an

isocontour that is
orthogonal to z-axis

Puget sound,
134 M triangles

Isocontour
z(x,y) = 500m

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comparison – First
Extraction of Z(x,y) = 500m

0

5

10

15

20

25

Cache-

oblivious

layout

Z-axis

sorted

Y-axis

sorted

Spectral

layout

Relative
Performance

over
Z-axis sorted

layout

Nearly optimized for particular isocontour

2

21

13

1

Disk access time is bottleneck

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comparison – Second
Extraction of Z(x,y) = 500m

Relative
Performance

over
Z-axis sorted

layout
2

21

13

0

50

100

150

200

250

300

350

400

Cache-

oblivious

layout

Z-axis

sorted

Y-axis

sorted

Spectral

layout

379

212

10.8

Memory and L1/L2 cache access times are bottleneck

 11

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Limitations

• Assumptions on CMRF
♦May not work well for all applications

• Does not compute global
optimum
♦Greedy solution

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Advantages

• General
♦Applicable to all kinds of polygonal models
♦Works well for various applications

• Cache-oblivious
♦Can have benefit from CPU/GPU cache to

memory and disk

• No modification of runtime
application
♦Only layout computation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

OpenCCL: Cache-Coherent
Layouts of Graphs and Meshes
• Source codes for computing a

cache-coherent layout
• Easy to use

CLayoutGraph Graph (NumVertex);
0

1 2

Graph.AddEdge (0, 1);
Graph.AddEdge (0, 2);
Graph.AddEdge (1, 2);

int Order [NumVertex];
Graph.ComputeOrdering (Order);

Google “Cache Oblivious Mesh Layout”
or

Http://gamma.cs.unc.edu/COL

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Conclusion

• Novel algorithm for computing
cache-oblivious mesh layouts
♦Cast the problem as an optimization
♦Probabilistically compute the expected

number of caches misses
♦Achieve significant improvements (2 to

20X) without modifying runtime
applications

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Ongoing and Future Work

• Apply to other applications
♦Simplification and approximate collision

detection [Yoon et al. 04]
♦Shortest path computation, etc.

• Investigate optimality

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Ongoing and Future Work

• Cache-Oblivious Layouts of
Bounding Volume Hierarchies
[Yoon and Manocha 05]
♦Tech. Report, University of North Carolina

at Chapel Hill

 12

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Acknowledgements

• Anonymous donor
♦Power plant model

• Digital Michelangelo Project
♦St. Matthew model at Stanford University

• LLNL ASCI VIEWS
♦Isosurface model

• Newport news shipbuilding
♦Double eagle tanker

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Acknowledgements

• Army Research Office
• DARPA
• Intel Corporation
• Lawrence Livermore Nat’l Lab.
• National Science Foundation
• Office of Naval Research
• RDECOM

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

• Martin Isenburg
• Dawoon Jung
• Brandon Lloyd
• Elise London
• Brian Salomon
• Avneesh Sud

Acknowledgements

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Questions?

Project URL
http://gamma.cs.unc.edu/COL

Subdivided Shadow Maps

Technical Report TR05-024

Brandon Lloyd, Sung-eui Yoon, David Tuft, Dinesh Manocha
University of North Carolina at Chapel Hill

Figure 1: Comparison between trapezoidal shadow maps (TSMs) and subdivided shadow maps. a) TSM with 1K×1K shadow
map, b) TSM with 4K×4K shadow map, and c) 1K×1K subdivided shadow map. This configuration with a small angle
between the light and view directions is difficult for prior methods. Even with the largest shadow map that can be allocated
on current hardware, TSMs are not able to match the quality of subdivided shadow maps for this view.

1

Abstract

We present a technique for reducing perspective aliasing er-
ror in shadow maps. From the viewpoint of the light, the
scene is first split into subdivisions defined by the visible
faces of the camera frustum. The frustum subdivisions may
be further subdivided along their corresponding faces. We
apply a separate shadow map warp to each resulting subdi-
vision. This produces significantly less error than applying
a single shadow map warp to the whole scene We layout the
subdivisions in rectangular regions within a single shadow
map, using the maximum error of each subdivision to as-
sign larger regions to subdivisions with higher error. Our
method runs well on commodity graphics hardware and is
easy to integrate into existing shadow map systems. We
are able to achieve interactive performance (8-25 fps) on a
power plant model (12M triangles), a double eagle tanker
model (82M triangles), and the St. Matthew model (370M
triangles) running on a PC with a GeForce 7800 GTX. We
observed significantly less aliasing compared to prior shadow
map warping algorithms.

1 Introduction

Shadows are an important component of an interactive ren-
dering system. They add realism and important visual cues.
In this paper we restrict ourselves to hard shadows gener-
ated by directional light sources using shadow maps. For
the directional light source, the standard shadow map algo-
rithm proposed by Williams [1978] renders the scene with
an orthographic projection from the light’s view, and uses
the resulting depth map to determine which surfaces lie in
shadow. Shadow maps are a particularly attractive algo-
rithm because they are easy to implement, they support a

wide variety of geometry representations, and there exists
wide support for shadow maps in current graphics hardware.
The main drawback of shadow maps is aliasing at the shadow
edges. Shadow map aliasing caused by the orientation of the
surface onto which the shadow is projected is called projec-
tive aliasing. Aliasing due to limited shadow map resolution
is called perspective aliasing. A number of algorithms have
been proposed that address perspective aliasing by warp-
ing the shadow map so as to allocate more shadow map
resolution near the viewer where the aliasing is the worst
[Stamminger and Drettakis 2002; Wimmer et al. 2004; Mar-
tin and Tan 2004]. The warping is performed by apply-
ing a transformation to the scene before it is rendered into
the shadow map. The warping reduces aliasing artifacts for
most light/camera configurations. However when the angle
between the light and view directions is small, all previous
warping algorithms revert back to standard shadow maps,
resulting in large perspective aliasing error.

Main Results: In this paper we present an algorithm to re-
duce perspective aliasing error by subdividing the scene and
applying a separate warping function to each subdivision.
Our algorithm uses two types of subdivisions:

• Frustum subdivisions. From the light’s view, the
algorithm first subdivides the eye view frustum into
subdivisions corresponding to the visible frustum faces.

• Face subdivisions. The frustum subdivisions may be
further subdivided along the length of their correspond-
ing faces.

Frustum subdivisions dramatically reduce the error for
configurations with small angles between the light and view

Figure 2: Power plant model. This image shows a power
plant model consisting of more than 12 million triangles. We
are able to render the model with high quality shadows at 8-
20 frames per second on a PC with GeForce 7800 GTX.

directions. Face subdivisions reduce error for all configura-
tions. By warping face subdivisions we more closely approx-
imate the optimal warping function that would completely
eliminate aliasing.

We formulate the maximum error in each subdivision. Us-
ing this information we can allocate to each subdivision a
rectangular region in the shadow map. The regions are pro-
portional in size to the maximum error of their correspond-
ing subdivisions. Allocating space in the texture map in this
way insures that the maximum error over the entire scene
in minimized. Once the subdivisions have been rendered
into their separate regions of the shadow map, a fragment
program is used to render the final image.

Compared to previous shadow map warping algorithms,
subdivided shadow maps provide a more even distribution
of error over all light directions and lower error overall, with
only a modest increase in rendering cost. We have integrated
our algorithm with a rendering system for large models that
runs on commodity hardware. With a GeForce 7800 GPU
our system achieves interactive performance (8-25 fps) on a
power plant model consisting of 12 million triangles, a double
eagle tanker model consisting of 82 million triangles, and
the St. Matthew model consisting of 372 million triangles.
We found that the performance with the subdivided shadow
map was only about twice as slow as with a standard shadow
map. We were able to reduce the maximum aliasing error
by a factor of up to 10 times.

The rest of this paper is organized as follows. In Section
2 we briefly discuss related work in shadow map computa-
tion. Section 3 provides the background for quantifying the
perspective aliasing error and the parameterization of the
warping functions that we use. The subdivision algorithm is
described in Section 4. We discuss various implementation
details and our results in Section 5. Finally, we conclude
with some ideas for future work.

2 Previous Work

Many techniques have been proposed for shadow genera-
tion. In this section, we limit ourselves to shadow maps
and some hybrid combinations with object-space techniques.
Shadow maps were first introduced by Williams [1978]. Segal
et al. [1992] later implemented them on standard graphics
hardware. Many algorithms have been proposed to address
the aliasing problems with shadow maps. Adaptive shadow
maps [Fernando et al. 2001] use a hierarchy of small shadow
maps to allocate resolution where it is required. Increased
programmability of GPUs has facilitated implementations of
adaptive shadow maps for hardware rendering [Lefohn et al.
2005], but performance can be slow. Instead of using a reg-
ular grid of shadow samples, irregular shadow maps [Aila
and Laine 2004; Johnson et al. 2004] use a sample distribu-
tion that corresponds exactly to the image samples for the
eye, thus avoid the aliasing problem altogether. However,
irregular shadow maps are difficult to implement on cur-
rent hardware. Shadow map warping was introduced with
perspective shadow maps (PSMs) [Stamminger and Dret-
takis 2002]. PSMs use the camera’s perspective transform to
warp the shadow map. A singularity may arise with PSMs
that requires special handling [Kozlov 2004]. Light-space
perspective shadow maps (LSPSMs) [Wimmer et al. 2004]
are a generalization PSMs that do not have the singularity
problem because they use a perspective projection that is
oriented perpendicular to the light direction. Trapezoidal
shadow maps (TSMs) [Martin and Tan 2004] are very simi-
lar to LSPSMs, except that they use a different formulation
for the perspective projection. Chong et al. [2004] use a
general projective transform to ensure that there is a one-
to-one correspondence between pixels in the image and the
texels in the shadow map, but only for a small number of
planes within the scene. Others have discussed using sepa-
rate shadow maps for different parts of the scene [Tadamura
et al. 1999; Forum 2003; Aldridge 2004].

Pure object-space shadow algorithms do not have alias-
ing problems. Some hybrid algorithms combine object-space
techniques with shadow maps to reduce aliasing. McCool et
al. [2000] construct shadow volumes from a shadow map.
Sen et al. [2003] create a shadow map that more accurately
represents shadow edges. Both of these techniques, while
generating better looking shadow edges, may miss small fea-
tures that cannot be represented in the shadow map. Chan
and Durand [2004] use shadow maps to restrict shadow vol-
ume rendering to the shadow edges. Govindaraju et al.
[2003] use shadow polygons for the most aliased areas and a
shadow map everywhere else.

3 Shadow map warping

In this section we review perspective aliasing, we show how
aliasing can be controlled by reparameterizing the shadow
map, and we quantify the error. We also present our own
parameterization of the warping function and derive the er-
ror equations. We follow the general outline of the excellent
analysis provided by Wimmer et al. [2004], but our explana-
tion is cast in somewhat different terms. Our notation also
differs slightly.

3.1 Shadow map warping

We illustrate the concept of shadow map warping using the
2D configuration shown in Figure 3. A directional light
source is positioned perpendicular to the view direction of a

UNC Technical Report TR05-024: Subdivided Shadow Maps Page 2 of 8

1

0 1 z a

z£ f

light direction

fa
r p

la
newp

shadow plane

eye
q

0 n

view
frustum

ws

ds0 1

dp

near
plane

shadow
frustum

c

Figure 3: Perspective aliasing and the shadow map
warping parameterization. Perspective aliasing occurs
when shadow texel beams are wider than pixel beams. The
shadow map is warped using a perspective projection placed
around the view frustum. This is a canonical view frustum
with near plane at 1. The parameter α represents the ratio
of the far to near plane distances.

perspective camera. The shape of the view frustum is pa-
rameterized by α, the near to far plane distance ratio. This
will permit us later to more easily understand how the alias-
ing errors change when we change the shape of the frustum.

Perspective aliasing. The notion of perspective aliasing
with a shadow map can be understood intuitively in terms
of the relative widths of shadow and pixel beams. In Fig-
ure 3 parallel shadow beams emanate from the texels of the
shadow plane with widths ws. Pixel beams likewise emanate
from the pixels on the view plane. The widths of the pixel
beams wp increase with z. If shadow and pixel beams fall
on a surface that is oriented with its normal half-way be-
tween the view and light directions, the size of the resulting
footprints depends only on the relative widths of the beams,
m = ws/wp. There is no projective aliasing in this case.
When the shadow beams are wider than the pixel beams,
i.e. m > 1, a shadow beam footprint is covered by multiple
pixels beams. Thus the footprints of individual shadow tex-
els can be clearly distinguished in the image and perspective
aliasing occurs. Ideally we would like ws = wp everywhere
in the scene in order to avoid aliasing and to make the best
use of the shadow map resolution.

Parameterization. As shown in Figure 3, we would like to
reparameterize the shadow plane so that the widths of the
shadow texel beams more closely match those of the pixel
beams they intersect. Since texel spacing is inversely pro-
portional to the derivative of the texture parameterization,
the width of a shadow texel beam can be expressed as:

ws =
1

rs

dz

ds
,

where rs is the resolution of the shadow map. The width of
a pixel beam depends on the image pixel resolution rp and

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

z

Error distribution function for α = 100

n=1 (ξ=−1)
n=n

opt
 (ξ=0)

n=∞ (ξ=1)

Figure 4: Error distribution function. This graph shows
g plotted for various values of n and corresponding ξ.

is proportional to z.

wp = z
2 tan θ

rp
.

To minimize the perspective aliasing error, m, we would like
to have the shadow texel width also be proportional to z.
In other words, we seek a parameterization of the shadow
plane s whose derivative ds is proportional to 1/z:

s =

∫ 1

0

ds =

∫ z

1

1

z
dz = ln z.

Thus the optimal parameterization of the shadow plane is
a logarithmic function. The only non-linear transform that
current graphics hardware provides is a perspective projec-
tion, which gives texel spacing proportional to 1/z2 (see Ap-
pendix). Therefore, the best we can do is to minimize the
resolution mismatch error according to some optimality cri-
terion.

The parameterization of the shadow plane with a perspec-
tive projection can be specified in a manner similar to that
used for the camera. With near and far planes that coincide
with those of the camera, the parameterization is given by:

s =
1

2
+

f + n

2(f − n)
+

fn

z′(f − n)
.

The position of the center of projection c is controlled by
near plane distance n, which is a free parameter. When
n = 1, c coincides with the eye and the warping effect
is strongest. At n = ∞ the perspective projection be-
comes orthogonal and the texel spacing becomes uniform
as in the standard shadow mapping algorithm. The fun-
damental difference between the recently proposed shadow
map warping algorithms (PSM[Stamminger and Drettakis
2002], LSPSM[Wimmer et al. 2004], and TSM[Martin and
Tan 2004]) is the choice of n. PSMs place n at 1. LSPSMs
choose n such that the maximum error for the whole frus-
tum is minimized. TSMs choose n such that a user specified
portion at the front of the frustum is mapped to the 80%
line on the shadow plane.

Quantifying error. The choice of the n parameter greatly
affects the perspective aliasing error m. To compute m we
first replace z′ in the parameterization function s with (z −
1 + n) and differentiate:

ds

dz
=

fn

(z − 1 + n)2(f − n)
. (1)

UNC Technical Report TR05-024: Subdivided Shadow Maps Page 3 of 8

Figure 5: Double eagle tanker model. This image shows
a double eagle tanker model consisting of 82 million triangles.
We are able to render the model at 5-10 frame per second
with high shadow quality.

If we substitute f = n+α− 1 into Equation 1 we obtain for
m:

m =
ws

wp
=

rp

rs

(α− 1)

2 tan θ
g (2)

g =
(z − 1 + n)2

zn(n + α− 1)
(3)

The first term captures the effect of the relative resolutions
of the image and the shadow map. The second term is char-
acterized by the shape of the camera frustum. The last term,
g is the error distribution function. Figure 3.1 shows g plot-
ted over the range of the frustum z ∈ [1, α] for various values
of n. The function g reaches its maximum value of 1 on the
far and near planes with n = 1 and n = ∞ respectively. The
least maximum value of g, g0 = minn maxz(g) = 1/

√
α, oc-

curs at the optimal n parameter for LSPSMs nopt = 1+
√

α.

3.2 Reparameterizing the error distribution function

We reparameterize the error distribution function g to facili-
tate the error analysis for subdivision and to provide a more
intuitive control over the maximum error. The n parameter
is cumbersome because it is tied to scale of the view frustum
and it is not directly related to the maximum error. We ob-
serve that as n decreases from infinity to 1, the maximum
value of g over the whole frustum maxz(g) moves from 1 on
the near plane to g0 and back up to 1 again on the far plane.
Based on this behavior we choose a new parameter ξ that
controls the value and location of the maximum error. Over
the range ξ ∈ [−1, 0], we want gmax to linearly interpolate
on the near plane from the maximum value of 1 to the min-
imum g0 . For ξ ∈ [0, 1], gmax should move back to 1 on the
far plane.

ξ =

{
g0−g(n,1)

1−g0
=

√
α−n+1

n+α−1
, n ≥ nopt,

g(n,α)−g0
1−g0

=
√

α−n+1
n
√

α
, n < nopt.

We can then solve for n in terms of ξ:

n =

{√
α+1−ξ(α−1)

ξ+1
, ξ ≤ 0,

√
α+1

ξ
√

α+1
, ξ > 0.

(4)

1

z0
z1

z2

z3shadow plane

A B C

a) b)

10

Figure 6: Subdivisions. a) Frustum subdivisions divide
the frustum into faces over which the texel spacing increases
monotonically. b) Face subdivision split along a face to more
closely approximate the optimal shadow map parameteriza-
tion.

Plugging these values for n back into Equations 2 and 3 with
z = α for ξ ≤ 0 and z = 1 for ξ > 0, we get an expression
for the maximum error over the entire frustum in terms of
ξ:

mmax =
rp

rs

(α− 1)

2 tan θ

1 + |ξ|(
√

α− 1)√
α

. (5)

4 Subdivision Algorithm

Subdividing the scene and applying a separate warping func-
tion to each subdivision can drastically reduce perspective
aliasing error. In this section we discuss two types of subdi-
vision: frustum subdivision and face subdivision.

Frustum subdivision. Till now we have only considered the
configuration with the light direction perpendicular to the
view direction. Figure 6(a) shows an example of a more
general configuration. Recall that to minimize perspective
aliasing, the shadow texel beams should be smaller than any
pixel beams that they intersect. When the light is behind
the camera, the narrowest pixel beams are encountered on
the faces of the view frustum that face the light. To avoid
aliasing, the shadow texels must become narrower in region
A with increasing s. The shadow texel spacing is constant in
region B because the minimum pixel beam width is the size
of the pixels on the image plane, which is also constant. In
region C the texel spacing begins to increase again. Previ-
ous shadow map warping algorithms use a single monotonic
warping function for the entire frustum. In at least one of
the sections, the texels spacing will grow in the opposite
direction of the warping function, leading to high errors.
Therefore, other warping algorithms reduce the amount of
warping as the angle between the light and view directions
becomes smaller. When they are parallel, a standard or-
thogonal projection is used. Frustum subdivision avoids the
light direction problem by subdividing along the frustum
faces (edges in 2D). Since a warp is applied to each subdivi-
sion independently the error is more tightly bounded.

We allocate shadow texels to each frustum subdivision
according to the maximum error in each subdivision. If sub-
division i has a maximum error of ei and there are rs texels
in the shadow map, then the number of shadow texels allo-
cated for each subdivision is:

rsi = rs
ei

Σjej
. (6)

UNC Technical Report TR05-024: Subdivided Shadow Maps Page 4 of 8

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

α=10

α=100

α=1000
α=10000

k

N
o

rm
al

iz
ed

 m
ax

im
u

m
 e

rr
o

r

Maximum error for varying k

Figure 7: Maximum error as a function of the number
of subdivisions k for varying values of α. Each plot is
normalized to show the overall shape. 2 or 3 subdivision
bring the largest reduction in error.

This allocation heuristic insures that the maximum error is
spread evenly over all the subdivisions. If the same warping
parameter ξ is used for all subdivisions, the heuristic also
tends to allocate more texels to larger subdivisions. Accord-
ing to Equation 5, the maximum error with fixed ξ depends
on α. For larger faces, α will be larger and the error greater.

Face subdivision. Once the frustum has been subdivided
by its faces, further subdivisions along the faces create a
better approximation of the optimal logarithmic transform,
thus reducing error even more. If we subdivide along a face
such that each subdivision is self-similar (as shown in Figure
6(b)), the maximum error in each subdivision will be the
same. For each subdivision i = 1, 2, ..., k we choose new
near and far planes [zi−1, zi]:

zi = αi/k.

With k subdivisions the ratio of the far to near plane dis-

tances, αk, becomes αk = α
1/k
0 . According to texture allo-

cation heuristic shown in Equation 6, each face subdivision
i will be allotted rsi = 1/k of the original shadow texels.
Plugging in these values into Equation (5), the maximum
error as a function of k becomes:

mmax = k
rp

rs

(α1/k − 1)

2 tan θ

(1 + |ξ|(
√

α1/k − 1))√
α1/k

. (7)

Figure 7 shows how the maximum error changes with the
number of face subdivisions k. Most of the error reduc-
tions come with only 2 or 3 subdivisions. This is important
because we would like to keep the number of sections to
minimum to avoid any extra rendering overhead.

4.1 Shadow warping and subdivision in 3D

So far we have only considered 2D scenes. Most of the ma-
chinery presented in the previous sections extends to 3D. As
in 2D we first perform frustum subdivision. A frustum in
general position, as shown in Figure 8(a), has up to 5 sub-
divisions defined by the faces, 4 sides and the near (or far)
plane. If the edges shared by the sides and the near plane
are shifted slightly to include the viewpoint, only 4 subdivi-
sion need to be used to cover the whole frustum. This in-
troduces a small overlap between the subdivisions and only

slightly more error. After frustum subdivision, we perform
face subdivision. Next, each subdivision is transformed to
a canonical space via a shear and a scale where the warp-
ing functions are computed (see Figure 8(b)). We use the
same warping parameter, ξ, for each subdivision. Finally,
the subdivisions are laid out in the shadow map (see Figure
8(c)).

Error in the x direction. There are two major differences
with subdivided shadow maps in 2D and 3D. The first differ-
ence is that there is an added dimension in the shadow map,
t, which corresponds to the x direction in Figure 3. The per-
spective projection applied to z also affects x. The error in
x is optimal when ξ = −1, in which case the frustum of the
perspective projection exactly matches that of the camera
(as in PSMs). The error in z, however, is at its maximum
with ξ = −1. Unfortunately, it is not possible to minimize
the error in both the x and z directions at the same time.

We can follow a similar analysis for the x to obtain the
maximum x error for a subdivision. We start with the width
of a shadow texel beam in the t direction:

wt =
2α tan θ

rt

z′

f

=
2α tan θ

rt

(z + n− 1)

(n + α− 1)
.

The error function in x is then given by:

mx =
wt

wp
=

rp

rt
α

(n + z − 1)

z(n + α− 1)
. (8)

The maximum x error always occurs on the near plane.
Plugging in z = 1 and the expressions for n in Equation
4 we obtain for the maximum error in x:

mx max =
rp

rt
α

{
1−ξ(

√
α−1)√
α

, ξ ≤ 0,
1√

α(1+ξ(
√

α−1))
, ξ > 0.

(9)

Subdivision layout. The second major difference has to do
with how the sections are laid out in the shadow map. We
take advantage of the fact that the errors of each subdivision
are correlated when the same warping parameter is used for
all subdivisions. The maximum x errors is the same for
subdivisions from opposite sides of the frustum (AC and BD)
if the faces have been subdivided. For the maximum z error
there is a trade off between opposite sides of the frustum.
If the error is relatively high for one subdivision, it be low
for its opposite subdivision. Based on these observations,
we first split the shadow map in the t direction according
to the maximum x error of the AC and BD pairs. Then
we independently split in the s direction for subdivisions
arising from each face pair according to maximum z error,
e.g. between A and C.

5 Results

In this section we describe our implementation of subdivided
shadow maps and highlight their performance on large mod-
els compared to other shadow map methods.

5.1 Implementation

We have implemented our algorithm on 2.4GHz Pentium-IV
PC with 1GB RAM and a GeForce 7800 GTX with 256MB
of video memory.

UNC Technical Report TR05-024: Subdivided Shadow Maps Page 5 of 8

1

a) b) c)
A

D

C

B A2

A1

D1

D2

B1

B2

C1

C2
D2

A2

C2

B1A1

C1 D1

B2

Figure 8: Basic algorithm. a) Frustum and face subdi-
visions performed on faces of the eye view frustum as seen
from the light. b) Each subdivision transformed to a canoni-
cal space and fitted with a warp (dashed frustum). c) Texture
space layout according the maximum error in each subdivi-
sion.

Model Vert. (M) Tri. (M) Obj.

Power plant 11 12.2 1200
Double eagle tanker 77 82 3346
St. Matthew 186 372 1

Table 1: Benchmark models: Model complexity of bench-
mark models is shown.

Benchmark models. We tested out algorithm with three
complex models, a coal-fired power plant composed of more
than 12 million polygons and 1200 objects (Fig. 2), a dou-
ble eagle tanker model consisting of 82 million polygon and
3346 objects (Fig. 5), the St. Matthew model consisting
of a single 372 million polygon and single object (Fig. 11).
The details of these models are shown in Table 1. We gener-
ated paths in each of our test models and used them to test
the performance of our algorithm. These paths of the power
plant and St. Matthew model are shown in the accompany-
ing video.

Fragment program. We store the shadow maps for each
subdivision in the same texture. In the fragment program
we must be able to choose which shadow map to use at
any pixel. We use the method described by Aldridge [2004].
We define planes parallel to the light through the edges of
the visible faces. The normals are oriented facing left in
the light’s view. The dot product of a vertex with each of
the edge planes is stored in separate channels of a texture
coordinate and interpolated over the scene. For edges not
visible to the light we set the dot product to 0. The following
code will set to 1 only the channel corresponding to the face
in the which a fragment lies, while setting all other channels
to 0.

faceSelect = sign(dotProducts);

faceSelect = saturate(faceSelect * saturate(-faceSelect.yzwx));

Similarly we define split planes parallel to the light that pass
through the edge induced by a face subdivision and track the
dot product of a vertex with the split planes.

splitSelect = splitDotProducts >= 0;

The faceSelect and splitSelect are then combined to se-
lect the set of texture coordinate corresponding to the sub-
division in which the fragment lies:

select0 = faceSelect * splitSelect;

select1 = faceSelect * (1.0 - splitSelect);

texCoord = select0.r * texCoord0 + select1.r * texCoord4 +

Figure 9: Subdivided shadow maps. a) without and b)
with face subdivision. For this scene with α = 100, face
subdivision leads to nearly 5 times improvement in maximum
error.

Model St. Matthew Power plant
SSM 1.16 1.67
SSM* 1.25 2.48

Table 2: Overdraw Factors. Overdraw factors of the sub-
divided shadow maps with and without subdivisions (SSM
and SSM*) are shown. Overdraw factors of the power plant
model are much higher than those of St. Matthew since size
and irregularity of objects of the power plant is much higher.

select0.g * texCoord1 + select1.g * texCoord5 +

select0.b * texCoord2 + select1.b * texCoord6 +

select0.a * texCoord3 + select1.a * texCoord7;

Integration. Our method is simple to integrate with code
that already uses shadow maps. Using functions we provide,
the user first queries in which sections an object falls. In the
subdivided shadow map render function we loop over each
subdivision, setting up the view parameters and invoking a
user supplied render callback. We supply the current sub-
division as a parameter to the callback so that the user can
render the objects which fall in this subdivisions. In this
way our code does not need to know the details of the rest
of the rendering system and the system does not need to
know about how the shadow maps are handled.

Interactive shadow generation on complex models. To
highlight the performance and high quality of our shadow
maps on complex and massive models, we integrate our al-
gorithm with out-of-core view-dependent rendering system
[Yoon et al. 2004]. The rendering system uses a set of clusters
decomposed from an input model as a scene representation
of the model and computes progressive meshes to provide
smooth level-of-detail transitions for each cluster at run-
time. We also take advantage of visibility culling techniques
[Govindaraju et al. 2003] to effectively cull away portion of
the mesh that are not visible to the eye or the light.

5.2 Analysis and Limitation

For many of our comparisons we chose TSMs over PSMs and
LSPSMs because TSMs gave slightly better quality.

The size of the objects in the scene has a great impact
on the rendering time for the shadow map. Since each sub-
division must be rendered into the shadow map separately,

UNC Technical Report TR05-024: Subdivided Shadow Maps Page 6 of 8

1

0

10

20

30

40

50

60

N
on

e

TS
M

1K

TS
M

4K

S
S

M
1k

S
S

M
4k

S
S

M
1k

*

S
S

M
4k

*

St. Matthew

0

40

80

120

160

200

N
on

e

TS
M

1K

TS
M

4K

S
S

M
1k

S
S

M
4k

S
S

M
1k

*

S
S

M
4k

*

Power Plant
R

en
de

r T
im

e
(m

s)

Shadow Render

Final Render

Figure 10: Timing comparison between trapezoidal shadow
maps (TSM) and subdivided shadow maps with and without
face subdivisions (SSM* and SSM) at 1K×1K and 4K×4K
resolution.

objects that fall into more than one subdivision will be ren-
dered multiple times. If a scene is decomposed into sub-
objects that are sufficiently smaller than the subdivisions,
most sub-objects will be rendered only once. Therefore, the
rendering cost of transforming scene geometry will not in-
crease much. The subdivided shadow map has the same
resolution as a standard shadow map, so the fill-rate con-
sumption will also about the same. But if the objects are
large, they will span multiple subdivisions, hurting perfor-
mance. We measure excessive rendering with an overdraw
factor :

overdraw =
number of object renderings

number of objects

The graph in Figure 10 shows that when more subdivisions
are used, the shadow map rendering time for the power plant
increases much more than for the statue. The reason for this
is that the power plant has much more irregular geometry
resulting in clusters that are larger that those of the statue.
This leads to much higher overdraw factors (see Table 2).

The image rendering time for subdivided shadow maps is
higher than for TSMs. This is due largely to the use of a
more complicated fragment program for subdivided shadow
maps. The fragment program that supports a face subdivi-
sion is even more complicated, leading to even longer render
times. If the overdraw factor is low, the total frame time
for subdivided shadow maps should be roughly twice that
for a shadow warping algorithm. However, the quality may
be much more than twice. Figure 1 shows a comparison of
subdivided shadow maps with TSMs. For this view even the
largest shadow map we could allocate, 4K×4K, was not suf-
ficient to match the quality that we achieved with a 1K×1K
subdivided shadow map.

The error reduction with subdivided shadow maps will be
most dramatic when the angle between the light and view
directions is small because other shadow warping algorithms
do not handle this case well. When the light and view direc-
tions are perpendicular in the optimal configuration, frus-
tum subdivision does not improve the quality much over the
other shadow warping algorithms. A single set of face sub-
divisions, however, reduces the error quite a bit. Figure 9
SSMs with and without face subdivision.

Often the improvement in shadow quality from using face
subdivision does not appear to be as good as predicted by

Figure 11: St. Matthew model with shadows. This
image shows St. Matthew model consisting of 372 million
triangles. We are able to render the model with high quality
shadows at 15-25 frames per second on commodity hardware
with a GeForce 7800 GTX GPU.

Equation 7. The equation predicts the maximum over an
entire subdivision. If there are no surfaces where the error
is at its maximum, the reduction of error will not be visible.
The error is reduced in other parts of the scene as well, but
not as much.

One problem with subdivided shadow maps is that the
texels of the shadow map can be excessively sheared. The
shear comes from the transformation of the subdivisions to
the canonical space for warping. The texel shearing can be
alleviated somewhat by first rotating the subdivision before
shearing. This introduces more error but may yield more
pleasing results.

Conclusion and Future Work

We have presented a shadow map algorithm for reducing
perspective aliasing by applying separate warp functions to
subdivisions of the scene individually. The algorithm can re-
duce the maximum aliasing by a factor of 10 or more while
running only about twice as slow as other shadow map warp-
ing algorithms.

We would like to extend our technique to be used with
point lights. The analysis is a bit more involved for point
lights because now shadow texel beams change width with
distance. Cube maps can be seen as a form of subdivision.
We conjecture that warping the faces of the cube maps could
lead to higher quality shadows.

References

Aila, T., and Laine, S. 2004. Alias-free shadow maps. In Proceedings

of Eurographics Symposium on Rendering 2004, Eurographics As-

sociation, 161–166.

Aldridge, G. 2004. Generalized trapezoidal shadow mapping for

infinite directional lighting. http://legion.gibbering.net/projectx/

paper/shadow%20mapping/ .

UNC Technical Report TR05-024: Subdivided Shadow Maps Page 7 of 8

Chan, E., and Durand, F. 2004. An efficient hybrid shadow render-

ing algorithm. In Proceedings of the Eurographics Symposium on

Rendering, Eurographics Association, 185–195.

Chong, H., and Gortler, S. 2004. A lixel for every pixel. In Proceed-

ings of the Eurographics Symposium on Rendering, Eurographics

Association, 167–172.

Fernando, R., Fernandez, S., Bala, K., and Greenberg, D. 2001.

Adaptive shadow maps. In Proceedings of ACM SIGGRAPH

2001, 387–390.

Forum. 2003. Shadow mapping in large environ-

ments. http://www.gamedev.net/community/forums/

topic.asp?topic id=179941 .

Govindaraju, N., Lloyd, B., Yoon, S., Sud, A., and Manocha, D.

2003. Interactive shadow generation in complex environments.

Proc. of ACM SIGGRAPH/ACM Trans. on Graphics 22, 3, 501–

510.

Johnson, G., Mark, W., and Burns, C. 2004. The irregular z-buffer

and its application to shadow mapping. In The University of Texas

at Austin, Department of Computer Sciences. Technical Report

TR-04-09.

Kozlov, S. 2004. Perspective Shadow Maps: Care and Feeding.

Addison-Wesley, 214–244.

Lefohn, A., Sengupta, S., Kniss, J. M., Strzodka, R., and Owens,

J. D. 2005. Dynamic adaptive shadow maps on graphics hardware.

In ACM SIGGRAPH 2005 Conference Abstracts and Applica-

tions.

Martin, T., and Tan, T.-S. 2004. Anti-aliasing and continuity with

trapezoidal shadow maps. In Proceedings of the Eurographics

Symposium on Rendering, Eurographics Association, 153–160.

McCool, M. 2000. Shadow volume reconstruction from depth maps.

ACM Trans. on Graphics 19, 1, 1–26.

Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., and Hae-

berli, P. 1992. Fast shadows and lighting effects using texture

mapping. In Computer Graphics (SIGGRAPH ’92 Proceedings),

vol. 26, 249–252.

Sen, P., Cammarano, M., and Hanrahan, P. 2003. Shadow silhouette

maps. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH)

22 .

Stamminger, M., and Drettakis, G. 2002. Perspective shadow maps.

In Proceedings of ACM SIGGRAPH 2002, 557–562.

Tadamura, K., Qin, X., Jiao, G., and Nakamae, E. 1999. Render-

ing optimal solar shadows using plural sunlight depth buffers. In

Computer Graphics International 1999, 166.

Williams, L. 1978. Casting curved shadows on curved surfaces. In

Computer Graphics (SIGGRAPH ’78 Proceedings), vol. 12, 270–

274.

Wimmer, M., Scherzer, D., and Purgathofer, W. 2004. Light space

perspective shadow maps. In Proceedings of the Eurographics

Symposium on Rendering, Eurographics Association, 143–152.

Yoon, S.-E., Salomon, B., Gayle, R., and Manocha, D. 2004. Quick-

VDR: Interactive View-dependent Rendering of Massive Models.

IEEE Visualization, 131–138.

Appendix

A parameterization s using a general projective transform
on z is given by:

s =

[
a b
c d

] [
z
1

]
=

[
az + b
cz + d

]
After the perspective divide we have a function:

s =
az + b

cz + d
ds

dz
=

ad− bc

(cz + d)2

Thus the texel spacing in world space, dz/ds, generated by
a perspective projection is proportional to z2.

UNC Technical Report TR05-024: Subdivided Shadow Maps Page 8 of 8

R-LODs: Fast LOD-based Ray Tracing of Massive Models

Sung-Eui Yoon1 Christian Lauterbach2 Dinesh Manocha2

1Lawrence Livermore National Laboratory 2University of North Carolina at Chapel Hill
{sungeui,cl,dm}@cs.unc.edu
http://gamma.cs.unc.edu/RAY

Abstract

We present a novel LOD (level-of-detail) algorithm to ac-
celerate ray tracing of massive models. Our approach com-
putes drastic simplifications of the model and the LODs are
well integrated with the kd-tree data structure. We introduce
a simple and efficient LOD metric to bound the error for pri-
mary and secondary rays. The LOD representation has small
runtime overhead and our algorithm can be combined with
ray coherence techniques and cache-coherent layouts to im-
prove the performance. In practice, the use of LODs can al-
leviate aliasing artifacts and improve memory coherence. We
implement our algorithm on both 32bit and 64bit machines
and able to achieve up to 2–20 times improvement in frame
rate of rendering models consisting of tens or hundreds of mil-
lions of triangles with little loss in image quality.

1 Introduction
In recent years, there has been a renewed interest in real-time
ray tracing for interactive applications. This is due to many
factors: firstly, processor speed has continued to rise at expo-
nential rates as predicted by Moore’s Law and is approach-
ing the raw computational power needed for interactive ray
tracing. Secondly, ray tracing algorithms can be parallelized
on shared memory and distributed memory systems. There-
fore, the current hardware trend towards desktop systems with
multi-core CPUs and programmable GPUs can be used to ac-
celerate ray tracing. Finally, recent algorithmic improvements
that exploit ray coherence can achieve a significant improve-
ment in rendering time [22, 31].

Our goal is to perform interactive ray tracing of massive
models consisting of tens or hundreds of millions of triangles
on current desktop systems. Such gigabyte-sized models are
the result of advances in model acquisition, computer-aided
design (CAD), and simulation technologies and their com-
plexity makes interactive visualization and walk-throughs a
challenging task. In the context of rendering massive models,
ray tracing has an important property: its asymptotic perfor-
mance is logarithmic in the number of primitives for a given
resolution. This is due to the use of hierarchical data struc-
tures such as bounding volume hierarchies or kd-trees. The
asymptotic complexity makes ray tracing an attractive choice,
especially for rendering of massive models.

The logarithmic growth, however, continues only as long as
the system has sufficient main memory to contain the entire
model and hierarchical data structures. As models grow much
larger, the size of the hierarchical structure also increases lin-
early and the underlying ray tracer performs its computations
in an out-of-core manner, slowing down drastically. A ma-
jor trend in computing hardware has been the increasing gap
between processor speed and memory speed. Moreover, disk
I/O accesses are in general more than three orders of magni-
tude slower than main memory accesses. Because of these

Figure 1. St. Matthew Model: We use our LOD-based
algorithm to accelerate ray tracing of the St. Matthew model
with shadows and reflections. We render the 128M triangle
model at 512 × 512 resolution with 2 × 2 anti-aliasing and
pixels-of-error (PoE) = 4. We are able to achieve 2−3 frames
per second on two dual-core Xeon processors with 4GB of
memory. We observe a 2− 20 times increase in the frame rate
due to R-LODs with very little loss in image quality.

gaps, hardware advances are not expected to provide an effi-
cient solution to the problem of ray tracing massive models.
Main Contributions: We present a new algorithm to accel-
erate ray tracing of massive models using geometric levels-
of-detail (LODs). Our approach computes simple and drastic
simplifications, called R-LODs, of the polygonal model. The
R-LODs have a compact representation and are tightly inte-
grated with the kd-tree. We present a simple and efficient
LOD error metric to bound the error for primary and sec-
ondary rays. Additionally, we use techniques based on ray
coherence and cache-oblivious layouts to improve the perfor-
mance of our LOD based ray tracing algorithm. R-LODs also
alleviate the temporal aliasing that can arise during rendering
of highly tessellated models.

We have implemented and tested our system on two ma-
chines running Windows XP 32-bit and 64-bit with two dual-
core Xeon CPUs and have evaluated its performance on dif-
ferent kinds of models with 20− 128M triangles. The perfor-
mance gain of our LOD based ray tracer is proportional to the
reduction in the working set size and the number of intersec-
tion tests. The frame rate improvement varies from 2 times on
models with small working set size to almost 20 − 50 times
on models with very large working set size.

Our ray tracing algorithm offers the following benefits:

1. Simplicity: R-LODs are very easy to implement and

their representation has small runtime overhead. Our al-
gorithm maintains the simplicity, coherence, and perfor-
mance of the kd-tree data structure.

2. Interactivity: The LOD based ray tracer provides a
framework for interactive ray tracing due to the fact that
we can trade off image quality for improved frame rate.

3. Front size: R-LODs reduce the size of the front tra-
versed in the kd-tree. This results in fewer ray intersec-
tion tests and decreases the size of the working set.

4. Coherence: R-LODs make memory accesses more co-
herent and reduce the number of L1/L2 cache misses and
page faults. Furthermore, they can also improve the per-
formance of ray coherence techniques.

5. Generality: Our algorithm is applicable to a wide va-
riety of polygonal models, including scanned and CAD
models.

Organization: The rest of the paper is organized in the fol-
lowing manner: section 2 gives a brief summary of prior work
in interactive rendering. We give an overview of our approach
in Section 3 and present the R-LOD representation and com-
putation algorithm in Section 4. Section 5 shows accelera-
tion techniques based on cache-coherent layouts and ray co-
herence. We describe the implementation of our ray tracer
and analyze its performance on different models in Section
6. Finally, section 7 compares our algorithm with other ap-
proaches.

2 Related work
In this section, we give a short overview of interactive ray
tracing and the use of LODs for interactive rendering.
2.1 Interactive Ray Tracing
Ray tracing was introduced by Appel [3] and Whitted [36]
and is a very well studied field. In this section, we just briefly
survey some recent techniques used to accelerate ray tracing,
but a detailed description is available in [27]. At a broad level,
we classify prior approaches into four categories:
Exploiting ray coherence: The underlying idea here is not
to trace each ray by itself, but to utilize the fact that neighbor-
ing rays exhibit spatial coherence. Earlier attempts to exploit
this concept were beam tracing [11], pencil tracing [26] and
cone tracing [2]. More recently, Wald et al. [31] group rays
into bundles and use them to accelerate traversal and inter-
section with primitives for all rays simultaneously by taking
advantage of SIMD instructions. Reshetov et al. [22] propose
an algorithm to integrate beam tracing with the kd-tree spatial
structure and were able to further exploit ray coherence.
Hardware acceleration: Another trend has been to use hard-
ware support to accelerate ray tracing. Purcell et al. [21] show
that ray tracing could be adapted to the streaming model of
current programmable GPUs, which are mainly designed for
rasterization. Schmittler et al. [25] and Woop et al. [38]
present prototypes for a complete and programmable ray trac-
ing hardware architecture to run at interactive rates.
Parallel computing: Ray tracing is easily parallelizable due
to the fact that all rays can be traced independently. Parker
et al. [19], DeMarle at al. [7], and Dietrich et al. [8] de-
scribe an interactive ray tracer for rendering large scientific or
CAD datasets running on shared memory or distributed archi-
tectures. Wald et al. [34] built a ray tracer to run on clusters
of commodity hardware machines and were able to achieve
interactive frame rates for large architectural and CAD mod-
els. Both of these systems are mainly intended for models that
could be kept in the main memory of a shared memory system
or of PCs used in the cluster.
Large datasets: Many algorithms have been presented to
improve the performance of ray tracing on large datasets
[7, 10, 20, 32]. Our approach is complimentary to these meth-
ods and can be combined with them to further improve the
performance.

Figure 2. Double Eagle Tanker: The deck of the Double
Eagle tanker with shadows is shown using ray tracing. We are
able to achieve 1-3fps at 512 by 512 image resolution with
2x2 super-sampling and PoE = 4 on a dual Xeon workstation.
In this model, the working set of the ray tracer is low and we
are able to achieve up to 2 times improvement in the frame
rate.

2.2 Interactive Rendering using LODs and Out-of-Core
Techniques

LODs have been widely used to accelerate rasterization of
large polygonal datasets [16]. At a broad level, prior al-
gorithms can be classified into static LODs, view-dependent
simplification, image-based representations and hybrid com-
binations of geometric and image-based representations. Out-
of-core algorithms are an active area in computer graphics and
visualization with the goal to efficiently handle large datasets
[4]. LOD algorithms can be combined with out-of-core tech-
niques to rasterize large polygonal datasets composed of tens
or hundreds of millions of polygons at interactive rates on
commodity PCs [23, 6, 41, 9].

LOD-based based algorithms can also be applied to ac-
celerate ray tracing. Christensen et al. [5] introduce a LOD
approach for an offline ray tracer based on ray differentials
[12]. Wand and Straßer [35] propose an algorithm for multi-
resolution ray tracing of point-sampled geometry based on
ray-differentials. Another approach is to integrate the LODs
into the hierarchical structure [37]. Recently, Stoll et al. [28]
proposed a novel architecture for dynamic multiresolution ray
tracing. They proposed a watertight multiresolution method
by interpolating between discrete LODs for each ray. Their
discrete LODs are computed from choosing proper tessella-
tion levels for subdivision meshes. Also, efficient algorithms
based on depth images can be used to accelerate ray tracing
[15, 1].

3 Overview
In this section, we discuss many issues that govern the perfor-
mance of ray tracing and give an overview of our approach.
3.1 Ray tracing of massive models
In this paper, we restrict ourselves to triangulated models,
though our approach can also be extended to other primitives
such as point clouds. All efficient ray tracers employ hier-
archical data structures to avoid testing each ray with every
primitive. We use the kd-tree, which is a special case of the
general BSP tree and has recently become a popular choice
due to its simplicity and performance [10, 27]. Each node
of the kd-tree represents one subdivision of the parent’s space
and contains information about the axis-aligned plane used for
the split as well as pointers to its child nodes. We use the opti-
mized representation proposed by Wald et al. [30] and extend

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 2 of 10

1 2 4 8 16 32 64 128 256

0.5
1

10

100

1000
2000

Model complexity (M tri.) - log scale

R
en

de
r

tim
e

(s
ec

)
-

lo
g

sc
al

e

Render time w/o R-LODs
Render time w/ R-LODs + CO-layout

1 2 4 8 16 32 64 128 256
0

1000

2000

3000

Model complexity (M tri.) - log scale

S
iz

e
of

 w
or

ki
ng

 s
et

(M
B

)

Working set size w/o R-LODs
Working set size w/ R-LODs + CO-layout

Figure 3. Performance of Ray Tracing: We precompute
simplified versions of the St. Matthew model and ray trace
each simplification separately from the same viewpoint. We
measure the frame time and working set size of the ray-tracer,
with and without R-LODs by using different simplified mod-
els on a 64-bit machine with 2GB RAM. Notice the big jump
in frame time for ray tracing without R-LODs, as the work-
ing set of ray tracing with massive models exceeds the avail-
able RAM. On the other hand, our R-LOD based ray tracing
combined with cache-oblivious layouts (CO-layout) achieves
near-constant performance in terms of frame rate and the
working size.

it to efficiently handle LODs.
Out-of-core ray tracing: Ray tracers taking advantage of hi-
erarchical data structures should exhibit a logarithmic growth
rate as a function of the model complexity [31]. We mea-
sured the performance of a coherent ray tracer during render-
ing different simplification levels of the St. Matthew model,
as shown in Fig. 3. Our experiment indicates that ray trac-
ing performance increases as a logarithmic function of model
complexity as long as the kd-tree and primitives of a model
can fit in the main memory. However, once the model size and
the working set size of the kd-tree exceeds the available main
memory of the machine, the disk I/O significantly affects the
performance of the ray tracer.
Ray coherence: Recent approaches that exploit spatial and
ray coherence decrease the number of memory accesses and
therefore also the number of disk accesses for large models
[31, 22]. These algorithms perform traversals and intersec-
tions for multiple spatially-coherent rays in a group at the
same time. In general, rays in a group exhibit higher coher-
ence at the higher levels of the kd-tree (that usually are in
main memory) because each ray in the group is likely to fol-
low same path in the tree as other rays. However, accesses
to the nodes deeper in the tree are incoherent and, thus, result
in disk cache misses, especially when dealing with massive
models, since bounding box of those nodes become smaller
compared to width of the ray group. Therefore, in order to ac-
celerate out-of-core ray tracing, we need to reduce the number
of accesses made to the nodes deeper in the tree.
3.2 Our Approach
We mainly address the problem of ray tracing massive models.
If models have high depth complexity, current traversal algo-
rithms based on kd-trees can efficiently handle such kinds of
models. In this case, the working set size is proportional to the
number of visible primitives from the primary and secondary
rays. Therefore, we primarily deal with the problem of fast
ray tracing when the number of visible primitives is high.

We assume that each ray or ray bundle is represented by a

pyramidal beam or frustum. As described in the multi-level
ray tracing of Reshetov et al. [22], during traversal the frus-
tum is checked for intersection with the bounding box of the
current kd-tree node by using an inverse frustum culling ap-
proach. This results in two interesting cases:
1. Models with large primitives: If the bounding box of the
node is larger than the frustum, it is likely that the node inter-
sects with the whole beam, i.e. we can exploit spatial coher-
ence. Typically, architectural models or CAD models result
in such cases whenever the model is coarsely tessellated, has
large planar primitives or is viewed at close range.
2. Highly tessellated models: In this case, the bounding box
is much smaller than the frustum. This implies that the beam
needs to be split into smaller sub-beams. However, if the beam
represents just one ray, then further subdivision is not possi-
ble, even though the sub-tree represented by the node has a
high number of descendants and, thus, there is high local geo-
metric complexity. Therefore, ray coherence approaches like
multi-level ray tracing and ray packet tracing fall back to nor-
mal ray tracing and may not offer much benefit. For example,
consider ray tracing a St.Matthew model consisting of 128M
triangles at a resolution of 10242 primary rays. Assume that
every ray hits the model and half of the model’s triangles are
visible to the eye. In this case, fewer than 1% of the actual
triangles are hit by one of the rays. Moreover, each of these
triangles is sampled as a representative of several triangles in
the subtree. This has two consequences: first, the memory
accesses may be incoherent because each triangle may lie in
a different part of memory. Secondly, temporal aliasing can
occur between frames since it is likely that a different triangle
will be chosen in successive frames.

Our novel LOD-based ray tracing algorithm handles this
second case by choosing our precomputed R-LOD representa-
tion when traversal determines that a LOD metric is satisfied.
This means that traversal can stop before reaching the deep
levels of the tree, reducing the number of incoherent accesses
and the size of the working set, while maintaining ray coher-
ence so that related techniques still work well. As a result, we
obtain significant improvements in rendering speed.

4 LOD Based Ray Tracing
In this section we present the R-LODs that are used to accel-
erate ray tracing. We first describe our R-LOD representation
and the modified traversal algorithm. Then we present our
LOD error metric and the R-LOD construction algorithm.
4.1 R-LOD Representation for Ray Tracing
Our goal for interactive ray tracing is to design a LOD rep-
resentation that retains the benefits of kd-tree based acceler-
ation algorithms, i.e. simplicity, efficiency and low runtime
overhead.

A R-LOD consists of a plane with material attributes (e.g.
color), which is a drastic simplification of the descendant tri-
angles contained in an inner node of the kd-tree, as shown in
Fig. 5. Each R-LOD is also associated with a surface devia-
tion error which is used to quantify the projected screen-space
error at runtime.

Let us assume that the original tree has height h, where
h ≈ log

2
(n), and n is the number of triangles in the original

model. The R-LOD associated with a kd-tree node at height k

is a simplification into a plane of the 2k descendant triangles.
Our choice to use such a representation is motivated by the
following goals:
Simple and efficient LOD representation: Current ray ob-
ject intersection algorithms based on the kd-tree are highly
optimized for interactive ray tracing. We use simple represen-
tations for LODs to minimize storage and traversal overhead.
Each R-LOD adds 4 bytes to an inner node of the kd-tree. We
also use a simple and fast LOD selection algorithm to reduce
the traversal overhead.

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 3 of 10

(a) No LOD (b) PoE = 4

Figure 4. Forest Model: We render the forest model consisting of 32 million triangles with shadow rays using PoE = 0
and PoE = 4. The image resolutions are 512×512 without anti-aliasing to highlight image quality differences. We are able
to render the model given the viewpoint at the 1.6 frames per second and achieve 5 times improvement by using R-LODs.

Drastic model simplification: The computational workload
of ray tracing is a logarithmic function of the model complex-
ity. If the model size is reduced by a factor of m, the tree
traversal overhead reduces by only log(m). As a result, m

has to be a significant number, say 23or 24.
High quality rendering: Ray tracing is primarily used to
generate high-quality rendering. Since the R-LODs are a dras-
tic simplification of the original model, their use can result in
visual artifacts. In order to control the errors caused by R-
LODs, we associate a deviation error metric and compute a
screen-space projection in terms of pixels-of-error (PoE) de-
viation. Also, we assume that our drastically simplified LOD
representations are mainly used given small PoE values (e.g.,
1–4 pixels at image resolution 1024 × 1024) for high-quality
rendering.

4.2 Runtime Traversal with R-LODs

Our new traversal algorithm is a modification of the efficient
traversal algorithm described in Wald’s thesis [30] and [29].
We recursively traverse the kd-tree from the root node or the
entry-point that is computed using multi-level ray tracing.
When we reach an intermediate node associated with a R-
LOD, we check whether we can use the R-LOD based on our
LOD error metric. If the current R-LOD satisfies the LOD er-
ror metric, we perform an intersection test between a R-LOD
and the ray. If there is an intersection, we stop the traver-
sal and return the intersection data of the R-LOD to compute
shading and shoot secondary rays, if necessary. If there is no
intersection, the algorithm does not traverse the child nodes
of the intermediate node associated with the R-LOD. Each R-
LOD is bounded by a kd-node and therefore, the extent of the
plane of the R-LOD is implicitly bounded by the kd-node dur-
ing tree traversal. The implicit extent of the plane results in a
compact R-LOD representation.

4.3 LOD Error Metric Evaluation

We use a projection-based algorithm integrated with surface
deviation error to select appropriate LODs for ray tracing.

normal

intersection

no intersection

rays

plane

Valid extent

of the plane

Figure 5. LOD Representation: A R-LOD consists of a
plane with material attributes. It serves as a drastic simpli-
fication of triangle primitives contained in the bounding box
of the subtree of a kd-tree node. Its extent is implicitly given
by its containing kd-node. The plane representation makes the
intersection between a ray and a R-LOD very efficiently and
results in a compact representation.

Conservative projection algorithm: We use a projection
method to efficiently compare the screen-space area of the
R-LOD after the perspective projection with the PoE in the
screen-space. Conceptually, we position a projection plane at
the intersection between the ray and the kd-tree node. The
plane is set to be orthogonal to the ray, as shown in Fig. 6.
We enclose the R-LOD (and its corresponding simplified ge-
ometry) in a sphere. The area of the R-LOD projected onto
the projection plane is conservatively measured by computing
πR2, where R is the radius of the sphere. Let Rp be the ra-
dius of a sphere inscribed in a rectangular shape pixel of the
image screen. In this case, Rp is simply half of the width of
the pixel. Then, the projected area of a pixel in the projection
plane satisfies the following relationship:

dnear

Rp

=
dmin

R̂p

⇒ R̂p = dmin

Rp

dnear

= dminC, (1)

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 4 of 10

where R̂p is the projected radius of Rp, dnear is the distance
from the viewer to the image plane, and dmin is the distance
from the viewer to the intersection point between the ray and
the kd-node. Since Rp

dnear

(= C) is a constant, the projected

radius, R̂p, is a simple linear function of the distance, dmin,
along the ray from the eye to the intersecting node. We select
an R-LOD if R̂p, is bigger than the radius, R, associated with
the R-LOD. Our LOD metric is very efficient as it requires
only one multiplication and dmin is already known during the
tree traversal.

Surface deviation: The error metric described above conser-
vatively measures the projected screen-space area of the R-
LOD. We augment the metric to take into account the surface
deviation of a R-LOD. For this we first measure the surface
deviation between the plane of the R-LOD and all the con-
tained triangles. We combine the surface deviation and the
projected screen-space area of the R-LOD in the following ge-
ometric formulation. We compute the volume of the surface
deviation along the plane and add this volume to the volume
of the sphere enclosing the R-LOD. We then treat the summed
volume as a volume of an imaginary sphere and use its radius
as the error bound of the R-LOD. In this geometric formula-
tion, these two seeming different error bounds can be treated
in a uniform manner.

Error quantization: The exact representation of the plane
and associated materials takes 32 bytes. Instead of directly
associating this information with each node of the kd-tree, we
quantize the error bounds associated with the R-LODs and
store the quantized error bound as well as an R-LOD index
in a 4 byte structure as the part of the kd-node in order to
reduce the working set size during traversals. Therefore, only
if the error bound of an R-LOD is satisfied within the PoE
bound, we load the exact R-LOD representation by using the
R-LOD index. When considering a path from a leaf node of
the kd-tree to the root node, the error bounds associated with
the nodes increase as a geometric series. Therefore, we use
a geometric distribution equation to quantize the error values
associated with the R-LODs. We found that 5 bits are enough
(i.e. 10%–20% quantization error) to conservatively quantize
the error bound of the R-LODs in our benchmarks; therefore,
each R-LOD index is stored in 27 bits, which are enough to
indicate all the R-LODs in our tested models.

Secondary rays: Our LOD metric based on conservative
projection also extends to secondary rays. These include re-
flection (in which a ray reflects at an intersection point with a
reflective triangle) and shadow rays. This is mainly because
these secondary rays can be expressed as a linear transfor-
mation [11]. In the case of reflection, the radius, Rp, of the
sphere inscribed in the pixels of the image space increases
linearly based on the sum of the distance from the viewer to
an intersecting reflective triangle, and to another intersecting
object along the primary or reflective secondary rays. Simi-
larly, our metric also works well for shadow rays and again
we use a linear transformation. One issue with using LODs
for shadow rays is that they can result in self-shadowing arti-
facts when different versions of the R-LODs are selected by
the primary ray and the shadow ray. We overcome this prob-
lem by ignoring the intersections between the shadow ray and
the primitives that are within the LOD error bounds associated
with the R-LOD selected by the primary ray.

Our projection-based method does not work with refrac-
tion, since refraction is not a linear transformation [11]. In
this case, we use a more general, but expensive method based
on ray differentials [12], to decide whether an R-LOD satisfies
the PoE bound after refraction.

pixel inscribed spere with
(Rp)

projection plane

kd-node

center

R̂ ≤ R

R
R̂p

Sphere enclosing
the kd-node

Figure 6. Projection-based LOD Metric: We place a pro-
jection plane at the intersection point between a ray and the
kd-node. The plane is orthogonal to the ray. Based on this
projection plane, we conservatively check whether the R-LOD
satisfies the error metric.

4.4 R-LOD Construction
Our goal is to compute a plane that approximates the triangles
that are contained in the subtree of an intermediate kd-node
and also their material properties. If a triangle contained in
the subtree is not fully contained in the bounding box of the
node, we clip the triangle against the box and do not consider
the clipped portion of the triangle. We use principal compo-
nent analysis (PCA [13]), to compute the plane. PCA com-
putes the eigenvectors that provide a statistical description of
input points. We perform PCA computation based on the ver-
tices of the triangles, but also take into account the size of the
triangles by associating the area of the triangle as a weight for
each vertex. The plane is computed based on the eigenvec-
tor associated with the largest eigenvalue and this eigenvec-
tor represents the normal to the plane1. We compute material
properties that are mean values of the contained triangles and
associate them with the R-LOD. The surface deviation of the
plane against the geometric primitives is computed based on
the smallest eigenvalue, which corresponds to a variance of
geometry along the normal of the plane.
Hierarchical R-LOD computation: We can compute the R-
LODs associated with each node of the tree in a bottom-up
manner. However, a naive algorithm would compute the R-
LOD for each node independently and this can result in a
O(n log n) algorithm.

Instead, we present a R-LOD computation algorithm that
has linear time complexity and is well suited for out-of-core
computation. Each element, σij , of (i, j)th component of a
covariance matrix for PCA is defined as the following:

σij =

n∑

k=1

(V k
i − µi)(V

k
j − µj), (2)

where V k
i is the ith component (e.g. x, y, and z) of kth vertex

data, µi is the mean of V k
i , and n is the number of vertices.

This equation can be reformulated as:

σi,j =
n∑

k=1

V k
i V k

j −
2

n

n∑

k=1

V k
i

n∑

k=1

V k
j +

1

n2

n∑

k=1

V k
i

n∑

k=1

V k
j ,

(3)

It follows that if we can compute and store the sums of V k
i ,

V k
j , V k

i V k
j , and n, we can compute the covariance with these

sums and n for any intermediate node. In order to compute
the covariance matrix of a parent node, we simply add these

1The direction of the normal is chosen to be closer to the average normal
of triangles.

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 5 of 10

Figure 7. C
0 Discontinuity: The left image shows the Stan-

ford dragon model as rendered by our approach with PoE = 0,
i.e. using original triangles. The top right image was ac-
quired by setting PoE = 5 at 512× 512 image resolution with
no expansion of R-LODs. As can be seen in the area of the
dragon’s eye, there is a hole caused by C

0 discontinuity of
our LOD representation. By allowing a small amount of ex-
pansion of R-LODs, we can avoid having holes in the final
image as shown in the bottom right image. Close-ups of the
eye are shown in boxes with yellow borders.

variables as a weighted sum of the number of vertices con-
tained in each child node. This property is particularly useful
to compute the R-LODs of inner nodes in the kd-tree in an
out-of-core manner. Our algorithm has linear time complex-
ity and its memory overhead is a function of the height of the
tree. In practice, the memory overhead in our benchmarks is
less than 1MB.
4.5 C0 Discontinuity between R-LODs
Our LOD computation algorithm computes a drastic simplifi-
cation. Therefore, if the underlying triangles have high curva-
ture, the PCA-based approximation can have high surface de-
viation. In this case, it is possible that our algorithm does not
maintain C0 continuity between R-LODs, which can result
in some holes in the resulting image (see Fig. 7). This kind
of problem has been well-studied in the LOD and point-based
rendering literature. Particularly, many techniques in the LOD
literature have been proposed to patch these holes using pre-
computed data structures or runtime algorithms [6, 41]. How-
ever, those approaches can increase the storage and runtime
overhead of ray tracing algorithms. In our implementation,
we do not use any patching techniques.

Instead, we ameliorate this problem through our R-LOD
selection algorithm. A very low PoE bound should be used
to limit the error introduced by the R-LODs. The low PoE
bound also minimizes temporal popping that can arise when
we switch between the R-LODs of parent and children nodes
during successive frames. Moreover, we assign higher weight
to surface deviation computation as part of the error metric
computation; therefore, higher resolutions are used in the re-
gion with high curvature.
Expansion of R-LODs: In addition to these two heuristics,
we also expand the extents of R-LODs to remove holes caused
by C0 discontinuity between R-LODs. Please note that as
the surface deviation increases, it is likely that gaps become
larger. Therefore, we increase the extent of a R-LOD as a
function of the surface deviation associated with the R-LOD.
This expansion is efficiently considered during the plane and
ray intersection as an additional numerical tolerance. In prac-
tice, we found that combining these heuristics work well to
remove holes caused by C0 discontinuity without introducing
any noticeable visual artifact given low PoE error bounds (see
Fig. 7).

5 Utilizing Coherences
In this section, we describe approaches to improve the perfor-
mance of our ray tracing algorithm using ray coherence and
cache-coherent layouts.
5.1 Ray Coherence
We define ray coherence as the coherence of rays in tree
traversal and intersection, i.e. rays may take a similar path
in the tree and may hit the same triangles. For primary rays,
our ray tracer starts out by assuming there is ray coherence
and shoots a beam using the algorithm presented in [22]. We
compute a common entry point in the tree for all rays in the
beam, at which the beam is split into either sub-beams or ray
packets depending on its size. For the latter case, we use the
coherent ray tracing algorithm [31] which works on a 2 × 2
packet of rays in parallel using current processors’ SIMD in-
structions. During all traversal, we check whether we need
to use R-LODs that have appropriate resolution based on our
LOD metric. If so, we stop traversal of that subtree and in-
tersect with the simplified representation. If the given model
is highly tessellated, beam tracing and the use of SIMD in-
structions may not work well and can even lead to a decrease
in performance (as explained in Section 3.2). However, we
found that the use of R-LODs alleviates this problem, as we
generally do not traverse as deep into the tree and therefore
execute less overhead intersections. Secondary rays can be
also handled in a similar manner.
5.2 Cache Coherence
It is highly desirable to maintain cache coherence during run-
time tree traversals to help to achieve good performance. We
apply the cache-oblivious mesh layout algorithm [39] to com-
pute cache-coherent layouts of the kd-nodes. We interpret the
kd-tree as a graph that can represent the expected runtime ac-
cess patterns. The quality of the layout depends on the struc-
ture of the input graph. In order to predict the runtime behav-
ior of tree traversal by the graph, we use a simple method to
compute the probability that a node will be accessed given that
its parent node has been accessed before, based on their geo-
metric relationship [40]. The ray tracing algorithm traverses
the child nodes from the parent node when there is an intersec-
tion between a ray and the bounding box of the parent node.
Therefore, we estimate that the probability that the child node
is accessed increases as its surface area compared to its par-
ent node increases. This property is already well exploited by
the kd-tree construction algorithms by using the surface areas
of the bounding boxes of the kd-nodes [17]. The layouts can
increase the performance of the ray tracer by 10 − 60% on
massive models. This is in addition to the speedups obtained
by R-LODs.

6 Implementation and Results
In this section, we describe our implementation and highlight
the performance of our ray tracer on different benchmarks.
6.1 Implementation
We have implemented our R-LOD construction algorithm and
ray tracer on both 32-bit and 64-bit machines that have two
dual-core Xeon processors running 32-bit and 64-bit Win-
dows XP, respectively. For runtime ray tracing, we use mem-
ory mapped files to efficiently access large files of geometry
and kd-tree. However, in the 32-bit OS, we can only map up
to 3GB total memory. To deal with larger data, we have im-
plemented explicit out-of-core memory access management.
This is not necessary in the 64-bit OS where we just use im-
plicit OS memory mapping functionality.

In order to construct the kd-tree for a model that does not
fit into main memory, we first subdivide the model into voxels
in an out-of-core manner and then build the kd-tree for each
of these voxels individually in core [41]. This step can also be
performed in parallel on different voxels for speeding up the

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 6 of 10

(a) No LOD (b) PoE = 2.5 (c) PoE = 5

Figure 8. Images of the St. Matthew model with different PoE values are shown at 512 × 512 image resolutions. We do not use
anti-aliasing to highlight image quality difference. Please note that the original St. Matthew model has many holes. The use of R-LODs
can alleviate aliasing artifacts and improve the performance of massive models.

Model Vert. Tri. Node Size R-LOD
(M) (M) (M) (GB) Comp. (min)

Forest 19 32 105 4.1 10

Double eagle 77.7 81.7 173 9.1 32

St. Matthew 128 256 378 26 124

Table 1. Benchmark models
Model complexity, the number of kd-nodes, the total size of kd-tree,
geometry, and R-LODs, and the construction time of R-LODs are

shown.

construction. Afterwards, the kd-tree for each voxel is merged
into the global tree, which is used for ray tracing.

Since we have found that the quality of the kd-tree is the
most important factor for fast ray tracing, we build the kd-
tree using the surface-area heuristic [17, 10] and some further
improvements as presented by [22]. Especially important is
to introduce extra splits for empty areas in order to bound the
geometry more tightly for our R-LOD representation.
6.2 Results
Benchmarks: We have applied our LOD-based ray tracing
algorithm to different benchmarks as shown in Table 1. We
computed different paths through these models and measured
the performance of the ray tracer with and without LODs us-
ing a small PoE metric. We use a resolution of 512× 512 pix-
els for interactive rendering. We also use 2×2 super-sampling
per pixel; therefore, we effectively shoot 1K × 1K rays from
the eye for each frame. We are able to render most of these
models at 5− 12 frames a second with primary rays and 1− 8
frames a second when we include reflections and shadow rays.
These results are shown in the video.
Preprocessing: We only compute R-LODs for a subset of
the nodes in the kd-tree to avoid excessive memory overhead.
Our current implementation selects every third node on the
path from the root node to the leaf node. Our unoptimized
R-LOD construction implementation can process 2–3 million
triangles per minute; most of the processing time is spent on
reading data from the disk. The size of R-LODs associated
with each node takes less than 10% of the total storage. How-
ever, if we consider the additional 4 bytes for R-LOD index
and quantized error bound in the kd-nodes, total storage over-
head of our R-LOD nodes is roughly 33% compared to the
optimized kd-tree representation[30].
Performance variation as a function of PoE: We vary the
PoE metric for the St. Matthew model (256M triangles) and
measure its benefit on the rendering time, average number of

0 5 10 15 20
0

0.5

1

Pixels-of-Error(PoE)
R

el
at

iv
e

va
lu

es

(E
ac

h
m

ax
 v

al
ue

 is

lin
ea

rly
 s

ca
le

d
to

 1
) # of intersected nodes per ray

Size of working set
Render time

Figure 9. Performance variation as a function of PoE:
We show the relative benefit of R-LODs on different aspects
of overall performance of ray tracing St. Matthew model. We
measured the rendering time, average number of processed
node per ray, and size of working set on a 32-bit Xeon ma-
chine with 2GB RAM. All these values are shown in a scale-
invariant manner by linearly scaling their maximum values
to 1. The performance of our LOD-based ray tracer dras-
tically decreases as we linearly increase the PoE. Moreover,
the graph indicates that there is high correlation between the
performance of the ray tracer and the size of working set. Im-
age shots generated by tested PoE values can be seen in Fig.
8.

processed nodes per ray, and size of working set per frame.
The working set is measured at a granularity of 4KB. In order
to show the relative benefit, we linearly scale each value into
[0, 1] by scaling the maximum value of each item to 1. The
min and max values of each item are as follows: rendering
time (ms)(160, 11914), size of the working set(MB) (2, 1565),
and average number of processed nodes per ray (13.6, 22.42).
As can be seen in Fig. 9, the performance of the ray tracer
increases drastically as we linearly increase the PoE values.
Runtime performance: The benefit of LODs varies with the
reduction in the working set size. For a highly tessellated St.
Matthew model with 128M triangles, we achieve more than
one order of magnitude reduction in the size of the working
set and almost two orders of magnitude improvement in the
frame rate. This model has low depth complexity and more
than half the primitives are visible from the eye. We show
the frame rates obtained during rendering of the St. Matthew
model with and without R-LODs and cache-oblivious layouts
in Fig. 10. Moreover, we are able to achieve 2.6 frames per
second while rendering the model with shadow and reflection
with little loss of image quality (see. Fig. 1). For the forest
model shown in Fig. 4, we are able to achieve more than five

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 7 of 10

times improvement by using R-LODs.
In the case of the Double Eagle tanker, we get 10%–200%

improvement. This model has high depth complexity and is
not highly tessellated. As a result, the performance improve-
ment due to LODs is limited. An image of the tanker with
shadows is shown in Fig. 2.

7 Analysis and Comparison
In this section, we analyze the performance of our ray trac-
ing algorithm and also compare its performance to prior ap-
proaches. We also discuss some limitations of our approach.
7.1 Analysis
We first examine different aspects of our R-LOD representa-
tion.
R-LOD overhead: Our algorithm introduces 4 bytes of ad-
ditional storage for each kd-node. We measure the additional
computational overhead of evaluating our LOD metric during
traversal by comparing the runtime performance on the Stan-
ford scanned dragon model (870K triangles) of the standard
ray tracer using 8 byte sized kd-nodes and of our ray tracer,
which uses 12 byte-sized nodes with stored R-LODs. In order
to measure the overhead of R-LODs, we set our PoE metric to
0 during LOD tree traversal; consequently, the image quality
is the same in both cases. We found that the R-LOD overhead
for storage and traversal reduces the performance by 2%–5%,
as compared to ray tracing as described in [30].
Performance gains: The use of R-LODs reduces both com-
putational workload and memory requirements. A major ben-
efit of R-LODs is the reduction of the working set size and
cache miss ratios of the runtime algorithm. This size de-
creases almost as a exponential function of the PoE as shown
in Fig. 9. As a result, we get fewer L1/L2 cache misses and
page faults and our new ray tracing algorithm is more cache
coherent.
7.2 Comparison to other approaches
Our algorithm integrates R-LODs with the kd-tree representa-
tion for ray tracing. The idea of using an integrated hierarchi-
cal representation for traversal, visibility and simplification
has been used by other algorithms for interactive rendering.
These include the QSplat system [23], which uses a hierar-
chy of spheres and a screen space PoE metric to stop the tree
traversal at a node. However, QSplat is mainly designed for
point datasets or dense meshes arising from scanned models.
Moreover, our LOD computation and error metric evaluation
algorithms are different from QSplat as we take into account
primary and secondary rays. The Quick-VDR system [41]
uses a two-level multiresolution hierarchy called CHPM for
view-dependent simplification and visibility culling of large
polygonal models. However, the CHPM representation has
a high memory overhead and does not lend itself well to ray
tracing.

Several other ray tracing algorithms based on LODs have
been proposed. The algorithm that is closest to our approach
is the out-of-core ray tracer described in [32]. While we use
R-LODs to perform fewer node and triangle intersections,
Wald et al. use a simplified version only when the data is
not in main memory in order to hide the latency incurred by
loading data from the disk. This approach works well when
the working set is smaller than main memory. Our LOD based
algorithm is complimentary to their work and uses a different
representation to reduce the size of the working set and per-
form fewer ray intersections.

Pharr et al. [20] describe an algorithm to optimize mem-
ory coherence in ray tracing. In their approach, the rays are
reordered so that they access the scene data in a coherent
manner. Their prime application was accelerating ray trac-
ing for offline rendering. Our LOD based approach is quite
complimentary to their algorithm. The LOD-based renderer
described by Christensen et al.[5] differs from ours in two re-

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Frame number

R
en

de
r

tim
e(

se
c) Render time w/o R-LODs

Render time w/ R-LODs + CO-layout

Figure 10. Frame time with and without R-LODs: The
graphs shows frame times while rendering the 128M St.
Matthew model with/without R-LODs and cache-oblivious
(CO) layout. We measure frame time when we approach the
model starting from the viewpoint shown in Fig. 8. The path
is also shown in the video.

spects. Firstly, it uses subdivision meshes. Therefore, it is
primarily useful for computing appropriate tessellation levels
from the coarsest resolution. On the other hand, we compute
the R-LODs from the original mesh. Secondly, Christensen
et al. use ray differentials, which is expensive for real-time
ray tracing. In contrast, our LOD metric is very efficient and
optimized for interactive rendering.
7.3 Limitations
Our approach has certain limitations. First of all, any LOD-
based acceleration technique can result in visual artifacts. We
minimize these artifacts by using a low PoE bound and com-
bining the projected screen-space error and surface deviation
error of an R-LOD. If we use a high PoE bound, the R-
LODs may result in holes on the simplified representation.
This visual artifact can be removed by employing implicit
surfaces[33, 14] as a LOD and thereby sacrificing some of the
efficiency of our LOD representation. Moreover, our current
R-LOD representation is a drastic simplification of the under-
lying geometric primitives and their material properties. As a
result, the R-LOD representation may not provide high qual-
ity simplification for surfaces that have highly varying BRDF.
One possibility is to use a more complex reflectance represen-
tation [18] in such cases. Also, our LOD metric does not give
guarantees on the errors in the path traced by the secondary
rays and the illumination computed at each pixel. However,
we indirectly reduce the differences by reducing errors associ-
ated with the R-LODs. Finally, our efficient projection-based
LOD error metric can currently handle planar reflections and
shadow rays, but not refraction nor non-planar reflection.

8 Conclusion and Future Work
We have presented a novel LOD-based ray tracing algorithm
to improve the performance of ray tracing massive models.
We use the R-LOD representation as a drastic simplification
of geometric primitives contained in the subtree of a kd-node
and select the LODs based on our projection-based LOD error
metric. We have described a hierarchical R-LOD construction
algorithm that has linear time complexity and is well suited for
out-of-core computation. The use of R-LODs results in fewer
intersection tests and can significantly improve the memory
coherence of the ray tracing algorithm. We have observed
more than an order of magnitude speedup on massive models,
and most of these gains are due to improved memory coher-
ence and fewer cache misses.

There are many avenues for future work. In addition to
addressing current limitations of our approaches, we would
like to extend our current R-LOD representation to support
smooth implicit surfaces to improve the rendering quality, and
still have a compact representation. Moreover, we would like
to extend our approach to handle other kinds of input model
types such as point clouds [24] and higher order primitives.
It might be useful to integrate approximate visibility crite-

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 8 of 10

ria within our efficient LOD metric to further improve the
performance ray tracing on massive models with high depth
complexity. Also, we would like to consider visibility issues
during construction of R-LODs in order to have better visual
quality. Furthermore, we are interested in evaluating our ray
tracer on other complex datasets and measuring the perfor-
mance benefit. LODs could also be potentially useful in the
context of designing future hardware for interactive ray trac-
ing.

Acknowledgments
We would like to thank Matt Pharr, Ingo Wald, Eric Haines,
and David Kasik for providing helpful feedback on an earlier
draft of this paper. The St. Matthew statue are courtesy of the
Digital Michelangelo Project at Stanford University. the Dou-
ble Eagle tanker is courtesy of Newport News Shipbuilding.
Simplified St. Matthew models are computed by a streaming
simplification tool provided by Peter Lindstrom. This work
was supported in part by ARO Contracts DAAD19-02-1-0390
and W911NF-04-1-0088, NSF awards 0400134 and 0118743,
ONR Contract N00014-01-1-0496, DARPA/RDECOM Con-
tract N61339-04-C-0043 and Intel. Some of the work was per-
formed under the auspices of the U.S. Department of Energy
by the University of California, Lawrence Livermore National
Laboratory.

References
[1] M. Agrawala, R. Ramamoorthi, and A. Moll. Efficient image-

based methods for rendering soft shadows. In ACM SIG-
GRAPH, pages 375–384, 2000.

[2] J. Amanatides. Ray tracing with cones. In Computer Graph-
ics (SIGGRAPH ’84 Proceedings), volume 18, pages 129–135,
July 1984.

[3] A. Appel. Some techniques for shading machine renderings
of solids. In AFIPS 1968 Spring Joint Computer Conf., vol-
ume 32, pages 37–45, 1968.

[4] Y.-J. Chiang, J. El-Sana, P. Lindstrom, R. Pajarola, and C. T.
Silva. Out-of-core algorithms for scientific visualization and
computer graphics. IEEE Visualization 2003 Course Notes,
2003.

[5] P. H. Christensen, D. M. Laur, J. Fong, W. L. Wooten, and
D. Batali. Ray differentials and multiresolution geometry
caching for distribution ray tracing in complex scenes. Com-
puter Graphics Forum, 22(3):543–552, Sept. 2003.

[6] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio,
and R. Scopigno. Adaptive tetrapuzzles: efficient out-of-
core construction and visualization of gigantic multiresolution
polygonal models. ACM Trans. Graph., 23(3):796–803, 2004.

[7] D. E. DeMarle, C. P. Gribble, and S. G. Parker. Memory-savvy
distributed interactive ray tracing. In EGPGV, pages 93–100,
2004.

[8] A. Dietrich, I. Wald, and P. Slusallek. Large-Scale CAD
Model Visualization on a Scalable Shared-Memory Architec-
ture. In Proceedings of 10th International Fall Workshop -
Vision, Modeling, and Visualization (VMV) 2005, pages 303–
310, 2005.

[9] E. Gobbetti and F. Marton. Far voxels: A multiresolution
framework for interactive rendering of huge complex 3D mod-
els on commodity graphics platforms. ACM Trans. Graph.,
24(3):878–885, 2005.

[10] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis,
Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University in Prague,
November 2000.

[11] P. S. Heckbert and P. Hanrahan. Beam tracing polygonal ob-
jects. In SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques,
pages 119–127, New York, NY, USA, 1984. ACM Press.

[12] H. Igehy. Tracing ray differentials. In ACM SIGGRAPH, pages
179–186, 1999.

[13] I. Jolliffe. Principle component analysis. In Springer-Veriag,
1986.

[14] D. Levin. Mesh-independent surface interpolation. In Geomet-
ric Modeling for Scientific Visualization, pages 37–49, 2003.

[15] D. Lischinski and A. Rappoport. Image-based rendering
for non-diffuse synthetic scenes. In Eurographics Rendering
Workshop 98, pages 301–314, 1998.

[16] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson,
and R. Huebner. Level of Detail for 3D Graphics. Morgan-
Kaufmann, 2002.

[17] J. D. MacDonald and K. S. Booth. Heuristics for ray tracing
using space subdivision. Visual Computer, 1990.

[18] F. Neyret. Modeling, animating, and rendering complex scenes
using volumetric textures. IEEE Transactions on Visualization
and Computer Graphics, 1998.

[19] S. Parker, W. Martin, P. Sloan, P. Shirley, B. Smits, and
C. Hansen. Interactive ray tracing. Symposium on Interactive
3D Graphics, 1999.

[20] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering
complex scenes with memory-coherent ray tracing. In Proc. of
ACM SIGGRAPH, pages 101–108, 1997.

[21] T. Purcell, I. Buck, W. Mark, and P. Hanrahan. Ray tracing on
programmable graphics hardware. ACM Trans. on Graphics
(Proc. of SIGGRAPH’02), 21(3):703–712, 2002.

[22] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray trac-
ing algorithm. ACM Trans. Graph., 24(3):1176–1185, 2005.

[23] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution
point rendering system for large meshes. Proc. of ACM SIG-
GRAPH, pages 343–352, 2000.

[24] G. Schaufler and H. W. Jensen. Ray tracing point sampled
geometry. In Rendering Techniques, pages 319–328, 2000.

[25] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and
P. Slusallek. Realtime ray tracing of dynamic scenes on an
FPGA chip. In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 95–106, New York, NY, USA, 2004. ACM Press.

[26] M. Shinya, T. Takahashi, and S. Naito. Principles and appli-
cations of pencil tracing. In Computer Graphics (SIGGRAPH
’87 Proceedings), volume 21, pages 45–54, July 1987.

[27] P. Shirley, P. Slusallek, B. Mark, G. Stoll, and I. Wald. In-
troduction to real-time ray tracing. SIGGRAPH Course Notes,
2005.

[28] G. Stoll, W. R. Mark, P. Djeu, R. Wang, and I. Elhassan. Ra-
zor: An Architecture for Dynamic Multiresolution Ray Trac-
ing. Technical Report TR-06-21, Dept of Computer Sciences,
University of Texas, 2006.

[29] K. Sung and P. Shirley. Ray tracing with the BSP tree. Graph-
ics Gems III, pages 271–274, 1992.

[30] I. Wald. Realtime Ray Tracing and Interactive Global Illu-
mination. PhD thesis, Computer Graphics Group, Saarland
University, 2004.

[31] I. Wald, C. Benthin, M. Wagner, and P. Slusallek. Interactive
rendering with coherent ray tracing. In A. Chalmers and T.-
M. Rhyne, editors, Computer Graphics Forum (Proceedings of
EUROGRAPHICS 2001), volume 20, pages 153–164. Black-
well Publishers, Oxford, 2001.

[32] I. Wald, A. Dietrich, and P. Slusallek. An Interactive Out-of-
Core Rendering Framework for Visualizing Massively Com-
plex Models. In Proceedings of the Eurographics Symposium
on Rendering, 2004.

[33] I. Wald and H.-P. Seidel. Interactive Ray Tracing of Point
Based Models. In Proceedings of 2005 Symposium on Point
Based Graphics, 2005.

[34] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed
ray tracing of highly complex models. In S.J.Gortler and
K.Myszkowski, editors, Rendering Techniques 2001 (Proceed-
ings of the 12th EUROGRAPHICS Workshop on Rendering,
pages 277–288. Springer, 2001.

[35] M. Wand and W. Straßer. Multi-resolution point-sampled ray-
tracing. In Graphics Interface, 2003.

[36] T. Whitted. An improved illumination model for shaded dis-
play. Commun. ACM, 23(6):343–349, 1980.

[37] C. Wiley, I. A.T. Campbell, S. Szygenda, D. Fussell, and
F. Hudson. Multiresolution BSP trees applied to terrain, trans-
parency, and general objects. In W. Davis, M. Mantei, and
V. Klassen, editors, Graphics Interface, pages 88–96, May
1997.

[38] S. Woop, J. Schmittler, and P. Slusallek. RPU: a programmable
ray processing unit for realtime ray tracing. ACM Trans.
Graph., 24(3):434–444, 2005.

[39] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha.
Cache-Oblivious Mesh Layouts. Proc. of ACM SIGGRAPH,
2005.

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 9 of 10

[40] S.-E. Yoon and D. Manocha. Cache-Efficient Layouts of
Bounding Volume Hierarchies. In Computer Graphics Forum
(Eurographics), 2006. Conditionally accepted.

[41] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-
VDR: Interactive View-dependent Rendering of Massive Mod-
els. IEEE Visualization, pages 131–138, 2004.

R-LODs: Fast LOD-Based Ray Tracing of Massive Models Page 10 of 10

Ray Tracing with Multi-Core/Shared
Memory Systems

Abe Stephens

Real-time Interactive Massive Model Visualization Tutorial

EuroGraphics 2006. Vienna Austria.
Monday September 4, 2006 10:20 - 11:10

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Overview

• Reasons for ray tracing massive models.
• Examine Multi-Core/Processor today.

• Types of parallelism to look for.
• Considerations for ray tracing.

• Describe one general purpose interactive ray
tracing architecture.

• Miscellaneous Issues.
• Simple parallel practices to adopt.
• Remote/Collaborative Visualization.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Massive Model Ray Tracing

Basic ray tracing shading and
intersection technique
shared with serial renderers.

No precomputed visibility
allows for transparent
rendering, hiding or culling
geometry on the fly.

Largest datasets still well in-
core on moderate sized
machines.

Parallel systems available on
the desktop!

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Ray Tracing in a nutshell

Find closest intersection to
image along a ray.• Rasterization uses projection

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Ray Tracing in a nutshell

• Easy to change visibility.
• Easy shading effects.

For example: Transparency

1. Find closest intersection
2. Invoke material shader on

hit point.
• Send shadow rays.
• Send secondary rays.
• Repeat.

3. Return sample color.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Transparency

Transparent rendering
reveals intricate details

while preserving the
context of the model.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Transparency

One option:
• Find closest intersection.
• Shoot secondary ray.
• Find next intersection.
• Repeat.
• Blend shaded samples.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Transparency

• Find the first n intersection points.
• Sort and blend samples.
• (n depends on alpha)
Sorting is necessary since triangles won’t be intersected in order.

(Each kdtree leaf contains several triangles.)

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Ambient Occlusion

Ambient Occlusion increases contrast
In areas of fine detail.

Lambertian w/ Shadows

Ambient Occlusion

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Multi-Processor Systems Today

Clusters
• Independent operating systems.
• Separate hardware.
• (possibly) Less expensive.
• Explicit message passing/custom protocols

Single System Image
• Operating system manages all processors.
• Explicit or automatic control possible.
• Shared memory used for communication.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Single System Image.

Multi-Processor External Interconnect.
• e.g. SGI ccNuma
• Many rack mounted devices, one OS.
Multi-Processor Board-to-Board Interconnect.
• e.g. AMD Hyper-Transport.
• Other devices connect to HT network.
Dense Multi-Core
• 1 or 2 processors with many cores each.
• Multiple threads per core.
• Possible future direction.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Example multi-processor systems for ray tracing.

SGI Prism /
Itanium2

AMD
HyperTransport
/ Opteron

CPU
SHUB

CPU

Memory

CPU
SHUB

CPU

Memory

Computation Brick

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Example multi-processor systems for ray tracing.

Dense Multi-Core
AMD

HyperTransport
/ Opteron

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

How will it scale with traditional MP
workloads?

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Load Balancing

Coarse Load Balancing.
• Choose a strategy for assigning tiles to threads.
• Implement it as efficient as possible (hw

intrinsics)
Fine-grained Task Assignment
• Share read data, avoid common write data.
• How does ray coherence effect each level of

parallelism for read/write?
• Complications: Lazy evaluation policies, Multi-

thread/core scheduling.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Dense Multi-core.

Dense multi-core processors.
• Dozens of cores.
• Reconfigurable cache.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Dense Multi-core.

Dense multi-core processors.
• MIMD per processor.
• Extra cores for power, or reliability.

Rendering

Physics

O
ffi

ce

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Dense Multi-core.

Of course what we’d really like...

What looks like this today?

Rendering

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Different types of parallelism
Per thread: Instruction Level Parallelism.
• Many instructions from one thread. (SWP)
• SIMD x2 or x4 or ???
Multiple threads per core.
• Hyper threading. Simultaneous issue.
• Multiple threads. Switch at stall.
Multiple cores per processor.
• Shared cache.
Multiple processors per board.
• Shared main memory.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Cutting Planes

Hiding Objects

Users employed cutting planes and
object hiding to locate a certain region
of the model, then adjusted opacity to
examine fine details and occluded
structures.

What can be done with Ray Tracing?

Massive Model Vis:
• Cutting Planes
• Hiding Objects
• Transparency

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Manta Software Architecture

Modular Design
• Allows Manta to be embedded in other
programs.

• Supports multiple primitives:
• Massive triangle models.
• Massive volumes.
• Sphere glyph (MPM) rendering.

• Python front-end
• VTK Integration.

Open Source
Highly Portable

Material Point Method Dataset

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline
Manta Pipeline
• Modular and extensible components.
• Transaction state changes applied each stage.
• Barrier synchronization between stages.

Thread 0

Thread n

.
 .

 .

Ray Tracing

Image Display

Frame Setup

Transactions

Pi
pe

lin
e

B
ar

rie
r

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n
.

 .

 .

• Display frame i-1
• Thread 0 calls opengl.
• All others return immediately.

Display of previous frame.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n

.
 .

 .

• While thread 0 is displaying frame i-1:
• All other threads start rendering frame i.

• Thread 0 joins as soon as it finishes image display.

ray tracing

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n

.
 .

 .

• Load balance responsible for even work distribution
• All threads synchronize at barrier.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Pipeline

Thread 0

Thread n

.
 .

 .

• Display frame I
• Repeat!

Tasks scheduled by category:
• Inherently balanced.
• Imbalanced.
• Actively load balanced.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Rendering Stack
Rendering Stack
• Modular call stack invoked by rendering stage.

Thread 0

Thread n

.
 .

 .

Image Traverser

Pixel Sampler

Renderer

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Scaling

128 p 1.6 Ghz Itanium2
• 92% linear at 64p 82% at 126p
• Resolution 1024x768

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Need for Remote/Collaborative Rendering

Cost of a system usually justified by
multiple users.

Collaborative visualization allows many
users to interact with a large dataset,
either locally or remotely.

Bandwidth required for
1280x1024 @ 20 Hz = 100Mb/s

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Ray Tracing Practices

Eliminate high-level bottlenecks
• Synchronous display.

• Causes other threads to block!
• Easy solution: Pipeline display.

• Shared read/write data structures in high
performance code.
• Lazy acceleration update.
• Adaptive sampling structure.
• Producer/Consumer queues.

Scientific Computing and Imaging Institute, University of UtahScientific Computing and Imaging Institute, University of Utah

Parallel Ray Tracing Practices

Shared read/write data structures.
• Update during pipeline stage.
• Per-thread copy of structure.
• Several threads share copy in

neighborhood.
• Choice depends on application.

• Unsafe practice is not an option.

Eurographics 2006 Course Notes

Visibility-guided Rendering to Accelerate 3D
Graphics Hardware Performance

Beat Bruderlin, Mathias Heyer, Sebastian Pfützner
Technical University of Ilmenau and 3DInteractive GmbH

www.3dinteractive.de

Hardware accelerators for 3D graphics (GPUs) have become ubiquitous in PCs and laptops. They
are very powerful for real-time visualization of scenes up to a few million polygons at very high
(almost photo-realistic) quality. GPUs have been successfully applied in computer games and
engineering visualization. However, a straightforward use of GPUs, as is the current practice,
can no longer deal with the ever larger datasets of complete and fully-detailed engineering
models such as airplanes, industrial plants, cars, etc. This is a severe limitation in light of the
data explosion, which we currently encounter in industry. Already some large models are 100 to
1000 times larger than what can be handled in real time by GPUs.

Visibility-guided Rendering (VGR) is a novel approach for real-time rendering of very large 3d
datasets, overcoming the limitations of graphics hardware. The key advantage of VGR is to
efficiently determine visibility of the vast majority of polygons before they are sent to the GPU.
Different culling techniques are presented, which are used in combination. Spatial data
structures, as well as hardware features of the GPU can be exploited to implement the culling
techniques optimally. The visibility-guided rendering approach relies heavily on efficient
memory management, concurrency between CPU and GPU, as well as optimal use of low-level
OS functionality to handle very large data sets. The presentation concludes with a live demo of
the VGR software.

The Classic Visualization Approaches: Raster Conversion and Ray
Tracing

Before explaining the details of Visibility-guided Rendering we identify the main
differences between two seemingly opposite classical rendering approaches at a
high abstraction level:

 Sampling-based rendering (CPU-based Ray Tracing) and
 Rasterization-based rendering (i.e. Hardware-accelerated OpenGL)

In the following we try to explain some of the current limitations of GPUs and
develop ideas for overcoming these limitations. In a simplified view of the
render pipeline of a hardware-based rasterization approach all polygons of a
scene are copied from the system memory into the video memory of the GPU,
where they are transformed into the camera coordinate system and then
converted into a pixel raster using a polygon filling algorithm. Only at the end

visibility is determined on a per-pixel base (fragment operation), using the well-
known z-buffer approach [SA03].

Understanding the process, it becomes clear that the amount of work for the
render pipeline has to be roughly proportional to the number of polygons in the
scene. The asymptotic behavior of this approach expressed in the so-called O-
notation is O (n) (pronounced O of n) where n is the number of polygons.
Therefore, the performance of the brute-force render pipeline approach
(measured in frames per second) is inversely proportional to the number of
polygons.

A sampling-based approach (such as ray tracing) works the other way round: A
ray is cast from the camera origin through each pixel, and the intersection of
the ray with the front-most polygon is determined. For each ray, a spatial
search needs to be carried out among the polygons of the scene. Fortunately,
efficient data structures and algorithms exist for this task which determine the
visible polygon roughly in O(log n)-time per pixel for compact scenes or in O
(cube_root(n) * log n)) time for “polygon soups”. The visibility of individual
polygons (i.e. how many pixels of a polygon are visible) is determined as a side
effect of this. To obtain the render performance for any scene we just need to
divide the per-pixel performance by the number of pixels (roughly 1 million for
a computer monitor). The theoretical (asymptotic) behavior expressed by the O-
notation ignores constant factors. Therefore the over all asymptotic render
performance will be the same as the per-pixel performance.

Looking at the actual frame rate (see illustration), which means to also consider
the constant hardware-specific factor, we observe that hardware accelerated
Open GL performs better for small scenes with up to several hundred thousand
to a few million polygons, each potentially generating many visible pixels on
average. However, scenes with over 10 million polygons can no longer be
rendered in real time, even with the fastest graphics cards. Beyond this limit, ray
tracing clearly outperforms the rasterization approach. However, ray tracing on
a single CPU of a PC or laptop is still not fast enough for real-time visualization.

This simplified view certainly ignores some of the shortcuts and optimization
steps that can be
taken by each approach, as well as possible parallelization. On the other hand,
neither of the theoretical analyses accounts for the additional difficulties
occurring with very large scenes. - Just to mention the most obvious: Large
scenes require over a hundred times more memory than the video ram of the
graphics card provides, and over 10 times more than the physical main memory
of most PCs. We need to take memory management and OS issues into account.
Also the processors of the GPU have to be synchronized with the CPU (see also
[Spi03], [WDS01).

Visibility-guided Rendering / VGR

Prerequisites to VGR

After addressing the main pros and cons of the two classic approaches
(rasterization and ray-tracing), we want to further analyze the rendering tasks
and find a way out of the dilemma.

A key observation that led to visibility-guided rendering is that very large
scenes contain often 100 million or more polygons. The number of pixels on
the screen is limited usually to about one million or less. In other words, there
are about 100 times more polygons in the scene than pixels on the screen. This,
in turn, means, that the average footprint of a polygon (the number of pixels it
leaves on the final image) is a small fraction of a pixel (less that 1/100 pixel).
Rasterization does not deal with such situations very efficiently, as the render
pipeline is optimized for real time rendering of 1000 times larger footprints
(covering 100 pixels or more).

We may ask ourselves, what happens to individual the polygons of large scenes?
Well, some are really very small and indeed only cover only a fraction of a pixel.
Some polygons are hidden by other polygons, or they are outside of the view
frustum.

The main idea of Visibility-guided Rendering (VGR) [HeBr04],[HPB05] is to pre-
determine the visibility of large parts of polygons before sending them to the
GPU, and this way reduce the unnecessary overwork of the render pipeline.

Several known culling techniques ([AM00],[ISNM02],[BWPP04],[GH00],[HeBr04],
[HPB05],
[HSLM02],[GSYM02],[ST99],[Sta03],[Zha98]) help the overall approach have
been investigated in the literature. Occlusion culling can be used to determine
groups of polygons that are hidden by visible polygons in the foreground. View
frustum culling determines groups of polygons that are outside of the view
frustum. Detail culling determines parts that are too small to contribute to the
final image. Various level-of-detail approaches have also been proposed to
replace high-polygonal scenes by low-poly data, that are accurate enough to
give the same visual appearance at higher (real-time) frame rates (> 10 fps).
Alternatively point rendering and stochastic approaches have been proposed
[EMI00], [GKM93], [RuLe00],
[WFPHS01])

Individually these methods will significantly reduce the polygon count work in
some situations, but not in others. Only a combination of them has the potential
to work in a general situation. Many of the methods work well in theory. In
practice, however, they generate additional overhead which cancels the benefit.
In addition, many practical problems with data sizes exceeding the memory
have to be considered as well.

The new approach of visibility-guided rendering (VGR, [HeBr04],[HPB05]) uses
several of these culling techniques in combination, and addresses the overhead
issue in a novel way. We will not discuss all of the methods in detail, as some of
them are relatively straight forward to implement. For instance, backface culling
is supported by Open GL and needs no further explanation. It only makes sense
for closed objects, for which it may reduce the load on the GPU by somewhat
less than a factor of two on average. Mesh-based level of detail approaches
(e.g. progressive meshes) have been ruled out because they only work with
extensive preprocessing, which we tried to avoid (see design decisions) since
precomputing also negatively impacts dynamic scenes. Detail culling works well
for low density scenes. For high density scenes, culling small polygons which
are part of a larger, connected surface would create visible holes. Fortunately
these situations can be handled well by point rendering. Point clouds can be
used as replacements for polygons that are smaller than one pixel on the
screen. At larger distance, we can reduce the point sets in a relatively straight-
forward way, maintaining the visual appearance. [RuLe00] [WFPHS01]

The culling techniques referred to above (detail culling, backface culling, LOD or
point-based rendering) can be applied locally and do not depend on other parts
in the scene. The most complicated culling technique is occlusion culling, since
the visibility (or inversely the occlusion) of polygons is based on the interaction

between objects. More concretely, an object is hidden, if it is hidden by at least
one visible part of the scene. The “hidden” relation is idempotent. This means, if
an object is hidden by hidden parts, it is doubly hidden, which for the viewer is
just as hidden as once hidden To avoid superfluous occlusion tests we need
some sort of spatial sorting, to test objects for occlusion front to back.

Below, we introduce a very useful spatial tree data structure and explain how it
is used for occlusion culling. The same kd-tree is also used for view frustum
culling and for hierarchical LOD.

The kd-tree: An efficient spatial data structure

A kd-tree is a binary tree data structure, which at each level subdivides space in
a potentially different spatial direction. At each intermediate node of the tree we
store the range of data in the corresponding coordinate direction. From these
ranges so called bounding volumes (e.g. bounding boxes, here symbolized by
orange rectangles) can be derived which include all polygons of the tree
underneath. At the leaf nodes pointers to OpenGL vertex buffers and index
buffers reference polygons associated with that node [nVi03].

Kd-trees support efficient spatial search queries, such as finding the closest
(front-most) triangles to the camera, which have the highest probability of
being visible. Also bounding box tests can be used to determine the visibility/
invisibility of groups of triangles hierarchically, and in view order, to effectively
exclude a majority of polygons from being sent to the graphics card at all.
In addition, the same hierarchy can be used to represent levels of details. The
initial scene consisting of triangles represents the highest level of detail, which
is stored in the leaf nodes. At intermediate nodes we represent partial scenes by
“point clouds.” which are a combination of the point sets of their two child
trees. This way the kd-tree can efficiently derive all visibility information from
spatial location and level of detail in real time during the rendering process.

Design Criteria
For the design of the overall system, several additional requirements on the
implementation guided the design decision:

 We want to invest little or no pre-processing overhead, if possible. Most
everything should be done in real-time during the rendering process
itself.

 Rendering should also support real-time interaction and dynamic scenes.
 We would like to use standard hardware technology, i.e. standard PCs or

laptops and standard hardware graphics hardware (64 – 256 MB VRAM)
 Also standard (32 bit) operating systems, and memory requirements (500

MB to 2 GB) should suffice.
 The approach should be scalable and extensible. It should:

o Potentially take advantage of over 4GB, 64-bit addressable memory.
o Potentially take advantage of programmable shader technology of

state-of-the art graphics cards.
o Potentially take advantage of multi CPU, multi GPU render servers to

improve performance.
o Potentially handle non-local illumination (specular or diffuse object

interreflection, shadows) or global illumination in a hybrid approach
using graphics hardware in combination with ray tracing.

Visibility-guided Rendering applies several culling methods in combination with
innovative data structures and algorithms and advanced hardware features of
graphics cards to dramatically improve the render performance of large scenes.
It has been optimized to efficiently address all the requirements listed above.

In the following we present some details about the occlusion culling approach
used in visibility-guided rendering. VGR relies heavily on efficient memory
management, concurrency between CPU and GPU, as well as optimal use of low-
level OS functionality to handle very large models. Ultimately we can show that
spatial algorithms and data structures, in combination with the performance of
modern graphics cards can achieve similar asymptotic behavior as ray tracing
with the additional advantage of real time behavior, due to massive parallel
compute power of modern graphics cards.

Occlusion culling:
Occlusion queries can be used to determine potentially visible groups of
polygons before sending them to the render pipeline. We can test simple
bounding geometry (e.g. bounding box) for visibility. A key prerequisite of the
Visibility-guided Rendering approach is an efficient spatial data structure (kd-
tree introduced above) to support the visibility determination of large scenes.

The graphics hardware (GPU) can be employed, not only to render the polygons,
but also to determine the visibility of bounding boxes, using the “ARB-
occlusion-query” functionality [SA03]. This hardware feature determines how
many pixels of any sequence of OpenGL render tasks would be visible, without
actually setting the pixels in the frame buffer.

The visibility of polygon groups is carried out in the order of the view direction
(z-direction) of the camera. Once the front most polygon groups have been
drawn, we test the visibility of the potentially hidden bounding boxes of
polygon groups further away. The visibility of bounding boxes is also
determined hierarchically (top down). The children of an invisible node can be
declared invisible without checking their bounding boxes explicitly. None of
their polygons need to be rendered. Polygons associated with leaf nodes with
visible bounding boxes are rendered entirely. The visibility of polygons further
away may change from visible to hidden, after more polygons have been
rendered, but never the other way round. Therefore it makes sense to
intersperse rendering and occlusion tests for each frame.

A potential problem of this approach is that the GPU determines the visibility of
objects asynchronously from the CPU which has to control the render tasks on
the GPU and transfer the data from main memory to VRAM. In essence the GPU
and the CPU have to collaborate closely, as is demonstrated in this illustration

As is often the case with parallel processing, latency occurs because of one
processor having to wait for the other. A straight forward use of the visibility
determination with hardware occlusion check and spatial queries results in a
stop-and-go behavior and pipeline stalls of the graphics card.

To avoid the latency problem we devise a pipeline data structure (priority queue)
to communicate between the kd-tree data structure controlled by the CPU and
the render tasks an occlusion query handled by the GPU. The tree is traversed
top down, front to back in depth-first order, in combination with a breadth-first
traversal. The bounding boxes of the intermediate nodes result in occlusion
queries that are pushed onto the queue and handled by the GPU in order of
distance to the viewer (z-direction).

After a certain delay the first visibility results are available to the CPU.
Depending on the visibility of the parent nodes the algorithm generates new
queries for the child nodes of visible parent nodes. If leaf nodes are visible, the
corresponding polygons will be drawn. The asynchronous execution of
producing queries by the CPU and consuming them by the GPU avoids the
previously described pipeline stalls. The length of the query queue can be
adapted such that there ideally is no wait for query results; there is always
something to do for the GPU.

There are some potential problems, however:
 There is no a-priory optimal queue length due to changing latency and

task complexity. In our approach the length of the queue is adopted
dynamically in accordance with actual latency during rendering.

 The strict front-to-back tree traversal (depth-first traversal) is altered due
to the delay of the queue. This leads to less than optimal render actions
with more overdraw. Possibly the visibility of some leaves will be
determined before polygons in front of them have been rendered (false
positives). In practice this overdraw problem is negligible, however,
compared to the problem of pipeline stalls that would otherwise occur.

There are many more issues due to synchronization between GPU and CPU, but
also additional properties of the space time continuum we can take advantage
of. One such issue is temporal coherence (or the close similarity in visibility
between consecutive frames), which will be discussed next.

Exploiting Temporal Coherence

It is very likely that in two consecutive frames largely the same triangles are
hidden or visible, respectively. Only very few new ones become visible and very
few become hidden from one frame to the next. This temporal coherence is
exploited by first rendering the previously visible nodes in each frame, without
an occlusion check, to avoid overhead. These nodes are rendered front to back
(z-sorted) to minimize overdraw. Then we perform an occlusion test for
potentially newly visible nodes. At last a visibility test for a fraction of the
initially rendered nodes is carried out, to verify if they are really still visible. This
guarantees that potentially visible nodes are rendered immediately, however
invisible nodes are not immediately discarded, but will be after m frames.

To further increase efficiency due to temporal coherence, the invisible nodes
(white) and the visible nodes (black) have been marked in the previous frame.
The visibility of a parent of one visible and one invisible subtree is considered
undecided (the bounding box is visible) . These undecided nodes are collected
in a list, which we call visibility band. At the beginning of each frame, after
rendering the previously visible leaves, we start the visibility check at the
visibility band, in the front-to-back, top-down order described above (pushing
the queries onto the queue, rendering the visible leaves, falling off the end). As
mentioned above, we only descend down the invisible subtrees in each frame
and increase the counter for the roots of the visible subtrees. Only if the counter

exceeds a predetermined value m, a visibility check is performed for that node
as well.

Out-of-Core RenderingMemory Issues:
VGR employs different memory management approaches for pre-processing
and rendering. Rendering poses higher real-time requirements for out-of-core
memory management compared to the requirements of pre-processing. More
complex strategies are therefore required.

Some of the issues are:
 The database size may exceed memory size by orders of magnitude

o Eg. The Boeing 777, with 350.000.000 triangles, compact
representation with simple vertex colors, no normals: 8 GB, with
normals: 12 GB, other Models: over 30 GB.

o Available system memory, typically 1 – 1.5 GB (about 1/10 of the
scene)

o Graphics memory (VRAM) 100 – 200 MB (i.e. 1/100 of the largest
models)

o Often only about 1/1000 of the polygons are visible and need to be
rendered (e.g. 1 million triangles out of 1 billion in the scene)

 Data management is necessary at several levels (VRAM, System Memory,
Disk)

Fast spatial queries can be enabled by memory-coherent data organization. The
latency during data access on disk can be reduced by prefetching. Latencies at
read time are not acceptable, therefore asynchronous loading of geometry is

required. This results in approximate (preview quality) rendering during load
times (see below). The goal is the fastest-possible image development during
loading of geometry from the database by means of adequate loading, replacing
and prefetching strategies.

Prefetching:
The data of a scene resides in a database on the hard disk. It is represented by a
kd-tree, as previously described. The data is loaded to systems memory by an
asynchronous process in a priority order. The leaves marked visible have the
highest priority. Next come the hidden parts of the scene that are within the
view frustum. A low priority is attributed to scene parts that are outside of the
view frustum, followed by leaf nodes below the so called LOD band, which have
the lowest priority. – The LOD band is, similar to the visibility band (see above),
a list of sub-tree nodes that contains details that are smaller on the screen a
given threshold (e.g. 1 pixel). This way we can prioritize parts of the scene that
have the biggest visual impact and load small details later. Whenever there is
time, additional scene parts are loaded to preempt future camera motion.
 In each frame, there is potentially a different distribution of priorities.

However, due to the temporal coherence from frame to frame, only a few
changes need to be applied simultaneously.

 The prefetching-and-replacement strategy tries to keep as many leaf nodes
as possible in main memory, starting at the leaves with the highest priority.

 Leaves with lower priority that have stayed in memory for the longest time
will be removed from the systems memory first, such that only the data that
is important for the actual view is kept in memory.

 Leaf nodes marked as “visible” will never be removed from memory, to avoid
flickering.

System Memory Management
During preprocessing geometry was subdivided into chunks of approximately
equal size. For rendering, a chunk is either completely loaded into system
memory or not at all (atomicity). Since chunks all have about equal size, there
will be hardly any fragmentation, and no special system memory caching
structure was employed for rendering.

VRAM Management
In addition to systems memory, also the graphics memory (VRAM) needs to be
managed. VRAM is usually much smaller than main memory. Therefore more
often geometry needs to be replaced, which could lead to more fragmentation.

Management of data in VRAM is done with OpenGL Vertex- and Index buffers. If
a leaf node has its own buffer, it needs to be swapped after each frame, which is
an expensive operation. (app. 1000 – 5000 times per frame).
Subdivision of VRAM in a few large slices is theoretically better, however it
causes an internal fragmentation by continuous replacement. Fragmentation is
avoided by always filling a slice from front to back, in render priority (only
visible nodes are in VRAM).
If there are no more free slices, a decision is made using the LRU (least recently
used) strategy, as to which slice can be completely emptied and refilled. Several
nodes are replaced at once in VRAM, and new nodes are entered again in the
order in which they are rendered. This maintains the coherence of data and
finally, this accelerates rendering.

Advantage: Fewer buffer swaps
Disadvantage: unused, “dead” memory at the end of each slice (app. 5% -
10% of VRAM)

Data is loaded from main memory into VRAM. This causes a slow down during
the first frames after loading, but is hardly noticeable later on.

The Role of Preprocessing
The task of pre-processing is to hierarchically and spatially subdivide the scene
into sets of roughly 1000 to 8000 triangles, which are stored as the leaves of a
kd-tree. This data structure enables the efficient data access for VGR frustum

culling, detail culling and occlusion culling.

For VGR pre-processing mostly consists of a simple spatial sorting. No complex
data reduction schemes or progressive mesh generation is necessary.

The top-down generation of a kd-tree for very large scenes requires an out-of-
core strategy. Parts of geometry data potentially are used several times during
the tree generation in different places of the algorithm. Therefore, in principle,
data needs to be loaded multiple times. This causes problems with swapping
data in and out of systems memory and fragmentation, which are addressed in
the next sections. Properly addressing or avoiding these problems leads to a
faster pre-processing. Basically the pre-processing time grows asymptotically
with O (n log n).

Examples of actual pre-processing times:
 Power plant (12,7 Mio. triangles) in 1.5 min
 The Boeing 777 (350 Mio. triangles) in 70 min.

Generally, the pre-processing time is comparable to data conversion and
copying time of other systems.

Swapping
To handle large data sets also during preprocessing an out-of-core approach
hat to be taken. This means that data is only read into the system memory
temporarily. Two swapping mechanisms have been tested and compared for
pre-processing (memory mapped files & explicit swapping of geometry chunks).
For 64 bit architectures, theoretically one could have relied entirely on the
operating system to handle the swapping. However this was considered as too
inefficient)
Memory-mapped files make use of optimized swapping strategy of the
operating system:

 Principle: The virtual address space of a process is subdivided into pages
(usually 4 kB in size) which can reference pages in main memory, external
devices, or on the hard disk.

 Linear view on all data simultaneously. Access via 64-bit indices.
Requesting of the necessary sizes in megabytes.

 Storage may be requested and modified by means of defined windows on
the data that are mapped to systems memory (memory-mapped files)

 Memory can be read or written transparently. Altered pages will
automatically be written to the hard disk.

 By only using one storage window at a time, the swapping of data is

completely managed by the operating system, which reduces
fragmentation of the address space.

Problem of memory-mapped files:
 Swapping strategies of the operating systems are kept general and are

not optimized for the specific application case.
 Swapping is done only when the system memory fills up and memory

requests can no longer be met.
 For instance under MS-Windows only single pages are written out and

immediately afterward other pages are read back in. This leads to
inefficient I/O behavior.

 The linear view does not fit well with the hierarchical organization of the
geometry. This requires continuous copying to maintain coherence.

A better strategy: Explicit memory management that reflects the hierarchical
subdivision of data, and also controls read and write actions.

 For every node of the tree that is being generated (i.e. in every recursion
step) the complete subtree data needs to be read, handled and written
back to disk (which amounts to the complete data set once per level of
recursion)

 If the necessary data is smaller than the available systems memory, the
complete leaf data can be handled in core.

 Otherwise, the subdivision has to be carried out in stages, where only a
subset what fits into memory can be handled simultaneously.

Advantage over the memory-mapped file approach:
 Subdivision of geometry data into chunks that can be handled completely

in core.
 Acceleration of pre-processing by up to a factor of 10.
 Swapping of data can be done highly efficiently due to linear access of

hard drive (average transfer rates of 50MB/s (vs. vs. only 1 – 5 MB/s with
memory mapped files and linear view on data)

 Enables asynchronous writing of data during generation. This further
accelerates the process.

Fragmentation
Fragmentation of memory may lead to denial of requests for free memory of
certain size despite the availability of free memory, because the gaps are not
consecutive. We distinguish between external (system memory/disk)
fragmentation and internal fragmentation (inside cache memory).
In our implementation all geometry data of individual objects and fragments
generated during subdivision are managed by several caches of fixed size in

system memory. This way geometry data no longer fragments the memory (only
the management overhead data itself does) Geometry data may fragment the
caches themselves, though. However, this can be mitigated by explicit cache
de-fragmentation.
On 64-bit architectures the virtual memory is so large, that fragmentation does
not matter, and caching can be omitted. Geometry data is not compacted on the
hard disk. Therefore no fragmentation is possible there.
The top-down generation of multi-dimensional hierarchies (kd-trees) promotes
coherent data organization on the hard drive (in contrast to rendering, where
data is needed in more or less random order) Separate storage of geometry
data left and right of the separating plane prevents external fragmentation.
Data are read, handled and deleted in the order in which they were also written.
This leads to large gaps that can be utilized well for the final files. As soon as
the data of a node completely fits into memory, no more swapping operations
are necessary. Therefore no gaps in the swap space smaller than the size of the
available system memory can be generated. By preventing fragmentation the
available memory can be used more efficiently. This enlarges the useful memory
and accelerates the preprocessing.

Conclusion
Visibility guided rendering is well suited for real-time visualization of extremely
large engineering CAD models. An example is the CAD model of the Boeing
777, which consists of about 350,000,000 triangles. The interviews3D
navigator, which was built on top of the VGR technology allows real-time
navigation through the model, as well as interactive picking and editing of any
of the approximately 700,000 objects, down to individual screws or washers.
Similarly interactive behavior was observed with even larger models that contain
over 1.3 billion polygons.

The render performance of VGR behaves asymptotically similar to ray tracing (it
is also based on searching in a spatial data structure) but with faster constant
factor, thanks to a fast GPU hardware (due its high fill rate and hardware
occlusion tests).

The acceleration of VGR over brute-force hardware rendering was achieved by a
combination of various culling techniques. Previous limitations of these
techniques were overcome by eliminating the overhead as much as possible
(usually due to latency and overwork due to exact polygon testing). Efficient
memory management and out-of-core rendering are essential to the handling
of extremely large models.

Taking the temporal coherence between consecutive frames into account, we
can expect almost constant frame rates, independent of model size. VGR is an
output-sensitive approach., i.e. the amount of work depends on how much is
ultimately visible on the screen. Since the resolution of a screen is constant (e.g.
1 million pixels) the number of visible polygons cannot actually exceed the
number of pixels. -- That’s the theory. In practice we can never achieve100%
accuracy, unless we spend a lot of time on preprocessing. It turns out to be
faster to deviate from the theoretic ideal, by grouping larger sets of triangles
together and make only approximate, yet conservative visibility decisions.
Certainly, this generates more overdraw, which has to be handled by the
fragment shader of der graphics hardware. However, this is more efficient since
the parallel architecture of the graphics hardware is geared towards high
polygon and pixel throughput, but does not behave well, if constantly
interrupted by many small but costly render queries.

The requirements established in the design decisions have been met:

 Real-time visualization of large models on standard PC and laptop hardware.
 Very large models can be handled by efficient out-of-core rendering and

out-of-core pre-processing.
 Preprocessing is very efficient: It relies on simple spatial sorting for which

fast approaches exist.
 VGR can be used in combination with programmable pixel and vertex

shaders,
 Even hybrid ray tracing (vertex tracing, a combination of hardware rendering

and ray tracing, [Prei04] [UlPrBr03]) and other rendering methods (e.g.
shadow maps, spherical harmonics for real-time soft shadows) and high
dynamic range imaging, etc. can be supported by VGR. This is plausible,
since the actual render back-end is based on conventional OpenGL
rendering, and all extensions to OpenGL can be applied as well. These issues
are not elaborated here any further. Instead, we show some sample screen
shots below. For further examples and on-line videos, see: www.
3dinteractive.de

Real-time rendering of variations of the factory model of Daimlers new E-Class
model shown in different lighting situations. Courtesy of DaimlerChrysler Digital
Factory Planning.

A digital model of DaimlerChrysler’s newly built Van Technology Center seen in its environment
in Stuttgart-Untertürkheim (based on satellite data). High-dynamic range imaging environment
maps and pixel shaders for the reflective and transparent glass surface have been tested
successfully in combination with VGR. Courtesy of DaimlerChrysler Digital Factory Planning.

Literature
Culling techniques/visibility-guided rendering:

[AM00] Ulf Assarsson and Tomas Möller. Optimized view frustum
culling algorithms for bounding boxes. Journal of graphics
tools,, pages 9–22, 2000.

[ISNM02] W.V. Baxter III, Avneesh Sud, N.K.Govindaraju, and Dinesh
Manocha. Giga-Walk: Interactive Walkthrough of Complex
Environments. Technical report, University of North Carolina at
Chapel Hill, 2002.

[BWPP04] J Bittner, M. Wimmer, H. Piringer, and W. Purgathofer. Coherent
hierarchical culling: Hardware occlusion queries made useful. In
proceedings of Eurographics Conference, 2004.

[GH00] Gil Gribb and Klaus Hartmann. Fast extraction of the frustum
planes from the world-view-projection matrix, June 2000.
http://www2.ravensoft.com/users/ggribb/plane%
20extraction.pdf.

[HeBr04] M. Heyer, B. Brüderlin, Visibility-guided Rendering for
Visualizing Very Large Virtual Reality Scenes, in proceeding 1st
GI-Workshop on VR/AR TU-Chemnitz, September 2004 - (see
also www.3dinteractive.de)

[HPB05] M. Heyer, S, Pfützner, B. Brüderlin, Visualization Server for Very
Large Virtual Reality Scenes, in proceedings, 4th Workshop on
Augmented & Virtual Reality in der Produktentstehung,
Paderborn, June 2005, Hanser Verlag 2005.

[HSLM02] K.Hillesland, B.Salomon, A.Lastra, and D.Manocha. Fast and
Simple Occlusion Culling using Hardware-Based Depth Queries.
Technical report, University of North Carolina at Chapel Hill,
2002. further information available at: http://www.cs.unc.edu/
salomon/Research/FSOC/.

[GSYM02] Naga K. Govindaraju, Avneesh Sud, Sung-Eui Yoon, and Dinesh
Manocha. Interactive Visibility Culling in Complex Environments
using Occlusion Switches. Technical report, University of North
Carolina at Chapel Hill, 2002.

[ST99] Dieter Schmalstieg and Robert F. Tobler. Fast Projected Area
Computation for Three-Dimensional Bounding Boxes . Journal
of Graphics Tools, pages 37–43, 1999.

[Sta03] D. Staneker. An Occlusion Culling Toolkit for OpenSG PLUS.
Technical report, WSI/GRIS University of Tübingen, Germany,
2003.

[Zha98] Hansong Zhang. Effective Occlusion Culling for the Interactive
Display of Arbitrary Models. PhD thesis, University of North
Carolina, 1998.

Alternative level of detail and point rendering techniques:

[EMI00] Carl Erikson, Dinesh Manocha, and William V. Baxter III. Hlods
for faster display of large static and dynamic environments.
Technical report, University of North Carolina at Chapel Hill,
2000.

[GKM93] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical Z-
Buffer Visibility. Computer Graphics, SIGGRAPH ´93
Proceedings:pp. 231–238, August 1993.

[RuLe00] Szymon Rusinkiewicz, Marc Levoy. QSplat: A Multiresolution
Point Rendering System for Large Meshes, SIGGRAPH 2000

[WFPHS01] M. Wand, M. Fischer, I Peter, F.M. auf der Heide and W. Strasser.
The randomized z-buffer algorithm: Interactive rendering of
highly complex scenes. In SIGGRAPH 2001 Proceedings, 2001.

Open GL

[nVi03] nVidia. Using Vertex Buffer Objects. WWW, 2003. http://
developer.nvidia.com/object/using VBOs.html.

[SA03] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A
Specification (Version 1.5), October 2003.

[Spi03] John Spitzer. OpenGL Performance Tuning. Game Developers
Conference, 2003.

Real-time ray tracing, vertex tracing & global illumination:

[Prei04] Th Preidel, Global Illumination for Vertex Tracing (in German),
Diplomarbeit TU Ilmenau 14. Juni 2004

[UlPrBr03] Th. Ullmann, Th. Preidel, B. Bruderlin, "Efficient Sampling of
Textured Scenes in Vertex Tracing," (short presentation) in
proceedings of Eurographics Conference, 2003.

[WDS01] I. Wald., A. Dietrich, and P. Slusallek. An interactive out-of-
core rendering framework for visualizing massively complex
models. In Proc. Eurographics Symposium on Rendering, 2004.

1

Massive Model Visualization usingMassive Model Visualization using
Real-time Ray TracingReal-time Ray Tracing

EurographicsEurographics 2006 Tutorial 2006 Tutorial::
Real-time Interactive Massive Model VisualizationReal-time Interactive Massive Model Visualization

Andreas Dietrich Philipp Andreas Dietrich Philipp SlusallekSlusallek

Saarland University & Saarland University & inTraceinTrace GmbH GmbH

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 22

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

OverviewOverview

1.1. Simplicity of data preparation for ray tracing complex scenesSimplicity of data preparation for ray tracing complex scenes
-- Efficient spatial index structures for ray tracingEfficient spatial index structures for ray tracing
-- Off-line construction of index structuresOff-line construction of index structures

2.2. Adapting ray tracing to complex modelsAdapting ray tracing to complex models
-- Active memory managementActive memory management
-- Asynchronous data loadingAsynchronous data loading
-- Level-of-detail managementLevel-of-detail management

3.3. Photorealistic rendering and lighting of highly complex modelsPhotorealistic rendering and lighting of highly complex models
–– Flexible combination and integration of different shading algorithmsFlexible combination and integration of different shading algorithms
-- Efficient integration of environmental lightingEfficient integration of environmental lighting
-- Handling aliasing for complex geometryHandling aliasing for complex geometry

4.4. Review of hardware-trends for real-time ray tracingReview of hardware-trends for real-time ray tracing
–– Comparing multi-core CPUs, GPUs, Cell processor, and custom rayComparing multi-core CPUs, GPUs, Cell processor, and custom ray

tracing hardwaretracing hardware

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 33

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Ray TracingRay Tracing

•• Simple algorithm, with many advantagesSimple algorithm, with many advantages
–– Support for advanced shading and global illuminationSupport for advanced shading and global illumination

-- Not Not directlydirectly related to massive model rendering related to massive model rendering……

–– Supports object instantiationSupports object instantiation
–– Visibility culling built-inVisibility culling built-in

-- Includes view-frustum, back-face, and occlusion cullingIncludes view-frustum, back-face, and occlusion culling
-- Per pixel visibilityPer pixel visibility

–– Trivially parallelizableTrivially parallelizable
–– Logarithmic scalability in scene sizeLogarithmic scalability in scene size

-- Due to Due to traversaltraversal of (of (hierarchicalhierarchical) spatial index structures) spatial index structures

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 44

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Ray TracingRay Tracing

•• Simple algorithm, with many advantagesSimple algorithm, with many advantages
–– Support for advanced shading and global illuminationSupport for advanced shading and global illumination

-- Not Not directlydirectly related to massive model rendering related to massive model rendering……

–– Supports object instantiationSupports object instantiation
–– Visibility culling built-inVisibility culling built-in

-- Includes view-frustum, back-face, and occlusion cullingIncludes view-frustum, back-face, and occlusion culling
-- Per pixel visibilityPer pixel visibility

–– Trivially parallelizableTrivially parallelizable
–– Logarithmic scalability in scene sizeLogarithmic scalability in scene size

-- Due to Due to traversaltraversal of (of (hierarchicalhierarchical) spatial index structures) spatial index structures

 C Complex models: omplex models: „„log scalabilitylog scalability““ most important! most important!

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 55

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Ray TracingRay Tracing
for Massive Modelsfor Massive Models

•• Visibility not the main problemVisibility not the main problem

–– Proof by example: Proof by example: ““ForestForest”” scene scene
-- 1.5 billion triangles1.5 billion triangles
-- Plus shadows, textures, transparency, Plus shadows, textures, transparency, ……
-- Rendered interactively on few PCsRendered interactively on few PCs

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 66

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Storage ProblemStorage Problem

•• Number of visible triangles not main problemNumber of visible triangles not main problem
Main problem: Efficient sMain problem: Efficient scene storage and access !cene storage and access !

•• The storage problemThe storage problem
–– Logarithmic cost: Assumes all data is in memoryLogarithmic cost: Assumes all data is in memory
–– ““ForestForest”” example: example:

-- Only possible through instantiation Only possible through instantiation special case ! special case !

–– For general complex models usually not the caseFor general complex models usually not the case
-- Boeing 777: 30-40 GB on disk (including spatial index)Boeing 777: 30-40 GB on disk (including spatial index)

Need efficient data handling for preprocessingNeed efficient data handling for preprocessing
and renderingand rendering

2

Part IPart I
Simplicity of Data Preparation for Ray TracingSimplicity of Data Preparation for Ray Tracing

Complex ScenesComplex Scenes

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 88

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Spatial IndexSpatial Index
Hierarchy and InstancingHierarchy and Instancing

•• Two-level Two-level k-dk-d tree scheme [Wald et al. 2003] tree scheme [Wald et al. 2003]
–– Accelerates ray-object intersection computationAccelerates ray-object intersection computation
–– Low-level Low-level k-dk-d tree for each object type tree for each object type
–– High-level High-level k-dk-d tree organizes instances tree organizes instances

-- Object referencesObject references
-- Object bounding boxesObject bounding boxes
-- Transformation matricesTransformation matrices

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 99

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Spatial IndexSpatial Index
Hierarchy and InstancingHierarchy and Instancing

•• Two-level Two-level k-dk-d tree scheme enables tree scheme enables
–– Rigid-body dynamicsRigid-body dynamics

-- Only high-level Only high-level k-dk-d tree has to be rebuilt tree has to be rebuilt

–– Efficient instancingEfficient instancing
-- Low-level objects can be reused with little memory overheadLow-level objects can be reused with little memory overhead

splitting planes

objects

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1010

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Index GenerationIndex Generation

•• Simple caseSimple case
–– Source model grouped/partitioned into individual objectsSource model grouped/partitioned into individual objects
–– Object boxes are not extensively overlappingObject boxes are not extensively overlapping
–– Data for single object fits into memoryData for single object fits into memory

Build Build k-dk-d trees independently trees independently
–– Build low-level object Build low-level object k-dk-d trees one after another trees one after another
–– Build high-level scene Build high-level scene k-dk-d tree based on objects boxes tree based on objects boxes

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1111

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Index GenerationIndex Generation
Streaming ApproachStreaming Approach

•• Massive models require many GB of dataMassive models require many GB of data
–– Data often to large to build spatial index fully in-coreData often to large to build spatial index fully in-core
–– Objects typically grouped functionally not spatiallyObjects typically grouped functionally not spatially
–– Model often exported as Model often exported as ““soup of trianglessoup of triangles””

Divide and conquer strategyDivide and conquer strategy

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1212

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Index GenerationIndex Generation
Streaming ApproachStreaming Approach

•• Offline index generationOffline index generation
1.1. Produce triangle stream (file) from source data andProduce triangle stream (file) from source data and

compute bounding boxcompute bounding box

2.2. Split bounding box into two halves along longest sideSplit bounding box into two halves along longest side

3

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1313

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

•• Offline index generationOffline index generation
3.3. Go through triangle stream and sort each triangle intoGo through triangle stream and sort each triangle into

the new bounding boxes the new bounding boxes build two new files build two new files

4.4. Repeat process recursively with new streams (files)Repeat process recursively with new streams (files)

Index GenerationIndex Generation
Streaming ApproachStreaming Approach

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1414

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

•• Offline index generationOffline index generation
5.5. If number of triangles small enoughIf number of triangles small enough

 build object build object k-dk-d tree in-core tree in-core

6.6. Build high-level Build high-level k-dk-d tree based on object bounding boxes tree based on object bounding boxes

Index GenerationIndex Generation
Streaming ApproachStreaming Approach

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1515

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Index GenerationIndex Generation
Streaming ApproachStreaming Approach

•• OptimizationsOptimizations
–– Remove vertex shading data from triangle streamRemove vertex shading data from triangle stream

-- NormalsNormals, UV-coordinates, vertex colors, etc., UV-coordinates, vertex colors, etc.
-- Do sorting only with vertex position dataDo sorting only with vertex position data
-- Reconstruct full triangles after sortingReconstruct full triangles after sorting

–– Compute better splitting planesCompute better splitting planes
-- Use cost functions to determine plane position e.g., SurfaceUse cost functions to determine plane position e.g., Surface

Area Heuristics (SAH) [McDonald et al. 1989]Area Heuristics (SAH) [McDonald et al. 1989]

–– Parallelize sortingParallelize sorting
-- Start extra processes for new streamsStart extra processes for new streams

Part IIPart II
Adapting Ray Tracing To Complex ModelAdapting Ray Tracing To Complex Modelss

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1717

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Out-of-Core Ray TracingOut-of-Core Ray Tracing

•• Ray tracing capable of handling massive modelsRay tracing capable of handling massive models
–– Logarithmic in the number of trianglesLogarithmic in the number of triangles
–– Multi-level Multi-level k-dk-d trees as hierarchical spatial index trees as hierarchical spatial index

•• „„Boeing 777Boeing 777““ model requires 30 model requires 30 –– 40 40 GByteGByte

Out-of-core mechanism neededOut-of-core mechanism needed

–– Build index structures offline on diskBuild index structures offline on disk
–– Map disk data into 64-bit address space (Map disk data into 64-bit address space (mmapmmap()()))

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1818

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Memory ManagementMemory Management
OS Based Memory MappingOS Based Memory Mapping

•• Advantages of OS based memory mappingAdvantages of OS based memory mapping
–– Automatic demand pagingAutomatic demand paging
–– Address translation and I/O handled by CPU and OSAddress translation and I/O handled by CPU and OS
–– Fine cache granularity (page size 4 Fine cache granularity (page size 4 KByteKByte))

•• ProblemsProblems
–– Access to unavailable data causes page faultsAccess to unavailable data causes page faults
–– Stalling of rendering process inhibits interactivityStalling of rendering process inhibits interactivity

Manually check data availabilityManually check data availability
Detect and prevent page faults using tile tableDetect and prevent page faults using tile table

4

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 1919

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Memory ManagementMemory Management
Tile TableTile Table

•• Simple hash table to efficiently check tile availabilitySimple hash table to efficiently check tile availability

1 tile = 16 pages

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2020

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Memory ManagementMemory Management
Tile HandlingTile Handling

•• Tile descriptorTile descriptor
–– Bits 48 Bits 48 –– 16 : Tile base address (detect hash collisions) 16 : Tile base address (detect hash collisions)
–– Bit 1 : Referenced bitBit 1 : Referenced bit
–– Bit 0 : Availability bitBit 0 : Availability bit

•• Tiles loaded by Tiles loaded by asynchronousasynchronous fetcher thread fetcher thread
–– Cache miss: Add tile ID to request queueCache miss: Add tile ID to request queue

•• Asynchronous tile evictionAsynchronous tile eviction
–– Free memory using Free memory using „„Second ChanceSecond Chance““ algorithm algorithm

((madvisemadvise()()))

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2121

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Bridging Load TimeBridging Load Time

•• What happens if data is not yet in main memory ?What happens if data is not yet in main memory ?

Rays trying to access not loaded
data colored red

Fully loaded data - but only for
this particular view

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2222

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Bridging Load TimeBridging Load Time
Ray ReorderingRay Reordering

•• Ray reordering [Wald et al. 2002]Ray reordering [Wald et al. 2002]
1.1. Suspend rays that try to access not yet loaded dataSuspend rays that try to access not yet loaded data
2.2. Fetch missing data asynchronouslyFetch missing data asynchronously
3.3. Immediately continue with other rayImmediately continue with other ray
4.4. Resume stalled rays after data is availableResume stalled rays after data is available

 Only possible for smaller models with notOnly possible for smaller models with not
drastically changing working setsdrastically changing working sets

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2323

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Bridging Load TimeBridging Load Time
Level-Of-DetailLevel-Of-Detail

•• Use simplified data as replacementUse simplified data as replacement
–– Polygonal simplificationPolygonal simplification

-- See e.g., See e.g., ““A DeveloperA Developer’’s Survey of s Survey of PolygonalsPolygonals Simplification Simplification
MethodsMethods”” [[LuebkeLuebke 2001] 2001]

-- For For ““soup of trianglessoup of triangles”” typically use vertex clustering typically use vertex clustering

–– VoxelVoxel representation representation
-- See e.g., See e.g., ““Far Far VoxelsVoxels”” [[GobettiGobetti et al. 2005] et al. 2005] next talk next talk

 Generate n+1 model detail levelsGenerate n+1 model detail levels
–– Level 0: Original un-simplified modelLevel 0: Original un-simplified model
–– Level n: Coarsest simplificationLevel n: Coarsest simplification

 should fit fully into memoryshould fit fully into memory

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2424

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Bridging Load TimeBridging Load Time
Level-Of-DetailLevel-Of-Detail

•• Switch to simplified representation during loadingSwitch to simplified representation during loading

-- Coarser levels can be loaded fasterCoarser levels can be loaded faster
-- In worst case always level n availableIn worst case always level n available
-- Blending between successive framesBlending between successive frames

to reduce to reduce popingpoping artifacts artifacts

Traversal Traversal
and intersectionand intersection

ShadingShading

Increase level ifIncrease level if
data missingdata missing

Software MMUSoftware MMU
Continue ifContinue if

data availabledata available

Check tilesCheck tiles

Traversal finishedTraversal finished

Set initial level to 0Set initial level to 0

5

Part IIIPart III
Photorealistic Rendering and Lighting in HighlyPhotorealistic Rendering and Lighting in Highly

Complex ModelComplex Modelss

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2626

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

High-Quality ShadingHigh-Quality Shading
ShadowsShadows

•• Without shadows and highlightsWithout shadows and highlights

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2727

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

High-Quality ShadingHigh-Quality Shading
ShadowsShadows

•• Pixel-accurate shadows and highlightsPixel-accurate shadows and highlights
–– Simple integration into a ray tracerSimple integration into a ray tracer

-- ShaderShader (plug-in) is called when a ray hits a surface (plug-in) is called when a ray hits a surface
-- ShadersShaders can fire arbitrary rays (for shadows, reflection, can fire arbitrary rays (for shadows, reflection, ……))

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2828

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Photorealistic RenderingPhotorealistic Rendering

•• More complicated example:More complicated example:
–– Realistically structured plant ecosystemRealistically structured plant ecosystem
–– Many plants and vegetation layersMany plants and vegetation layers
–– Highly irregular geometryHighly irregular geometry

 Much more difficult than CAD models Much more difficult than CAD models

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 2929

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Realistic LightingRealistic Lighting
Environmental IlluminationEnvironmental Illumination

•• Realistic Illumination of outdoor scenesRealistic Illumination of outdoor scenes
–– Depends heavily on environmental illuminationDepends heavily on environmental illumination
–– One single directional light not sufficientOne single directional light not sufficient

-- Cannot capture subtle effects, e.g. soft shadowsCannot capture subtle effects, e.g. soft shadows

One single light source HDR environment map lighting
EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3030

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Realistic LightingRealistic Lighting
HDRI ApproximationHDRI Approximation

•• Pre-computation e.g. PRT not practicalPre-computation e.g. PRT not practical
–– Scene too complex Scene too complex memory limitationsmemory limitations
–– Difficult to use with instantiationDifficult to use with instantiation

Approximate HDR environmental illuminationApproximate HDR environmental illumination
–– Approximate with large number of directional lightsApproximate with large number of directional lights

-- Generated from HDR environment mapsGenerated from HDR environment maps
e.g., similar to [e.g., similar to [KolligKollig et al. 2003] or [et al. 2003] or [AgarwalAgarwal et al. 2003] et al. 2003]

–– Randomly pick subsets from these virtual lightsRandomly pick subsets from these virtual lights
-- Use as targets for shadow raysUse as targets for shadow rays
-- Interleave shadow rays with primary raysInterleave shadow rays with primary rays

6

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3131

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Interleaved SamplingInterleaved Sampling

•• Interleaved Sampling [Keller et al. 2001]Interleaved Sampling [Keller et al. 2001]
–– Combination of geometric and illumination anti-aliasingCombination of geometric and illumination anti-aliasing

-- Split up set of virtual directional lights into subsetsSplit up set of virtual directional lights into subsets
-- Fire a number of primary rays per pixelFire a number of primary rays per pixel
-- Use a different light source subset for each primary rayUse a different light source subset for each primary ray

observer
pixel

primary ray

virtual directional light

shadow ray

hitpoint

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3232

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Interleaved SamplingInterleaved Sampling
ExampleExample

Note: Note: ““samplesample”” means sequence of ray segments means sequence of ray segments

• 1 primary sample per pixel
• 1 light sample / hitpoint
 (1 virtual light source)

32 CPUs: 6 fps (640480 pixels)

• 4 primary samples per pixel
• 4 light samples / hitpoint
 (4 different sets of virtual lights)

32 CPUs: 1 fps (640480 pixels)

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3333

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Handling AliasingHandling Aliasing

•• Brute-force pixel over-samplingBrute-force pixel over-sampling
–– Simultaneously remove geometric and illuminationSimultaneously remove geometric and illumination

aliasing (using interleaved sampling)aliasing (using interleaved sampling)
–– Trivial implementationTrivial implementation
–– Scales even better than linear in number of CPUsScales even better than linear in number of CPUs

 Exploits coherence Exploits coherence

–– But still needs many samples for high-quality imagesBut still needs many samples for high-quality images
-- Especially for complicated geometry (e.g., plant leaves)Especially for complicated geometry (e.g., plant leaves)
-- And complex illumination model (e.g., global illumination)And complex illumination model (e.g., global illumination)

 Progressive image enhancementProgressive image enhancement

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3434

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Progressive RenderingProgressive Rendering

•• Rendering in progressive modeRendering in progressive mode
-- Activated as soon as camera motion stopsActivated as soon as camera motion stops
-- Successive frames are accumulatedSuccessive frames are accumulated
-- Use new random sample values each frameUse new random sample values each frame
-- Generates high-quality images in a few secondsGenerates high-quality images in a few seconds

-- == + ++ +
……

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3535

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Progressive RenderingProgressive Rendering
ExampleExample

No accumulation

1 primary sample, 2 light samples, 48 CPUs: 2 fps (1270960 pixels)

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3636

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Progressive RenderingProgressive Rendering
ExampleExample

4 frames accumulated

1 primary sample, 2 light samples, 48 CPUs: 2 fps (1270960 pixels)

7

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3737

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Progressive RenderingProgressive Rendering
ExampleExample

10 frames accumulated (after 5 seconds)

1 primary sample, 2 light samples, 48 CPUs: 2 fps (1270960 pixels)

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3838

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Sample CachingSample Caching

•• Sample Cache approachSample Cache approach
–– Cache image results from previous frames inCache image results from previous frames in

acceleration structures (multi-level acceleration structures (multi-level k-dk-d tree) tree)
–– No preprocessing requiredNo preprocessing required
–– Independent from actual scene sizeIndependent from actual scene size

!!! Work in progress !!!!!! Work in progress !!!
2-3 times speed up compared to standard over-sampling2-3 times speed up compared to standard over-sampling

But very simple implementationBut very simple implementation

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 3939

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

For all pixels:For all pixels:

Method OverviewMethod Overview

Find visible voxel that project toFind visible voxel that project to
approximately one pixelapproximately one pixel

Use voxel node address as hashUse voxel node address as hash
table (cache) indextable (cache) index

Use/store shading resultsUse/store shading results
in voxelin voxel

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 4040

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Method OverviewMethod Overview
TraversalTraversal

•• Traverse until k-d tree box projects to one pixelTraverse until k-d tree box projects to one pixel
–– Trace ray differentials [Igehy 1999]Trace ray differentials [Igehy 1999]
–– Check pixel footprint against current k-d tree boxCheck pixel footprint against current k-d tree box
–– Stop if box projects to approximately one pixelStop if box projects to approximately one pixel

•• Box (B) projects to pixel size Box (B) projects to pixel size
•• No need to enter child (C) No need to enter child (C)
•• Use node address (B) as hash key Use node address (B) as hash key

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 4141

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

•• Use box node index as hash table keyUse box node index as hash table key
–– Multi-dimensional hash tableMulti-dimensional hash table
–– Node addresses from all hierarchy levels form keyNode addresses from all hierarchy levels form key

-- E.g. Two-level k-d tree: two node addressesE.g. Two-level k-d tree: two node addresses

–– Voxel size varies significantlyVoxel size varies significantly
-- Voxels can be further subdivided (e.g., 2 x 2 x 2 regular grid)Voxels can be further subdivided (e.g., 2 x 2 x 2 regular grid)
-- Subcell index as additional hash key componentSubcell index as additional hash key component
 No need to alter existing acceleration structuresNo need to alter existing acceleration structures

Method OverviewMethod Overview
Hash TableHash Table

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 4242

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Method OverviewMethod Overview
RenderingRendering

•• Retrieve and update hashed voxel dataRetrieve and update hashed voxel data
–– Basic rendering loop structureBasic rendering loop structure

forfor (each pixel) (each pixel)
 shoot centered test ray; shoot centered test ray;
 ifif (suitable (suitable voxelvoxel found) found)
 access hash table; access hash table;
 ifif (data not accurate) (data not accurate)
 trace and shade new rays; trace and shade new rays;

 update update voxelvoxel;;
 use use voxelvoxel data; data;
 elseelse
 standard ray tracing; standard ray tracing;

8

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 4343

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Voxel StructureVoxel Structure

•• Simple hash table entry structureSimple hash table entry structure

–– Here single averaged colorHere single averaged color
–– Partial shader evaluation, e.g.Partial shader evaluation, e.g.

-- Lighting, BRDF, occlusion, ...Lighting, BRDF, occlusion, ...

–– Frame number and direction indicate outdated dataFrame number and direction indicate outdated data

structstruct Sample Sample
{{
 addr_taddr_t address[LEVELSaddress[LEVELS]; // hash key components]; // hash key components

 floatfloat r,g,br,g,b; // color; // color
 unsigned unsigned intint n; // samples accumulated n; // samples accumulated

 floatfloat direction[3]; // last hit direction direction[3]; // last hit direction
 unsigned unsigned intint frame; // frame last accessed frame; // frame last accessed
}}

EG 2006 TutorialEG 2006 Tutorial Massive Model Visualization using Real-time Ray TracingMassive Model Visualization using Real-time Ray Tracing 4444

C
O

M
PU

TER
 G

R
A

PH
IK

 – U
N

IV
ER

SITÄ
T D

ES
SA

A
R

LA
N

D
ES

Image QualityImage Quality

Sample CachingSample Caching
24 samples / voxel24 samples / voxel
2-4 pixel threshold2-4 pixel threshold

2x2x2 voxel subdivision2x2x2 voxel subdivision

Standard OversamplingStandard Oversampling
16 samples per pixel16 samples per pixel

Speedup: 2-3 during camera motionSpeedup: 2-3 during camera motion

Part IVPart IV
Review of Hardware-Trends for Real-time RayReview of Hardware-Trends for Real-time Ray

TracingTracing

1

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Multi-Resolution Techniques for
Exploring Extremely Large and
Complex Surfaces

Enrico Gobbetti
Fabio Marton
CRS4 Visual Computing

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

(CRS4 in one slide)

• Interdisciplinary research
center focused on
computational sciences
– Operational since 1992

• RTD staff of ~80 people
• Turnover of ~7M Euro, of

which ~50% from external
funding
– EU/National research project
– Industrial contracts

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

(CRS4 Visual Computing Group)

• Staff
– 6+ people

• RTD
– Geometry processing /

rendering
– Scientific visualization
– Haptics
– VR & Simulation

• Service
– Sci Viz + Post production

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Multi-Resolution Techniques for
Exploring Extremely Large and
Complex Surfaces

Enrico Gobbetti
Fabio Marton
CRS4 Visual Computing

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Goal and Motivation
Accurate interactive inspection of very large
models (unlimited size!) on PC platforms…

Xeon 2.4GHz / 1GB RAM / 70GB SCSI 320 Disk / NVIDIA 6800GTS

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Application domains / data sources

• Many important application
domains

• Models exceed
– O(108-109) samples
– O(109) bytes

• Varying
– Dimensionality
– Topology
– Sampling distribution

Local Terrain Models
2.5D – Flat – Dense regular

sampling

Planetary terrain models
2.5D – Spherical – Dense

regular sampling

Laser scanned models
3D – Moderately simple topology –

low depth complexity - dense

CAD models
3D – complex topology – high

depth complexity – structured
- ‘ugly’ mesh

Natural objects / Simulation
results

3D – complex topology + high depth
complexity + unstructured/high
frequency details

2

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Interactive rendering constraints

• Frequency, latency,
resolution should match
human capabilities…
– … or at least output

device’s ones!

• On today’s displays
– Frequency: 10-100Hz
– Latency: ~0.1s
– Resolution: O(106-107) px

Regular desktop displays
~1M pixels

Geowall-type displays
~1-10M pixels, stereo

Tiled high resolution displays
~10-100M pixels

Holographic displays
~10-100M pixels, holo

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Why large scale model visualization
research? (1/2)
• … because large scale models are too large for

brute force approaches in interactive applications!

I/O

Vtx / Tex /
Pix Caches

DISK RAM GPU FB

10-100 Hz
update

O(109→∞)
triangles

AGP/
PCI-E

Geo/Tex
Memory

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Why large scale model visualization
research? (2/2)
• Real-time rendering needs to rapidly move data

from disk (to RAM) to GPU
=> out-of-core data management
=> adaptive techniques to reduce data transfers

I/O

Vtx / Tex /
Pix Caches

DISK RAM GPU FB

O(108)
vertices/sec

O(107)
vertices/sec

10-100 Hz
update

O(109→∞)
triangles

AGP/
PCI-E

Geo/Tex
Memory

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (1/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (2/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (3/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Multiresolution + …

3

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (4/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Multiresolution + View dependent LOD selection + …

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (5/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Multiresolution + View dependent LOD selection + View culling + …

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (6/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Multiresolution + View dependent LOD selection + View culling +
Occlusion culling + …

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (7/15)
Out-of-core output-sensitive techniques
Goal: Time/Memory Complexity = O(N) (independent of K)

Multiresolution + View dependent LOD selection + View culling +
Occlusion culling + External memory management/Compression

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (8/15)
Out-of-core output-sensitive techniques

• At preprocessing time: build
MR hierarchy

• At run time: selective view-
dependent refinement
– Stop when node accurate,

out-of-view, or occluded
– Use dependencies to maintain

structure consistent
– Keep hierarchy cut in-core,

load data on demand
– Reduce/Avoid I/O latency by

• Reordering data
• Compressing data
• Predict data misses (prefetching)

COARSE

FINE

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (9/15)
Out-of-core output-sensitive techniques

• At preprocessing time: build
MR hierarchy

• At run time: selective view-
dependent refinement
– Stop when node accurate,

out-of-view, or occluded
– Use dependencies to maintain

structure consistent
– Keep hierarchy cut in-core,

load data on demand
– Reduce/Avoid I/O latency by

• Reordering data
• Compressing data
• Predict data misses (prefetching)

Occluded / Out-of-view

Inaccurate

Accurate

FRONT

4

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (10/15)
Out-of-core output-sensitive techniques

• At preprocessing time: build
MR hierarchy

• At run time: selective view-
dependent refinement
– Stop when node accurate,

out-of-view, or occluded
– Use dependencies to maintain

structure consistent
– Keep hierarchy cut in-core,

load data on demand
– Reduce/Avoid I/O latency by

• Reordering data
• Compressing data
• Predict data misses (prefetching)

FRONT

Occluded / Out-of-view

Inaccurate

Accurate

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (11/15)
Out-of-core output-sensitive techniques

• At preprocessing time: build
MR hierarchy

• At run time: selective view-
dependent refinement
– Stop when node accurate,

out-of-view, or occluded
– Use dependencies to maintain

structure consistent
– Keep hierarchy cut in-core,

load data on demand
– Reduce/Avoid I/O latency by

• Reordering data
• Compressing data
• Predict data misses (prefetching)

FRONT

Occluded / Out-of-view

Inaccurate

Accurate

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (12/15)
Out-of-core output-sensitive techniques

• At preprocessing time: build
MR hierarchy

• At run time: selective view-
dependent refinement
– Stop when node accurate,

out-of-view, or occluded
– Use dependencies to maintain

structure consistent
– Keep hierarchy cut in-core,

load data on demand
– Reduce/Avoid I/O latency by

• Reordering data
• Compressing data
• Predict data misses (prefetching)

FRONT

Occluded / Out-of-view

Inaccurate

Accurate

OUT OF
CORE

IN
CORE

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (13/15)
Out-of-core output-sensitive techniques

• Many (many!) data structure/algorithm variations on this theme:
– Hierarchies/DAGs

• Evolutionary models
– Vertex split/edge collapse

» Hoppe1996/97/98, Xia1996/97, Maheswari1997, Gueziec1998, Kobbelt1998, …
– Vertex insertion/decimation

» De Floriani1989, deBerg1995, Cignoni1995/97, Brown1996/97, Klein1996,
DeFloriani1996/97/98, …

• Nested models for 2.5D datasets
– VonHerzen1987, Gross1996, ...

• Meshless models
– Rusinkiewicz2000, …

– Granularity = point/triangle/vertex

• Occlusion culling independent of LOD construction/selection
– Space partitioning

• On-line (from point)
• Off-line (from region)

– Granularity = cell/region

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (14/15)
Out-of-core view-dependent simplification

• Build point / vertex
hierarchy, refine it at run-
time
– ElSana2000, Rus2000,

Lin2003, …
• CPU bound

– High per-primitive selection
and culling costs

– Hard to use preferential
data paths

– Hard to build and maintain
optimized graphics
representations

• Hard to combine with
visibility culling methods

3
1

2

9

8 7

10

54

6

1 2 7 4 5 6 8 9

A B C10

D

3

E

R
A

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Size matters! Or does it? (15/15)
Out-of-core chunk-based techniques

• Partition model into chunks,
simplify each chunk
independently, build LOD
hierarchy
– Erik2001, Var2002

• GPU friendly
– Each chunk is an

independent mesh
– LOD selection costs

amortized on many primitives
• Hierarchical partitioning useful

for visibility culling
• Problems at block boundaries

– Cracks / costly CPU updates /
low simplification quality HLOD View-Dependent Rendering

(Erikson et al., 2001)

5

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

• Underlying ideas
– Chunk-based multiresolution

structures
• Combine space partitioning +

level of detail
• Same structure used for visibility

and detail culling

– Seamless combination of
surface chunks

• Dependencies ensure consistency
at the level of chunks

– Complex rendering primitives
• GPU programming features
• Curvilinear patches, view-

dependent voxels, …

– Chunk-based external
memory management

• Compression/decompression,
block transfers, caching

Partitioning
and

simplification

Adaptive
rendering GPU

Cache

Multiresolution
structure

(data+dependency)

Off-line On-line

Network /
Bus

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

MESH-BASED FRAMEWORK

MESH-LESS FRAMEWORK

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

Chunked Multi-
Triangulations
Gobbetti/Marton (CRS4), Cignoni/
Ganovelli/Ponchio/Scopigno (CNR)

IEEE Viz 2005

Generalize

Specialize

Generalize

Specialize

View-dep.
Volumetric
Model
In progress

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

Chunked Multi-
Triangulations
Gobbetti/Marton (CRS4), Cignoni/
Ganovelli/Ponchio/Scopigno (CNR)

IEEE Viz 2005

Generalize

Specialize

Generalize

Specialize

View-dep.
Volumetric
Model
In progress

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Multi Triangulations

• MT is a well known framework to
describe a multiresolution models

• Consider a sequence of local
modifications over a given description
D
– Each modification replaces a portion of

the domain with a different
conforming portion (simplified)

– f1 floor
– g1 the new fragment

D'= D_ f _ g

Di_1= Di_ gi_1

6

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Multi Triangulations

• Dependence between
modifications can be
arranged in a DAG

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Multi Triangulations

• Adding a sink to the
DAG we can associate
each fragment to an
arc

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

MT Cuts

• A cut on the DAG defines a new
representation

• Paste all the fragment inside the
cut

D
_
= D

0
_ g

1
_ g

2
_ g

4

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

MT Cuts

• A cut on the DAG defines a new
representation

• Collect all the fragment floors of
cut arcs and you get a new
conforming mesh
– just load and render
– low CPU workload
– fit very well in extended

memory hierarchies

D
_
= D

0
_ g

1
_ g

2
_ g

4
= f

0!
_ f

02
_ f

03
_ f

13
_ f

1!
_ f

4!

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Rendering a MT

• Fragments are patches of triangles
– Optimized (tristripped) and stored compressed on disk
– Obtained with an high quality simplification alg.
– DAG << original mesh (patches composed by ~8K tri)

• At run time two threads: Render and PatchServer
– Render

• Update the cut (moving in and out MT nodes)
• Choose patches to be prefetched
• Render the selected fragments

– PatchServer
• Load and uncompress requested patches from disk into memory

• Culling
– Standard frustum and hw based occlusion techniques defined

for generic hierarchies can be easily adapted to DAGs

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Rendering a MT

• To update the cut we use two priority queues R & C
for refinement and coarsening of MT nodes
– R top is max screen space error
– C top is min screen space error

• Cost function for each node
– According to its size

and if it is loaded

• Refine until budget is full
• Coarsen otherwise

• Take care of node feasibility

7

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Not well conditioned DAG

• Possible DAG problems:
– The topology of dependencies lowers the adaptivity of the

multiresolution structure
– Cascading dependencies are BAD

– IEEE Viz 2005: General construction technique (V-Partition)
– SIGGRAPH 2004: Efficient constrained technique (TetraPuzzles)

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

Chunked Multi-
Triangulations
Gobbetti/Marton (CRS4), Cignoni/
Ganovelli/Ponchio/Scopigno (CNR)

IEEE Viz 2005

Generalize

Specialize

Generalize

Specialize

View-dep.
Volumetric
Model
In progress

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Adaptive TetraPuzzles:
High performance
visualization of dense 3D
meshes
– Two-level multiresolution

model based on volumetric
decomposition

Cignoni, Ganovelli, Gobbetti, Marton, Ponchio, and Scopigno.
Adaptive TetraPuzzles - Efficient Out-of-core Construction and
Visualization of Gigantic Polygonal Models.
ACM Transactions on Graphics, 23(3), August 2004
(Proc. SIGGRAPH 2004).

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cellsTarget = k triangles/chunk

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

8

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

9

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

(6 tetra /
diamond)

(4 tetra /
diamond)

(8 tetra /
diamond)

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

10

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

k triangles/chunk

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

k triangles/chunk

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

Diamond external boundary
Diamond internal boundary
Child tetrahedra boundary

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

Diamond external boundary
Diamond internal boundary
Child tetrahedra boundary

LO
C

K
ED

LO
C

K
ED

FREE
FREE

11

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

Diamond external boundary
Diamond internal boundary

FR
EE N

ext Level

FR
EE N

ext Level

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

NO CRACKS / NO GLOBALLY LOCKED BOUNDARY!

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

ε

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

View dependent mesh refinement

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Construction
– Start with hires triangle

soup
– Partition model using a

conformal hierarchy of
tetrahedra

– Construct non-leaf cells by
bottom-up recombination
and simplification of lower
level cells

• Rendering
– Refine conformal

hierarchy, render selected
precomputed cells

Out-of-core cull+refine traversal /
GPU cached optimized meshes

Independent diamond
processing

 For each mesh chunk:
 Simplify + stripify +
 compress + eval bounds/error

Out-of-core + parallel

12

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Linux/MPI Construction
• OpenGL renderer

– VBO
– Prefetch

• mincore/mmap interface

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Linux/MPI Construction
• OpenGL renderer

– VBO
– Prefetch

• mincore/mmap interface
SEE PAPER FORSEE PAPER FOR
DETAILSDETAILS

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Tested on a number of large data sets
– Bonsai CT / David 2mm / David 1mm / St. Matthew 0.25mm

• Tested in a number of situations
– Single processor / cluster construction
– Workstation viewing, large scale display

6.4M triangles6.4M triangles
289MB289MB

56M triangles56M triangles
2.6GB2.6GB

373M triangles373M triangles
17GB17GB

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• 1-14 Athlon 2200+ CPU, 3 x 70GB ATA 133 Disk (IDE+NFS)
• 3-30K triangles/sec

– Scales well, limited by slow disk I/O for large meshes

• 96-144 bits/triangle (~lossless)
– Comparable to other view-dependent simplification methods

2929’’ (1CPU)(1CPU)
33’’ (15CPU)(15CPU) 76MB 76MB

6h486h48’’ (1CPU)(1CPU)

5959’’ (15CPU)(15CPU) 967MB 967MB
25h3725h37’’ (1CPU)(1CPU)

7h437h43’’ (15CPU)(15CPU) 5.6GB 5.6GB

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes
• Xeon 2.4GHz, 70GB SCSI 320 Disk, NVIDIA GeForce FX5800U
• GPU bound

– 70M-100M triangles/sec
– >60Hz when rendering at ± 2px tolerance on a 800x600

window with 4x FSAA

• Resident set size limited to ~150MB

~95M tri/sec ~95M tri/sec ~70M tri/sec~70M tri/sec ~70M tri/sec~70M tri/sec

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Adaptive Tetrapuzzles – Dense 3D meshes

• Adaptive TetraPuzzles:
High performance
visualization of dense 3D
meshes
– Two-level multiresolution

model based on volumetric
decomposition

Cignoni, Ganovelli, Gobbetti, Marton, Ponchio, and Scopigno.
Adaptive TetraPuzzles - Efficient Out-of-core Construction and
Visualization of Gigantic Polygonal Models.
ACM Transactions on Graphics, 23(3), August 2004
(Proc. SIGGRAPH 2004).

Michelangelo’s St. Matthew
Source: Digital Michelangelo Project
Data: 374M triangles

Intel Xeon 2.4GHz 1GB
GeForce FX 5800U AGP8X

13

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

Chunked Multi-
Triangulations
Gobbetti/Marton (CRS4), Cignoni/
Ganovelli/Ponchio/Scopigno (CNR)

IEEE Viz 2005

Generalize

Specialize

Generalize

Specialize

View-dep.
Volumetric
Model
In progress

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
P-BDAM – Planetary terrain models

• P-BDAM: High
performance planetary
terrain visualization
technique
– Handles planet curvature
– The only accelerated

technique with sub-metric
global accuracy on entire
Earth

– Parallel construction
method

Cignoni, Ganovelli, Gobbetti, Marton, Ponchio, and Scopigno.
Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM).
In Proceedings IEEE Visualization. Pages 147-155., October 2003.

TemporariesTemporaries

VertexVertex
ShaderShader

Uniform:Uniform:

PVM, PPVM, P0 1 2 0 1 2 NN0 1 2 0 1 2 UVUV00
1 21 2

ColorColor

HpositionHposition

TextureTexture

PositionPosition

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
P-BDAM – Planetary terrain models

• Geometry multiresolution
data structure
– Pair of triangle bintrees

• Each triangle is
recursively bisected by
splitting it along its
longest edge

– Base domain triangle ->
curved triangular patch
(displaced triangle)

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
P-BDAM – Planetary terrain models

• Displaced triangle
– General triangle mesh hi-

quality adaptively simplified
+ stripified during
preprocessing

– Takes into account planet
curvature / size

• 3 double precision corner
coordinate

• Mesh vertex positions
computed on GPU from
parametric coords

– Preserves connectivity among
adjacent levels using
matched triangulations

• Global continuity,
compression, submetric
accuracy on Earth

Psingle prec.
double prec.

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
P-BDAM – Planetary terrain models

• P-BDAM: High
performance planetary
terrain visualization
technique
– Handles Earth curvature
– The only accelerated

technique with sub-metric
global accuracy on entire
Earth

– Parallel construction
method

Cignoni, Ganovelli, Gobbetti, Marton, Ponchio, and Scopigno.
Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM).
In Proceedings IEEE Visualization. Pages 147-155., October 2003.

Planet Mars
Source: NASA MOLA MEGDR
Elevation: 44Kx22K / Color: 44Kx22K

Rendering: 2x1024x768 @ 1px accuracy
Intel Xeon 2.4GHz 1GB
GeForce 6800GT AGP8X

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Compression: Regular Grid

• Regular grid instead of
irregular triangulation

• Pros:
– Fastest preprocessing
– More compact / Less data

to send to GPU
– Easier to apply signal

processing algorithms

• Cons:
– Needs more data to

approximate irregular
features.

Different levels of resolution of regular grid data
of a planar terrain representation

14

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Regular Grid Data Encoding

• Compression idea
– Encode (quantized) new

points delta with respect to
prediction from previous
level

• Hierarchy is a non standard
wavelet decomposition of
the original dataset!

=> BDAM + Wavelets!

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Detail Compression

• Possibility to apply various
compression algorithms to each
patch encoded detail.

• High compression ratio up to a
desired error with:
– Quantization of detail coefficients
– Entropy coding of quantized values

• Example result: PLANET MARS
– 1.5 Giga points
– Compressed to 75 MB
– Max error: 50 meters

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Planet Mars

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Conclusions

• Integrated aggressive compression in
a general output sensitive framework
– BDAM + Wavelets

• See EG paper this year (C-BDAM)

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
GPU-friendly output-sensitive techniques

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

Chunked Multi-
Triangulations
Gobbetti/Marton (CRS4), Cignoni/
Ganovelli/Ponchio/Scopigno (CNR)

IEEE Viz 2005

Generalize

Specialize

Generalize

Specialize

View-dep.
Volumetric
Model
In progress

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Far Voxels – General 3D models

• Far Voxels: High
performance visualization of
arbitrary 3D models
– Mixed model
– Seamless integration of

occlusion culling with out-
of-core data management
and multiresolution
rendering

Gobbetti and Marton.
Far Voxels – A nultiresolution Framework for Interactive Rendering of
Huge Complex 3D Models on Commodity Graphics Platforms.
ACM Transactions on Graphics, 23(4), August 2005
(Proc. SIGGRAPH 2005).

15

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Far Voxels – General 3D models

• Classic multiresolution
models
– Error measured on

boundary surfaces
– LOD construction based on

local surface
coarsening/simplification
operations

– Visibility culling decoupled
from multiresolution

• Hard to apply to models
with high detail and
complex topology and high
depth complexity!

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Far Voxels – General 3D models

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Far Voxels – General 3D models

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Far Voxels – General 3D models

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Far Voxels – General 3D models

• Off-line: Reconstruction =
sampling + fitting
– Sampling

• Raycasting
– extract n,BRDF = f(ray)

• Occlusion culling!
– Sample from distance dmin

dictated by maximum possible
projected voxel size

– Fitting
• Choose best voxel representation

among selected parameterized
shaders

• Error minimization

• On-line: Rendering
– Refine until projected voxel size <

desired accuracy
– Exploit GPU for shader evaluation

and on-line occlusion culling

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Our contributions
Far Voxels – General 3D models

• Far Voxels: High
performance visualization of
arbitrary 3D models
– Mixed model
– Seamless integration of

occlusion culling with out-
of-core data management
and multiresolution
rendering

– … work in progress

Gobbetti and Marton.
Far Voxels – A nultiresolution Framework for Interactive Rendering of
Huge Complex 3D Models on Commodity Graphics Platforms.
ACM Transactions on Graphics, 23(4), August 2005
(Proc. SIGGRAPH 2005).

Intel Xeon 2.4GHz 1GB
GeForce 6800GT AGP8X

16

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Conclusions
Current/Future Work

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

Chunked Multi-
Triangulations
Gobbetti/Marton (CRS4), Cignoni/
Ganovelli/Ponchio/Scopigno (CNR)

IEEE Viz 2005

Generalize

Specialize

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Conclusions
Current/Future Work

BDAM - Local Terrain Models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

EUROGRAPHICS 2003

P-BDAM - Planetary terrain models
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

IEEE Visualization 2003

Adaptive Tetrapuzzles – Dense meshes
Gobbetti/Marton (CRS4),
Cignoni/Ganovelli/Ponchio/Scopigno (CNR)

SIGGRAPH 2004

Layered Point Clouds – Dense clouds
Gobbetti/Marton (CRS4)

SPBG 2004 / Computers & Graphics 2004

Far Voxels – General
Gobbetti/Marton (CRS4)

SIGGRAPH 2005

Chunked Multi-
Triangulations
Gobbetti/Marton (CRS4), Cignoni/
Ganovelli/Ponchio/Scopigno (CNR)

IEEE Viz 2005

Generalize

Specialize

Generalize

Specialize

View-dep.
Volumetric
Model
In progress

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

Conclusions
Current/Future Work

• … Plus a lot of other work …
– Introduce (limited)

interactive manipulation
features

– Improved pre-processing
times

– Compression
– Streaming
– Next generation displays
– …

 C
R

S
4

 V
is

u
al

 C
o

m
p

u
ti

n
g

 G
ro

u
p

 (
w

w
w

.c
rs

4.
it/

vi
c/

)

Multi-Resolution Techniques for Exploring Extremely Large and Complex Surfaces
Enrico Gobbetti and Fabio Marton, Eurographics 2006 Tutorial

So many things, so little time…

• More info:
– http://www.crs4.it/vic/
– http://vcg.isti.cnr.it/

• Models courtesy of Stanford Graphics Group
/NASA MOLA / ISTAR / The Boeing Company

• Q&A: Your turn…

2&*%,#5*.B%+4<*>4?>!/,%+J.(<#$.@#*./&+
/?+;#,'%+)#*#(%*(+/&+!/--/6.*0+:!(

K#'&%,+!/,,L#
M%(%#,5"+=*#??+D%-8%,

2ND+K#*(/&+M%(%#,5"+!%&*%,

O/#$

! 2&*%,#5*.B%+B.(<#$.@#*./&+/?+$#,'%+6#*#(%*(+/&+
.&%C9%&(.B%+:!(

" .&*%,#5*.B%P+QR+/,+-/,%+?,#-%(+9%,+(%5/&6

" $#,'%P+$#,'%,+*"#&+-#.&+-%-/,0

" .&%C9%&(.B%P+<&6%,+STARRR+9%,+:!

D/*.B#*./&(

! ;#,'%+6#*#(%*(+"#B%+-#&0+#99$.5#*./&(

" !I)

" -/6%$.&'+#&6+(.-<$#*./&

" B.,*<#$+*,#.&.&'

D/*.B#*./&(+E5/&*FG

! :!(+#,%+'//6+#$*%,&#*.B%+*/
".'">%&6+7/,H(*#*./&(

" 8%**%,+9,.5%39%,?/,-#&5%

" %#(.%,+*/+<9',#6%

!"#$$%&'%(

!)#*#(%*(+#,%+$#,'%,+*"#&+-#.&+-%-/,0

! 1.'"+234+$#*%&50+#&6+$/7+234+8#&67.6*"

! 4&$0+/&%+',#9".5(+9.9%+9%,+:!

! ;/7+(5,%%&+,%(/$<*./&

=/$<*./&(

! 4<*>/?>5/,%+9,%9,/5%((.&'+#$'/,.*"-(

" (9#*.#$.@#*./&A+B.(.8.$.*0+9,%5/-9<*#*./&A+#&6+
(.-9$.?.5#*./&

! 4<*>/?>5/,%+,%&6%,.&'+#$'/,.*"-(

" #99,/C.-#*%+B.(.8.$.*0+#&6+9,%?%*5".&'

" "#,67#,%>#((.(*%6+5/&(%,B#*.B%+B.(.8.$.*0

! 4<*>/?>5/,%+9#,#$$%$+,%&6%,.&'+#$'/,.*"-(

" ,%&6%,.&'+/&+-<$*.>*.$%+(5,%%&+<(.&'+:!+5$<(*%,

:,%9,/5%((.&'+#&6+M%&6%,.&' :#,#$$%$+M%&6%,.&'

U#$H+4<*$.&%

! 4<*>/?>5/,%+9,%9,/5%((.&'

! 4<*>/?>5/,%+,%&6%,.&'

! 4<*>/?>5/,%+9#,#$$%$+,%&6%,.&'

! !/&5$<(./&(

4<*>4?>!/,%+:,%9,/5%((.&'

! N<.$6+#&+/5*,%%

" 1.%,#,5".5#$+?,<(*<-+5<$$.&'

" K/,H.&'+(%*+-#&#'%-%&*

! !/-9<*%+B.(.8.$.*0+5/%??.5.%&*(

" 455$<(./&+5<$$.&'

" :,%?%*5".&'

! !,%#*%+(.-9$.?.%6+B%,(./&(

" ;%B%$>/?>6%*#.$+5/&*,/$

J.%7>?,<(*<-+!<$$.&'

! !$#,HVW

=O2

N<.$6.&'+#&+45*,%%

N<.$6.&'+#&+45*,%%

! N,%#H+-/6%$+.&+(%5*./&(+*"#*+?.*+.&+-%-/,0

! X/,+%#5"+(%5*./&

" ,%#6+".%,#,5"0+(*,<5*<,%+E1=G+?.$%

" 9%,?/,-+?#H%+.&(%,*./&(

" ?/,+%#5"+*/<5"%6+&/6%

! ,%#6+/$6+5/&*%&*(+

!-%,'%+/$6+Y+&%7

! <96#*%+5/&*%&*(+/&+6.(H

" <96#*%+1=+?.$%+/&+6.(H

N<.$6.&'+#&+45*,%%

2&+-%-/,0+#*+/&5%

I6B#&*#'%(+/?+4<,
=9#*.#$.@#*./&+I$'/,.*"-

! 4<*>/?>5/,%

" 7%+&%%6+-%-/,0+?/,+*"%+(%5*./&A+*"%+1=+?.$%A+
#&6+*"%+5/&*%&*(+/?+/&%+$%#?

! 2&5,%-%&*#$

" /&$0+<96#*%(+,%'./&(+*/<5"%6+80+*"%+(%5*./&

" .-9/,*#&*+?/,+^)+(5#&&.&'

! a??.5.%&*

" /&$0+,%#6(+#+-/6.?.%6+&/6%+/&5%+9%,+(%5*./&

!/-9<*.&'+J.(.8.$.*0+!/%??.5.%&*(

! X/,+%#5"+&/6%A+?/,+%#5"+B.%7.&'+6.,%5*./&

" 5/-9<*%+5/%??.5.%&*P
9,/Z%5*%6+#,%#+/?+6#*#39,/Z%5*%6+#,%#+/?+88/C

! [(%6+*/+6%*%,-.&%+&/6%+9,./,.*0+#*+,<&*.-%

)%*#.$+!<$$.&'

! IB/.6+,%&6%,.&'+<&.-9/,*#&*+6%*#.$(

! I$(/+H&/7&+#(+$%B%$>/?>6%*#.$+-#&#'%-%&*

! ;4)+(7.*5".&'+#99,/#5"%(

" 8#(%6+/&+6.(*#&5%+?,/-+B.%7%,

" /9*.-.@%6+EX<&H"/<(%,]^G

!-#C.-.@%+.-#'%>b<#$.*0+E8%&%?.*G

! '.B%&+*.-%+#&6+'%/-%*,0+5/&(*,#.&*(+E5/(*G

" 8#(%6+/&+B.(.8.$.*0+.&?/,-#*./&

!,%#*.&'+;%B%$(+/?+)%*#.$

! =%B%,#$+(*#*.5+;4)(+9%,+/5*,%%+&/6%

" <(%(+B%,*%C+5$<(*%,.&'+\M/((.'+#&6+N/,,%$+
]^_

" $.-.*#*./&(P+9/99.&'A+6.??%,%&*+$%B%$(+8%*7%%&+
#6Z#5%&*+&/6%(

! :/((.8$%+.-9,/B%-%&*(P

" 60&#-.5+;4)(+E($/7%,A+$%((+(<.*#8$%+?/,+1KG

" "0(*%,%(.(+E6/&`*+(7.*5"+;4)(+*//+/?*%&G

I6B#&*#'%(+/?+J%,*%C+!$<(*%,.&'

! X#(*+#&6+,/8<(*

! 4&$0+&%%6(+*/+*,#B%,(%+*"%+6#*#+/&5%

! :,/6<5%(+'//6+%&/<'"+#99,/C.-#*./&(

! 1#(+#&+.&*<.*.B%A+<(%,>5/&*,/$$%6+#55<,#50+6.#$

!)/%(+&/*+&%%6+*/9/$/'.5#$+#6Z#5%&50+',#9"

:,%9,/5%((.&'+U%(*(

! D%#(<,%+*.-%+*/+9,%9,/5%((+6#*#(%*(

! =*<60+*,#6%/??+8%*7%%&+(9#*.#$.@#*./&+',#&<$#,.*0+
#&6+/5*,%%+(.@%

! I((%((+b<#$.*0+/?+#99,/C.-#*./&(

U%(*+)#*#(%*(

! [c!+9/7%,+9$#&*

! ;;c;+.(/(<,?#5%

! N/%.&'+VVV

[c!+:/7%,+:$#&*

! !I)+-/6%$

! Q^+-.$$./&+*,.#&'$%(

! 1.'"+6%9*"+5/-9$%C.*0

! ^W^+DN+/?+,#7+6#*#

! QON+#?*%,+9,%9,/5%((.&'

+ +

+ ;;c;+2(/(<,?#5%

! 2(/(<,?#5%+/?+*<,8<$%&*+8/<&6#,0+8%*7%%&+*7/+
-.C.&'+?$<.6(

! eV^+-.$$./&+*,.#&'$%(

! QRON+/?+6#*#

+ N/%.&'+VVV

! !I)+-/6%$

! Q^AdTd+9#,*(

! ^dT+-.$$./&+*,.#&'$%(

! dON+/?+6#*#

+ +

U%(*+D#5".&%

! TFe+O1@+:%&*.<-+2J

! dQT+DN+MID

! TdR+ON+2)a+6.(H

! cJ2)2I+O%X/,5%+h<#6,/+Xi+dRR+',#9".5(

! M%6+1#*+;.&<C+gFR

! !/(*P+#8/<*+SQARRR+

+

:/7%,+:$#&*+M%(<$*(

! a??%5*+/?+(9#*.#$.@#*./&+',#&<$#,.*0

:/7%,+:$#&*+M%(<$*(

:/7%,+:$#&*+M%(<$*(

! 45*,%%+EQdARRR+*,.#&'$%(+9%,+$%#?G

" W-+Te(A+QdAQVV+$%#B%(

" ^Fe+DN+?/,+(*,<5*<,%A+WVQ+DN+?/,+6#*#

! J.(.8.$.*0+5/%??.5.%&*(+ETR+6.,(A+WeCWe+7.&6/7G

" T-+^W(A+VQQfN

! ;%B%$(+/?+6%*#.$+E<9+*/+d+$%B%$(A+Q3e+%#5"+*.-%G

" g-+d(A+TWg+DN

! U/*#$P+#8/<*+QV-+#&6+QON+/?+6#*#

+

;;c;+2(/(<,?#5%+M%(<$*(

! 45*,%%+EegRARRR+*,.#&'$%(+9%,+$%#?G

" Q"+Te-A+WAeW]+$%#B%(

" QF^+DN+?/,+(*,<5*<,%A+QR+ON+?/,+6#*#

! J.(.8.$.*0+5/%??.5.%&*(+ETR+6.,(A+WeCWe+7.&6/7G

" TW-A+^R^+fN

! ;%B%$(+/?+6%*#.$+E<9+*/+d+$%B%$(A+Q3e+%#5"+*.-%G

" Q"+QW-A+TF^+ON

! U/*#$P+#8/<*+^"+#&6+QT+ON

+

+ N/%.&'+VVV+M%(<$*(

+ =<--#,0+/?+:,%9,/5%((.&'+M%(<$*(

! =9#*.#$.@#*./&

" di+?#(*%,+*"#&+8%(*+(.-.$#,+#99,/#5"+EK#$6RQG

! J.(.8.$.*0+9,%5/-9<*#*./&

" &%'$.'.8$%+*.-%+#&6+(*/,#'%+,%b<.,%-%&*(

! =.-9$.?.5#*./&

" ?#(*A+'//6+%&/<'"A+$/7+(*/,#'%+,%b<.,%-%&*(

4<*>4?>!/,%+M%&6%,.&'

! ;/#6+*"%+B.(.8$%+&/6%(+/&+6%-#&6

! D<$*.9$%+*",%#6(+E#(+/99/(%6+*/+9,/5%((%(G

" B.(.8.$.*0+5/-9<*#*./&

" 5#5"%+-#&#'%-%&*

" 9,%?%*5".&'

" ,#(*%,.@#*./&

U"%+.K#$H+=0(*%-

U"%+.K#$H+=0(*%-

J.(.8.$.*0

455$<(./&+!<$$.&'

! U%$$%,]QA+
O,%%&%]^A+
j"#&']VA+
)<,#&6]]A+
f$/(/7(H.]]A+
K/&H#]]A+
!/"%&>/,RT+
1#$$>1/$*R^

=O2

455$<(./&+!<$$.&'

! !$#((.?.5#*./&+5,.*%,.#+?/,+/55$<(./&+5<$$.&'+
#$'/,.*"-(

" ?,/->9/.&*+B(F+?,/->,%'./&

" 9,%5/-9<*%6+B(F+/&$.&%

" /8Z%5*+(9#5%+B(F+.-#'%+(9#5%

" 5/&(%,B#*.B%+B(F+#99,/C.-#*%

U"%+:;:+I$'/,.*"-

! I99,/C.-#*%+B/$<-%*,.5+B.(.8.$.*0

! f%%9(+*"%+/5*,%%+&/6%(+.&+#+9,./,.*0+b<%<%+5#$$%6+
*"%+!"#$%

! X.,(*+B.(.*(+&/6%(+-/(*+$.H%$0+*/+8%+B.(.8$%

! =*/9(+7"%&+#+8<6'%*+.(+,%#5"%6

! !"#$%&'(%##)('"(*#+)(',#(-#".#'*/

" %(*.-#*%(+*"%+B.(.8$%+(%*+?,/-+*"%+".%,#,5"0+
(*,<5*<,%+E1=G+?.$%

U"%+:;:+I$'/,.*"- U"%+5:;:+I$'/,.*"-

! !/&(%,B#*.B%+%C*%&(./&+/?+:;:

! [(%(+:;:+*/+5/-9<*%+.&.*.#$+'<%((

! I66(+&/6%(+*/+'<#,#&*%%+5/,,%5*+.-#'%(

! [&$.H%+:;:A+&%%6(+*/+,%#6+'%/-%*,0

" 5#&`*+6%*%,-.&%+B.(.8$%+(%*+?,/-+1=+?.$%+/&$0

! U",%%+.-9$%-%&*#*./&(

" .*%-+8<??%,A+1:+*%(*A+cJ+/55$<(./&+b<%,0

2-9,/B.&'+*"%+I55<,#50+/?+:;:

! [(%+9,%5/-9<*%6+B.(.8.$.*0+5/%??.5.%&*(+*/+
%(*.-#*%+&/6%`(+/9#5.*0+?/,+5<,,%&*+B.%7

! ="//*+,#0(+?,/-+<(%,`(+B.%79/.&*+*/+%(*.-#*%+
9,/Z%5*./&+9,./,.*0+/?+/5*,%%+&/6%(

! M#0+5/&*,.8<*./&+.(+.&.*.#$.@%6+*/+Q

! I**%&<#*%+5/&*,.8<*./&+8#(%6+/&+/9#5.*0+/?+&/6%(+
".*+#$/&'+,#0+9#*"

+

I6B#&*#'%(+/?+2-9,/B%6+1%<,.(*.5

! N%**%,+.-#'%(+.&+#99,/C.-#*%+-/6%

! N%**%,+?,#-%+,#*%(+.&+5/&(%,B#*.B%+-/6%

" $%((+7/,H+?/,+5:;:

! N%**%,+9,%?%*5".&'

" $%((+5#5"%+9/$$<*./&

" ?%7%,+5#5"%+-.((%(

! N%**%,+B.(.8.$.*0>8#(%6+;4)+(%$%5*./&

2-9,/B.&'+*"%+M<&&.&'+U.-%+/?+5:;:

! 2*%-+8<??%,

" ($/7A+-<$*.9$%+*%(*(+#*+#+*.-%A+.&*+,%(<$*

! 1:+/55$<(./&+*%(*

" ?#(*A+/&%+*%(*+#*+#+*.-%A+8//$%#&+,%(<$*

! cJ+/55$<(./&+b<%,0

" ?#(*A+-#&0+*%(*(+#*+#+*.-%A+.&*+,%(<$*

U"%+.K#$H+=0(*%-

!#5".&'

O%/-%*,0+!#5".&'

! f%%9+8<$H+/?+6#*#+/&+6.(H

! N,.&'+6#*#+.&*/+-%-/,0+/&+6%-#&6

! f%%9+.&+-%-/,0+*"%+$%#(*+,%5%&*$0+<(%6+6#*#

U"%+O%/-%*,0+!#5"%

! [(%,>6%?.&%6+-#C.-<-+(.@%

! N$/5H(+/?+B#,.#8$%+(.@%

! O$/8#$+$/5H

! N<(0+?$#'+9%,+8$/5H

! K/,H+b<%<%+/?+?%*5"+,%b<%(*(

! K/,H+b<%<%+/?+9,%?%*5"+,%b<%(*(

! ;M[+,%9$#5%-%&*+9/$.50

U"%+.K#$H+=0(*%-

:,%?%*5".&'

O%/-%*,0+:,%?%*5".&'

! O<%((+7"#*+6#*#+7.$$+8%+&%%6%6+&%C*

! M%#6+6#*#+#"%#6+/?+*.-%

! 1.6%(+234+$#*%&50

X,/->:/.&*+:,%?%*5".&'

! 2-9,/B%(+?,#-%+,#*%+80+".6.&'+234+$#*%&50

! [(%(+:;:+E#99,/C.-#*%+B.(.8.$.*0+#$'/,.*"-G

" ?.&%A+8%5#<(%+9,%?%*5".&'+.(+(9%5<$#*.B%

!)/%(&`*+&%%6+'%/-%*,0+E'//6+?/,+/<*>/?>5/,%G+

!)/%(&`*+&%%6+',#9".5(+9.9%+E'//6+?/,+:!(G

! c%%6(+$%((+9,%9,/5%((.&'+*"#&+?,/->,%'./&

! U.'"*%,+%(*.-#*%+*"#&+?,/->,%'./&+E$%((+234G

U"%+O%/-%*,0+!#5"% U"%+.K#$H+=0(*%-

M#(*%,.@#*./&

M#(*%,.@#*./&

! :#((+'%/-%*,0+*/+*"%+',#9".5(+5#,6

" 49%&O;+,%&6%,.&'

" O/<,#<6+("#6.&'

! J%,*%C+#,,#0+9%,+/5*,%%+&/6%

" -/,%+-%-/,0+%??.5.%&*+*"#&+6.(9$#0+$.(*(

M%&6%,.&'+M%(<$*(

! D%#(<,%+?,#-%+,#*%(

! I((%((+.-#'%+b<#$.*0

! aB#$<#*%+%??%5*+/?+-<$*.>*",%#6.&'+#&6+
9,%?%*5".&'

! =*<60+*"%+.-9/,*#&5%+/?+?,#-%>*/>?,#-%+
5/"%,%&5%

! I((%((+"/7+-<5"+8%**%,+*"%+.-9,/B%6+B.(.8.$.*0+
"%<,.(*.5+.(

D<$*.>*",%#6.&'+2-9,/B%(+X,#-%+
M#*%(

(%b<%&*.#$+?%*5".&'
#&6+,%&6%,.&'

5/&5<,,%&*+?%*5".&'A
,%&6%,.&'A+#&6
9,%?%*5".&'

5/&5<,,%&*+?%*5".&'
#&6+,%&6%,.&'

:,%?%*5".&'+I-/,*.@%(+*"%+!/(*+/?+234+
49%,#*./&(

7.*"/<*+9,%?%*5".&' 7.*"+9,%?%*5".&'

2-9/,*#&5%+/?+X,#-%+!/"%,%&5%

($/7+<(%,+(9%%6 &/,-#$+<(%,+(9%%6

?#(*+<(%,+(9%%6 B%,0+?#(*+<(%,+(9%%6

1/7+D<5"+N%**%,+.(+*"%+2-9,/B%6+
J.(.8.$.*0+1%<,.(*.5

! X/,+.&*%,./,+B.%7(

" &/*+-<5"

! X/,+%C*%,./,+B.%7(

" b<.*%+#+8.*

+ +

;;c;+2(/(<,?#5%+M%&6%,.&'+M%(<$*(=<--#,0+/?+M%&6%,.&'+M%(<$*(

! K%+5#&+,%&6%,+#+-/6%$+TR+*.-%(+$#,'%,+*"#&+-#.&+
-%-/,0+#*+.&*%,#5*.B%+?,#-%+,#*%(+#&6+#55%9*#8$%+
b<#$.*0+/&+#+5"%#9+:!

! :%,?/,-#&5%+.(+"%#B.$0+6%9%&6%&*+/&+?,#-%>*/>
?,#-%>5/"%,%&5%

! =9#,(%+,#0+*,#5.&'+"%$9(+B.(.8.$.*0+%(*.-#*./&+
(.'&.?.5#&*$0+7.*"/<*+-<5"+/B%,"%#6

4<*>4?>!/,%+:#,#$$%$+M%&6%,.&'

! =/+?#,

" (.&'$%+:!

" $/7+,%(/$<*./&+.-#'%(+EQRTeCVWgG

" .&*%,#5*.B%+?,#-%+,#*%(

! c/7

" 6.(9$#0+7#$$+6,.B%&+80+#+5$<(*%,+/?+:!(

" ".'"+,%(/$<*./&+.-#'%(+EeR]WC^RVTG

" (#-%+/,+?#(*%,+?,#-%+,#*%(

:#,#$$%$+M%&6%,.&'
! =/,*>?.,(*

" 6.(*,.8<*%+/8Z%5*>(9#5%+9,.-.*.B%(

" %#5"+9,/5%((/,+.(+#((.'&%6+#+(5,%%&+*.$%

! =/,*>-.66$%

" 6.(*,.8<*%+.-#'%>(9#5%+9,.-.*.B%(

" '%/-%*,0+9,/5%((/,(+#&6+,#(*%,.@%,(

! =/,*>$#(*

" 6.(*,.8<*%+9.C%$(

" ,%&6%,.&'+#&6+5/-9/(.*.&'+9,/5%((/,(

!"//(.&'+*"%+:#,#$$%$.@#*./&+=*,#*%'0

! K"0+(/,*>?.,(*k

" %#5"+9,/5%((/,+,<&(+%&*.,%+9.9%$.&%+?/,+#+*.$%

" %C9$/.*(+?,#-%>*/>?,#-%+5/"%,%&5%+7%$$

! K"0+$#%+(/,*>-.66$%k

" &%%6(+*.'"*+.&*%',#*./&+8%*7%%&+'%/-%*,0+
9,/5%((.&'+#&6+,#(*%,.@#*./&+

! K"0+$#%+(/,*>$#(*k

" &%%6(+".'"+9.C%$+8#&67.6*"

" 9,%B%&*(+<(+?,/-+<(.&'+.-#'%+/55$<(./&+b<%,.%(

U"%+4<*>4?>!/,%+=/,*>X.,(*+:#,#$$%$+
I,5".*%5*<,%

U"%+4<*>4?>!/,%+=/,*>X.,(*+:#,#$$%$+
I,5".*%5*<,%

! =%9#,#*%+,%&6%,.&'+(%,B%,+?/,+%#5"+*.$%

! !$.%&*+6/%(+#$-/(*+&/+7/,HA+#&6+5#&+8%+#(+
$.'"*7%.'"*+#(+#+"#&6>"%$6+5/-9<*%,

! D:2+*/+(*#,*+#&6+(0&5",/&.@%+*"%+(%,B%,(

! 49*./&(P+6.(*,.8<*%6+B(F+5%&*,#$.@%6+6#*#

[c!+:/7%,+:$#&*+U%(*(

! :,%>,%5/,6%6+dRR>?,#-%+5#-%,#+9#*"

! !$<(*%,+(.@%(

" QA+TA+eA+gA+#&6+QW

!).(H+*09%

" $/5#$+#&6+&%*7/,H

4$6+!$<(*%,

! M%&6%,.&'+(%,B%,(

"]RR+D1@+I*"$/&A+dQT+DN+/?+MID

" O%X/,5%TA+2)a+6.(H

! !$.%&*P+VRR+D1@+:%&*.<-+222

! X.$%+(%,B%,P+eRR+ON+=!=2+6.(H+#,,#0

! c%*7/,HP+'.'#8.*+a*"%,&%*

! =/?*7#,%P+M%6+1#*+;.&<C+VFTA+D:23:,/+QFWF^

N/C+:$/*(

0%'#*12+*'03#

)0$'+%4#(567!89

$:*#+)

;.#)0+%(<(=>?(67!@(.#)0+%(A(=>?(67!B9

CC>DE("F(',#()+'+(50F(G+2$$0+%8

.#)0+%9(4#%'#*

"2'30#*$

M%(<$*(+?/,+I99,/C.-#*%+J.(.8.$.*0

! D%6.#&+?,#-%+,#*%(+
.-9,/B%+7.*"+
5$<(*%,+(.@%

!).(H+*09%+-#H%(+
&/+6.??%,%&5%

48(*#5$%(+?/,+:%,?%5*+=5#$#8.$.*0

!)<9$.5#*./&+/?+%??/,*

" 9,.-.*.B%(+-#0+/B%,$#9+-<$*.9$%+*.$%(

! !/--<&.5#*./&+/B%,"%#6

" 8#,,.%,+#*+*"%+%&6+/?+%#5"+?,#-%

! ;/#6+.-8#$#&5%

" 9,.-.*.B%(+-#0+5$<(*%,+.&*/+,%'./&(

M%(<$*(+?/,+!/&(%,B#*.B%+J.(.8.$.*0+
K.*"/<*+;4)(

! D%6.#&+?,#-%+,#*%(+
,%-#.&+#$-/(*+
5/&(*#&*

!).(H+*09%+-#H%(+
&/+6.??%,%&5%

! I66.*./&#$+
/8(*#5$%P+B.(.8$%+
'%/-%*,0+.&5,%#(%(+
7.*"+,%(/$<*./&

=<--#,0+/?+:/7%,+:$#&*+:#,#$$%$+
M%&6%,.&'+M%(<$*(

! Q+:!+EQRTeCVWg+.-#'%(G

" -%6.#&+?,#-%+,#*%P+]FQ+?,#-%(+9%,+(%5/&6

! QW+:!(+EeR]WC^RVT+.-#'%(G

" -%6.#&+?,#-%+,#*%P+QRFg+?,#-%(+9%,+(%5/&6

" 5#9+/&+?,#-%+,#*%

! '.B%(+9,%?%*5".&'+8%**%,+5"#&5%+*/+,<&

! ,%6<5%(+?,#-%+,#*%+B#,.#&5%

c%7+!$<(*%,

! g+,%&6%,.&'+(%,B%,(P

" TFg+O1@+:%&*.<-+2JA+dQT+DN+MID

" ^d+ON+=!=2+6.(H

" cJ2)2I+h<#6,/+]gR+iO;+',#9".5(+5#,6

! X.$%+(%,B%,

" (#-%+9$<(+TRR+ON+=!=2+6.(H

! O.'#8.*+a*"%,&%*

! M%6+1#*+;.&<C+gFRA+D:2!1+QFTFd

;;c;+2(/(<,?#5%+:#,#$$%$+M%&6%,.&'+
M%(<$*(

! !/&(%,B#*.B%+B.(.8.$.*0+#&6+;4)

! g+C+QTgR+C+QRTe+EQR+-%'#9.C%$(G

! X/,+/<*(.6%+B.%7(

" ^>d+?,#-%(+9%,+(%5/&6

! X/,+.&(.6%+B.%7(

" g>QR+?,#-%(+9%,+(%5/&6

! X,#-%+,#*%(+<(.&'+("#,%6+6.(H+#$-/(*+*"%+(#-%+#(+
?,#-%+,#*%(+<(.&'+$/5#$+6.(H(

=<--#,0+/?+:#,#$$%$+M%&6%,.&'+
M%(<$*(

! K%+5#&+(5#$%+*"%+,%(/$<*./&+/?+#&+#99$.5#*./&+
7.*"/<*+#&0+$/((+.&+9%,?/,-#&5%

! !#5".&'+#&6+9,%?%*5"+%C9$/.*+5/"%,%&5%+7%$$P+
%B%&+7.*"+5%&*,#$.@%6+?.$%+(%,B%,A+<(<#$$0+$.-.*%6+
80+,%&6%,.&'

!/-9#,.(/&+*/+4*"%,+:#,#$$%$+
M%&6%,.&'+=0(*%-(

! N%**%,+?,#-%+,#*%(+*"#&+1<-9",%0(RTA+8<*+7%+6/+
&%%6+*/+5"#&'%+*"%+(/<,5%+5/6%

! X#(*%,+?,#-%+,#*%(+#&6+".'"%,+,%(/$<*./&+*"#&+
K#$6RQA+8<*+$/7%,+.-#'%+b<#$.*0

! =.-.$#,+?,#-%+,#*%(+*/+D/,%$#&6RQA+9$<(+.-#'%+
/55$<(./&+b<%,.%(

!/&5$<(./&(

! .K#$H+(0(*%-+.(+9,#5*.5#$+#&6+(5#$#8$%

! 4<*>/?>5/,%+*%5"&.b<%(+#,%+?#(*+#&6+%??%5*.B%

! :!(+#,%+#&+#**,#5*.B%A+5/(*>%??%5*.B%+#$*%,&#*.B%+*/+
".'">%&6+-#5".&%(

! U"%+(0(*%-+5#&+"%$9+*/+8,.&'+B.(<#$.@#*./&+/?+
$#,'%+6#*#(%*(+*/+#+8,/#6%,+#<6.%&5%

M%(%#,5"+!/&*,.8<*./&(

! a??.5.%&*+/<*>/?>5/,%+#$'/,.*"-+*/+8<.$6+/5*,%%

! aC*%&(./&(+/?+*"%+:;:+B.(.8.$.*0+#$'/,.*"-

" ,#0>*,#5.&'+8#(%6+#99,/C.-#*%+"%<,.(*.5

" "#,67#,%>#((.(*%6+5/&(%,B#*.B%+%C*%&(./&

! 4<*>/?>5/,%A+?,/->9/.&*+9,%?%*5".&'+#$'/,.*"-

! 4<*>/?>5/,%+(/,*>?.,(*+#,5".*%5*<,%

X<*<,%+K/,H

! =<99/,*+?/,+6.??%,%&*+*09%(+/?+(5%&%(

" *%C*<,%(A+B/$<-%(+E7/,H.&'+9,/*/*09%GA+60&#-.5(

! a??.5.%&50

" #66+'%/-%*,0+#&6+#99%#,#&5%+b<#&*.@#*./&

" %$.-.&#*%+'%/-%*,0+,%9$.5#*./&

! I&#$0(.(

" 6%B%$/9+#&#$0*.5+-/6%$+?/,+(0(*%-+9#,#-%*%,(

" /9*.-.@%+(0(*%-+9#,#-%*%,(+#<*/-#*.5#$$0

I5H&/7$%6'%-%&*(

! X.&#&5.#$+(<99/,*

" !c:b+EN,#@.$.#&+,%(%#,5"+?<&6.&'+#'%&50G

" :,.&5%*/&+[&.B%,(.*0

" IUlU+M%(%#,5"

" 4,%'/&+O,#6<#*%+2&(*.*<*%

" 2ND+M%(%#,5"

!)#*#(%*(

" [c!+!"#9%$+1.$$A+[!+N%,H%$%0A+^,6U%5"A+;;c;A+
N/%.&'

Visibility-Based Prefetching for Interactive Out-Of-Core Rendering

Wagner T. Corrêa∗

Princeton University
James T. Klosowski†

IBM Research
Cláudio T. Silva‡

University of Utah

Abstract

We present a new visibility-based prefetching algorithm for inter-
active out-of-core rendering of large models on an inexpensive PC.
Using an approximate visibility technique, we can very accurately
and efficiently determine which geometry will be visible in the near
future and prefetch that geometry from disk before it must be ren-
dered. Our prefetching algorithm is a key part of a visualization
system capable of rendering a 13-million triangle model with 99%
accuracy at interactive frame rates. Our prefetching algorithm is
the first of its kind to be based on a from-point visibility technique,
and enables interactive rendering on a commodity PC, as opposed
to expensive high-end graphics workstations or parallel machines.

CR Categories: I.3.2 [Graphics Systems]: Computer Graphics—
Computing Methodologies; I.3.3 [Picture/Image Generation]:
Computer Graphics—Computing Methodologies

Keywords: out-of-core rendering, interactive rendering, commod-
ity PCs, occlusion culling, prefetching, walkthrough

1 Introduction

In this paper, we present a new visibility-based prefetching al-
gorithm for retrieving out-of-core 3D models and rendering them
at interactive rates on an inexpensive PC. Interactive rendering of
large models has applications in many areas, including computer-
aided design, engineering, entertainment, and training. Tradition-
ally, interactive rendering of large models has required triangle
throughput only available on high-end graphics workstations or par-
allel machines that cost hundreds of thousands of dollars. Recently,
with the explosive growth in performance of PC graphics cards that
cost a few hundred dollars, inexpensive PCs are becoming an attrac-
tive alternative to high-end machines. Although inexpensive PCs
can match the triangle throughput of high-end machines, inexpen-
sive PCs have much less main memory than high-end machines. To-
day a typical high-end machine has 16 GB of main memory, while
a typical inexpensive PC has 512 MB (32 times less). Thus, a chal-
lenge in exploiting the performance of PC graphics cards is design-
ing rendering systems that work under tight memory constraints.

∗Department of Computer Science, Princeton University, 35 Olden St.,
Princeton, NJ 08540; wtcorrea@cs.princeton.edu.

†Visual Technologies, IBM T. J. Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598; jklosow@us.ibm.com.

‡Work performed while at AT&T. Currently at Scientific Computing and
Imaging Institute, School of Computing, University of Utah, 50 S. Central
Campus Dr., Salt Lake City, UT 84112; csilva@cs.utah.edu.

Figure 1: Our out-of-core rendering system can preprocess a 13-
million-triangle model in 3 minutes, and then render it with 99%
accuracy at 10 frames per second on an inexpensive PC.

Our rendering system, iWalk, overcomes the memory constraints
of an inexpensive PC by using an out-of-core preprocessing algo-
rithm and a new multi-threaded out-of-core rendering approach to
overlap rendering, visibility computation, and disk operations. The
preprocessing algorithm breaks the geometry of a model into man-
ageable pieces, and creates on disk a spatial subdivision of the ge-
ometry. At runtime, the system maintains in memory a cache of the
most recently used geometry.

The system can run in two visibility modes: approximate or con-
servative. In approximate mode, the system tries to maximize the
quality of the rendered images, given a user-defined budget of ge-
ometry per frame. This budget is based on the hardware capabilities
(such as the graphics card triangle throughput and the disk band-
width) and the target frame rate. In conservative mode, for those
instances that cannot tolerate any errors in the rendered images, the
system determines and renders all the visible geometry, potentially
at lower frame rates. In either visibility mode, as the viewpoint
changes, the visible geometry changes, and the geometry cache has
to load from disk the visible geometry that is not in the cache. Even
small changes in the viewpoint can cause large changes in visibility.
This problem manifests itself as abrupt drops in frame rates because
of bursts of disk operations.

The prefetching algorithm we present in this paper addresses this
problem. The goal of prefetching is to have the geometry already
in memory by the time it is needed. The prefetching algorithm
runs as a separate thread, and is orthogonal to the visibility mode.
The prefetching thread uses a from-point visibility algorithm to
find the geometry the user is likely to see in the near future, and
sends prefetch requests to the geometry cache. If the geometry
cache is busy loading geometry needed for the current frame, it ig-
nores prefetch requests; otherwise, it loads the requested geometry
from disk. By amortizing the cost of bursts of disk operations over
frames with few disk operations, prefetching improves the perfor-
mance of the system in either visibility mode.

The main contribution of this paper is a multi-threaded out-of-
core rendering approach which to our knowledge is the first to com-
bine speculative prefetching with a from-point visibility algorithm.

(c) 2003 IEEE. Reprinted, with permission, from (Proceedings of PVG 2003 (6th IEEE
Symposium on Parallel and Large-Data Visualization and Graphics), pages 1-8, 2003.)

Our prefetching algorithm plays a critical role in our iWalk system,
which is capable of rendering a model with tens of millions of poly-
gons at interactive frame rates on an inexpensive PC (Figure 1).

2 Related Work

Researchers have studied the problem of rendering complex mod-
els at interactive frame rates for many years. Clark [1976] pro-
posed many of the techniques for rendering complex models used
today, including the use of hierarchical spatial data structures, level-
of-detail (LOD) management, hierarchical view-frustum and oc-
clusion culling, and working-set management (geometry caching).
Garlick et al. [1990] presented the idea of exploiting multiprocessor
graphics workstations to overlap visibility computations with ren-
dering. Airey et al. [1990] described a system that combined LOD
management with the idea of precomputing visibility information
for models made of axis-aligned polygons.

Funkhouser et al. [1992] described the first published system that
supported models larger than main memory, and performed spec-
ulative prefetching. Their system was based on the from-region
visibility algorithm of Teller and Séquin [1991], which required
long preprocessing times, and was limited to models made of axis-
aligned cells. Our system is based on the from-point visibility al-
gorithm of Klosowski and Silva [2000; 2001], which requires very
little preprocessing, and can handle any 3D polygonal model.

Aliaga et al. [1999] presented the Massive Model Rendering
(MMR) system, which employed many acceleration techniques, in-
cluding replacing geometry far from the user’s point of view with
imagery, occlusion culling, LOD management, and from-region
prefetching. MMR was the first published system to handle mod-
els with tens of millions of polygons at interactive frame rates, al-
though it did require an expensive high-end multi-processor graph-
ics workstation.

Wald et al. [2001] developed a ray tracing system that used a
cluster of 7 dual-processor PCs to render low-resolution images of
models with tens of millions of polygons at interactive frame rates.
Avila and Schroeder [1997] and El-Sana and Chiang [2000] devel-
oped systems for interactive out-of-core rendering based on LOD
management, but these systems did not perform occlusion culling.
Varadhan and Manocha [2002] describe a system for out-of-core
rendering that uses hierarchical LODs [Erikson et al. 2001] and
prefetching, but their system does not perform occlusion culling,
and their preprocessing step is in-core.

Wonka et al. [2001] employed a from-point visibility algo-
rithm and used two processors to overlap visibility computation
and rendering at runtime (similarly to the idea introduced by Gar-
lick et al. [1990]), but they only reported results for 2.5D environ-
ments that were smaller than main memory. Many other researchers
have also developed systems for out-of-core rendering, but with-
out focusing on achieving interactive frame rates [Chiang and Silva
1997; Chiang et al. 1998; Cox and Ellsworth 1997; Pharr et al.
1997; Shen et al. 1999; Sutton and Hansen 2000].

3 Out-Of-Core Preprocessing

Recall that our main goal is to render a large model using an inex-
pensive PC with small memory. To accomplish this, we must first
construct an out-of-core hierarchical representation for the model
during a preprocessing step, and then at runtime load on demand
the hierarchy nodes that the user sees. Our current algorithm builds
an out-of-core octree [Samet 1990] whose leaves contain the geom-
etry of the model. To store the octree on disk, we save the geometric
contents of each octree node in a separate file, and create a hierar-
chy structure (HS) file, which stores information about the spatial

relationship of the nodes in the hierarchy, and for each node it con-
tains the node’s bounding box and auxiliary data needed for visibil-
ity culling. The HS file is the main data structure that our system
uses to control the flow of data and is assumed to fit in memory.
For the 13-million triangle model used throughout this paper, the
HS file was only 3 MB.

An in-core approach to build an octree for a model would process
the entire model in one pass, using a machine with large enough
memory to hold both the model and the resulting octree. We avoid
this brute-force approach because we do not want to use a separate
expensive machine with large memory just to build the octree. Our
out-of-core algorithm builds an octree for a model directly on ma-
chines with small memory. The algorithm first breaks the model
in sections that fit in main memory, and then incrementally builds
the octree on disk, one pass for each section, keeping in memory
only the section being processed. Our preprocessing algorithm re-
quires no user intervention and is very fast, often orders of mag-
nitude faster than previous approaches. It constructs the octree for
the UNC power plant model [UNC 1999] in just 3 minutes, while
the MMR system [Aliaga et al. 1999] required over two weeks, and
the system by Wald et al. [2001] spent 2.5 hours preprocessing the
same model.

Our preprocessing is similar in nature to several other construc-
tion algorithms [Cignoni et al. 2002; Ueng et al. 1997; Wald et al.
2001]. It is most akin to the algorithm of Cignoni et al. [2002], and
therefore has comparable preprocessing times. Other recent con-
struction algorithms are presented in [Durand et al. 2000; Schaufler
et al. 2000; Wonka et al. 2000; Wonka et al. 2001]. As our con-
struction algorithm is not the main focus of this paper, we refer the
reader to [Corrêa et al. 2002] for a thorough examination of the
differences between all of these algorithms.

4 Out-of-Core Rendering

Figure 2 shows a diagram of iWalk’s rendering approach. The user
interface (a) keeps track of the position, orientation, and field-of-
view of the user’s camera. For each new set of camera parameters,
the system computes the visible set — the set of octree nodes that
the user sees. According to the user’s choice, the system can com-
pute an approximate visible set (b), or a conservative visible set (c).
To compute an approximate visible set, iWalk uses the prioritized-
layered projection (PLP) algorithm [Klosowski and Silva 2000]. To
compute a conservative visible set, iWalk uses cPLP [Klosowski
and Silva 2001], a conservative extension of PLP. For each node
in the visible set, the rendering thread (d) sends a fetch request to
the geometry cache (i), which will read the node from disk (j) into
memory. The rendering thread then sends the node to the graphics
card (e) for display (f). To avoid bursts of disk operations, the look-
ahead thread (g) predicts where the user’s camera is likely to be in
the next frame. For each predicted camera, the look-ahead thread
uses PLP (h) to estimate the visible set, and then sends prefetch
requests to the geometry cache (i).

To better understand our rendering approach, we need to briefly
review the visibility algorithms that iWalk uses. PLP is an approxi-
mate, from-point visibility algorithm that may be thought of as a set
of modifications to the traditional hierarchical view frustum culling
algorithm [Clark 1976]. First, instead of traversing the model hier-
archy in a predefined order, PLP keeps the hierarchy leaf nodes in a
priority queue called the front, and traverses the nodes from highest
to lowest priority. When PLP visits a node, it adds it to the visible
set, removes it from the front, and adds the unvisited neighbors of
the node to the front. Second, instead of traversing the entire hier-
archy, PLP works on a budget, stopping the traversal after a certain
number of primitives have been added to the visible set. Finally,
PLP requires each node to know not only its children, but also all
of its neighbors.

approximate
visible set conservative

visible set

fetch
request

nodes to
render

nodes to
render

approximate
visible set

approximate
visibility: PLP

(h)

geometry
cache

(i)

look−ahead
(g)

occlusion
queries

front

camera image

read request

geometry

geometry

user
interface

(a)

approximate
visibility: PLP

(b)

conservative
visibility: cPLP

(c)
(d)

graphics
card
(e)

disk
(j)

monitor
(f)

fetch request

prefetch request

predicted camera

rendering

Figure 2: The multi-threaded out-of-core rendering approach of the iWalk system. For each new camera (a), the system finds the set of
visible nodes using either approximate visibility (b), or conservative visibility (c). For each visible node, the rendering thread (d) sends a
fetch request to the geometry cache (i), and then sends the node to the graphics card (e). The look-ahead thread (g) predicts future cameras,
estimates the nodes that the user would see then (h), and sends prefetch requests to the geometry cache (i).

In addition to being time-critical, another key feature of PLP that
iWalk exploits is that PLP can generate an approximate visible set
based on just the information stored in the hierarchy structure file
created at preprocessing time. In other words, PLP can estimate the
visible set without access to the actual scene geometry.

An implementation of PLP may be simple or sophisticated, de-
pending on the heuristic to assign priorities to each node. Several
heuristics precompute for each node a value between 0.0 and 1.0
called solidity, which estimates how likely it is for the node to oc-
clude an object behind it. At run time, the priority of a node is found
by initializing it to 1.0, and attenuating it based on the solidity of
the nodes found along the traversal path to the node (Figure 3).

Although PLP is in practice quite accurate for most frames, it
does not guarantee image quality, and some frames may show ob-
jectionable artifacts. To avoid this potential problem, the system
may use cPLP [Klosowski and Silva 2001], a conservative exten-
sion of PLP that guarantees 100% accurate images. However, cPLP
cannot find the visible set from the HS file only, and needs to read

Figure 3: A section of the UC Berkeley Soda Hall model. At run-
time, the iWalk system uses the prioritized-layered projection (PLP)
algorithm to estimate the nodes potentially visible from the current
view frustum (outlined in yellow). The transparent color of each
node indicates the projection priority of the node.

the geometry of all potentially visible nodes. These additional disk
operations may make cPLP much slower than PLP. Our imple-
mentation of cPLP can use either an item-buffer technique that is
portable to any platform that supports OpenGL, or occlusion query
extensions (such as the HP test [Severson 1999] and the nVidia oc-
clusion query [Rege 2002]) when they are available. Thus, cPLP
needs to fetch geometry from the geometry cache, and read pixels
or occlusion queries from the graphics card.

5 From-Point Visibility-Based Prefetching

The idea behind prefetching is to predict a set of nodes that the user
is likely to see next, and bring them to memory ahead of time. Ide-
ally, by the time the user sees those nodes, they will be already in the
geometry cache, and the frame rates will not be affected by the disk
latency. Systems researchers have studied prefetching strategies for
decades [Gindele 1977; Przybylski 1990], and many previous ren-
dering systems [Aliaga et al. 1999; Funkhouser 1996; Funkhouser
et al. 1992; Varadhan and Manocha 2002] have used prefetching
successfully. To our knowledge, all previous prefetching methods
that employ occlusion culling have been based on from-region vis-
ibility algorithms, and were designed to run on multiprocessor ma-
chines. Our prefetching method works with from-point visibility
algorithms, and runs as a separate thread in a uniprocessor machine.

Our prefetching method exploits the fact that PLP can very
quickly compute an approximate visible set. Given the current cam-
era (Figure 2a), the look-ahead thread (Figure 2g) predicts the next
camera position by simply extrapolating the current position and
the camera’s linear and angular speeds. More sophisticated predic-
tion schemes could consider accelerations and several prior camera
locations. For each predicted camera, the look-ahead thread uses
PLP (Figure 2h) to determine which nodes the predicted camera is
likely to see. For each node likely to be visible, the look-ahead
thread sends a prefetch request to the geometry cache (Figure 2i).
The geometry cache puts the prefetch requests in a queue and a set
of prefetch threads process the requests. If there are no fetch re-
quests pending, and if the maximum amount of geometry that can
be prefetched per frame has not been reached, a prefetch thread will
pop a request from the prefetch queue, and read the requested node
from disk (if necessary) (Figure 2j). If the cache is full, the least
recently used nodes are evicted from memory. The requested nodes
are then placed in a queue of nodes that are ready to be rendered.

fetch(node, ready_queue)
{

lock cache;
while (node is busy)

wait until node is free;
mark node as busy;
if (node is valid) {

miss = false;
update node position;

} else {
miss = true;
allocate memory;

}
unlock cache;

if (miss)
read node;

lock cache;
if (miss)

add node to cache;
if (no fetches pending)

broadcast no fetches pending;
unlock cache;
add node to ready_queue;

}

prefetch(node, ready_queue)
{

lock cache;
while (there are fetch requests pending)

wait until no fetch requests pending;
while (node is busy)

wait until node is free;
mark node as busy;
if ((node is valid)

|| (reached max prefetch amount per frame)
|| (reached max prefetch request age))
can_read = false;

else {
can_read = true;
allocate memory;

}
unlock cache;

if (can_read) {
read node;
lock cache;
add node to cache;
unlock cache;

}
add node to ready_queue;

}

release(node)
{

lock cache;
mark node as free;
if (node is valid)

broadcast memory available;
broadcast node is free;
unlock cache;

}

Figure 4: Pseudo-code for the main cache routines.

(a) user’s view

(b) cache view

Figure 5: A sample frame inside the power plant model. (a) The
image that the user sees. (b) The state of the nodes in the cache.

Figure 4 shows the pseudo-code for the main routines run by
the threads in the cache. When a client makes a fetch request, a
thread executes the fetch routine (and similarly for a prefetch re-
quest). When the client is done using that node, it must call the
release routine. These routines have to be very careful about shar-
ing the cache data structures. To guarantee mutual exclusion, there
is a lock to access the cache, and each node has a flag indicating
whether it is free or busy. This scheme is similar to the one used
in the UNIX buffer cache [Bach 1986]. Figure 5a shows the user’s
view of the UNC power plant model [UNC 1999] during a walk-
through session, and Figure 5b shows the state of the octree nodes
in the cache.

Unlike our from-point prefetching method, from-region pre-
fetching methods decompose the model into cells, and precompute
for each cell the geometry that the user would see from any point in
the cell. At runtime, from-region methods guess in which cell the
user will be next, and load the geometry visible from that cell ahead
of time. Our from-point prefetching method has several advantages
over from-region prefetching methods. First, from-region methods
typically require long preprocessing times (tens of hours), while our
from-point method requires little preprocessing (a few minutes).
Second, the set of nodes visible from a single point is typically
much smaller than the set of nodes visible from any point in a re-
gion. Thus, our from-point prefetching method avoids unnecessary
disk operations, and has a better chance than a from-region method
of prefetching nodes that actually will be visible soon. Third, some
from-region methods require that cells coincide with axis-aligned
polygons in the model. Our from-point method imposes no restric-
tion on the model’s geometry. Finally, the nodes visible from a cell
may be very different from the nodes visible from a neighbor of that
cell. Thus, a from-region method may cause bursts of disk activity
when the user crosses cell boundaries, while a from-point method
better exploits frame-to-frame coherence.

Since the cost of disk read operations is high, most systems try
to overlap all of these operations with other computations by run-
ning several processes on a multiprocessor machine [Aliaga et al.
1999; Funkhouser 1996; Garlick et al. 1990], or on a network of
machines [Wald et al. 2001; Wonka et al. 2001]. Along these same
lines, our system uses multiple threads on a single processor ma-
chine to overlap disk operations with visibility computations and
rendering.

6 Experimental Results

To evaluate our system, and in particular our prefetching algo-
rithm, we experimented with the 13-million-triangle UNC power
plant model [UNC 1999]. The raw model was roughly 600 MB
in size; after our preprocessing step, the model size increased to
1 GB. To our knowledge, no other system has been able to render
this model at interactive rates on a single PC. Our system ran Red
Hat Linux 8.0, had a 2.8 GHz Pentium IV CPU, 512 MB of main
memory, a 35 GB SCSI disk, and an nVidia Quadro 980 XGL card.
Using top, we found that the operating system and related utili-
ties used roughly 64 MB of main memory. For our test machine,
we found that the following configuration worked well: 256 MB
of geometry cache, 8 fetch threads, 1 prefetch thread, a maximum
of 2 MB of prefetched geometry per frame, approximate visibility
with a budget of 280,000 triangles per frame, a target frame rate of
10 fps, and image resolution of 1024×768.

To analyze the overall performance of our system, we measured
the frame rates achieved when walking through the power plant
model along several predefined paths (which enabled repeatable
conditions for our experiments). Note that our algorithms made
no assumptions on the paths being known beforehand; therefore,
complete camera interactivity is always available to the user. The
first path used has 36,432 viewpoints, visits almost every part of the
model, and requires fetching a total of 900 MB of data from disk.
Using the above configuration, our system rendered the frames
along that path in 74 minutes. Only 95 frames (0.26%) caused the
system to achieve less than 1 fps. The mean frame rate was 9.2 fps,
and the median frame rate was 9.3 fps. To analyze the detailed
performance of our system, it is easier to use shorter paths. For
this purpose, we used a 500-frame path which required 210 MB of
data to be read from disk. If fetched independently, the maximum
amount of memory necessary to render any given frame in approx-
imate mode would be 16 MB.

To study how multiple threads improve the frame rates, we ran
tests using three different configurations. The first configuration

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

2
4

6
8

10

(a) sequential fetching and rendering

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(b) concurrent fetching and rendering

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(c) concurrent fetching, rendering, and prefetching

Figure 6: Using multiple threads to improve frame rates. We
measured the frame rates during a 500-frame walkthrough of the
power plant model under three configurations: (a) using one thread
for fetching and rendering; (b) using multiple threads to overlap
fetching and rendering; and (c) using multiple threads to overlap
fetching, rendering, and prefetching. Concurrent fetching elimi-
nates some downward spikes, and adding concurrent speculative
prefetching eliminates almost all of the remaining spikes. The first
spike happens because the cache is initially empty. The three con-
figurations produce identical images.

frame number

ac
cu

ra
cy

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Image accuracy for a 500-frame walkthrough of the power
plant model when using approximate visibility. The vertical axis
represents the fraction of correct pixels in the approximate images
in comparison to the conservative images. The minimum accuracy
was 97.3%, and the median accuracy was 99.2%.

frame number

si
ze

 (K
B

)

0 100 200 300 400 500

0
20

00
60

00
10

00
0

misses
prefetches

(a) without prefetching

frame number

si
ze

 (K
B

)

0 100 200 300 400 500

0
20

00
60

00
10

00
0

misses
prefetches

(b) with prefetching

Figure 8: Using prefetching to amortize the cost of disk operations.
We measured the amount of geometry fetched per frame without
prefetching (a) and with prefetching (b). Prefetching amortizes the
cost of bursts of disk operations over frames with few disk oper-
ations, thus eliminating most frame rate drops. The system was
configured to prefetch at most 2 MB per frame.

is entirely sequential: a single thread is responsible for computing
visibility, performing disk operations, and rendering. The second
configuration adds asynchronous fetching to the first configuration,
allowing up to 8 fetch threads. The third configuration adds an ex-
tra thread for speculative prefetching to the second configuration,
allowing up to 2 MB of geometry to be prefetched per frame. Fig-
ure 6 shows the frame rates achieved by these three configurations
for the 500-frame path. For the purely sequential configuration,
we see many downward spikes that correspond to abrupt drops in
frame rates, which are caused by the latency of the disk operations,
and spoil the user’s experience (The first spike happens because
the cache is initially empty). When we add asynchronous fetch-
ing, many of the downward spikes disappear, but too many still
remain. The user’s experience is much better, but the frame rate
drops are still disturbing. When we add speculative prefetching,
all significant downward spikes disappear, and the user experience
is smooth. Note that the gain in interactivity comes entirely from
overlapping the independent operations. The three configurations
achieve exactly the same image accuracy (Figure 7).

Figure 8 shows why prefetching improves the frame rates. The
charts compare the amount of geometry that the system reads from
disk per frame for the second and third configurations described
above. Prefetching greatly reduces the need to fetch large amounts
of geometry in a single frame, and thus helps the system to maintain
higher and smoother frame rates.

Figure 9 shows that the user speed is another important param-
eter in the system, and has to be adjusted to the disk bandwidth.
When the user speed increases, the changes in the visible set are
larger. In other words, as the frame-to-frame coherence decreases,
the amount of data the system needs to read per frame increases.
Thus, caching and prefetching are more effective if the user moves
at speeds compatible with the disk bandwidth. The figure also indi-
cates that higher disk bandwidth should improve frame rates.

7 Conclusion

We have presented a system for rendering large models on machines
with small memory at interactive frame rates. A key component of
our out-of-core rendering approach is a new prefetching algorithm
based on a from-point visibility algorithm. The prefetch algorithm
accurately and efficiently predicts what geometry will be visible in
subsequent frames and prefetches them from disk. We believe our
system is the first to be able to preprocess the 13-million triangle
UNC power plant model and render it interactively on a single PC.

One area of future work is adding level-of-detail (LOD) man-
agement to our entire system. In approximate mode, our system
may produce images with low accuracy if the camera sees the entire
model. El-Sana et al. [2001] show how to integrate LOD manage-
ment with PLP-based occlusion culling. Another possible area for
future work is speeding up rendering in conservative mode, which
currently can be much slower than rendering in approximate mode.
Finally, we also would like to extend the system to support dynamic
scenes.

Acknowledgments

We thank Daniel Aliaga, David Dobkin, Juliana Freire, Thomas
Funkhouser, Jeff Korn, Patrick Min, and Emil Praun for sugges-
tions and encouragement. We also thank the University of North
Carolina at Chapel Hill and the University of California at Berkeley
for providing us with datasets. This research was partly funded by
CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico), Brazil.

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 20 40 60 80 100 120

0
2

4
6

8
10

(a) very high user speed

frame number
fra

m
e

ra
te

 (f
ra

m
es

/s
ec

)
0 50 100 150 200 250

0
2

4
6

8
10

(b) high user speed

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

(c) normal user speed

frame number

fra
m

e
ra

te
 (f

ra
m

es
/s

ec
)

0 200 400 600 800 1000

0
2

4
6

8
10

(d) low user speed

Figure 9: Adjusting the user speed to the disk bandwidth. We measured the frame rates along a camera path inside the power plant model for
different user speeds (or equivalently, for different number of frames in the path). If the user moves too fast, the frame rates are not smooth.
The faster the user moves, the larger the changes in occlusion, and therefore the larger the number of disk operations.

References

AIREY, J. M., ROHLF, J. H., AND FREDERICK P. BROOKS, J. 1990.
Towards image realism with interactive update rates in complex virtual
building environments. 1990 ACM Symposium on Interactive 3D Graph-
ics 24, 2 (Mar.), 41–50.

ALIAGA, D., COHEN, J., WILSON, A., ZHANG, H., ERIKSON, C., HOFF,
K., HUDSON, T., STÜRZLINGER, W., BAKER, E., BASTOS, R., WHIT-
TON, M., BROOKS, F., AND MANOCHA, D. 1999. MMR: An interac-
tive massive model rendering system using geometric and image-based
acceleration. 1999 ACM Symposium on Interactive 3D Graphics (Apr.),
199–206.

AVILA, L. S., AND SCHROEDER, W. 1997. Interactive visualization of
aircraft and power generation engines. In IEEE Visualization ’97, IEEE,
483–486.

BACH, M. J. 1986. The Design of the UNIX Operating System. Prentice
Hall.

CHIANG, Y.-J., AND SILVA, C. T. 1997. I/O optimal isosurface extraction.
IEEE Visualization ’97 (Nov.), 293–300.

CHIANG, Y.-J., SILVA, C. T., AND SCHROEDER, W. J. 1998. Interactive
out-of-core isosurface extraction. IEEE Visualization ’98 (Oct.), 167–
174.

CIGNONI, P., ROCCHINI, C., MONTANI, C., AND SCOPIGNO, R. 2002.
External memory management and simplification of huge meshes. IEEE
Transactions on Visualization and Computer Graphics.

CLARK, J. H. 1976. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM 19, 10 (Oct.), 547–554.

CORRÊA, W. T., KLOSOWSKI, J. T., AND SILVA, C. T. 2002.
iWalk: Interactive out-of-core rendering of large models. Tech-
nical Report TR-653-02, Princeton University. Available at:
http://www.cs.princeton.edu/˜wtcorrea/papers/iwalk.pdf.

COX, M. B., AND ELLSWORTH, D. 1997. Application-controlled demand
paging for out-of-core visualization. IEEE Visualization ’97 (Nov.), 235–
244.

DURAND, F., DRETTAKIS, G., THOLLOT, J., AND PUECH, C. 2000. Con-
servative visibility preprocessing using extended projections. In Pro-
ceedings of Siggraph 2000, 239–248.

EL-SANA, J., AND CHIANG, Y.-J. 2000. External memory view-
dependent simplification. Computer Graphics Forum 19, 3 (Aug.), 139–
150.

EL-SANA, J., SOKOLOVSKY, N., AND SILVA, C. T. 2001. Integrating
occlusion culling with view-dependent rendering. In IEEE Visualization
2001, 371–378.

ERIKSON, C., MANOCHA, D., AND BAXTER III, W. V. 2001. HLODs for
faster display of large static and dynamic environments. In 2001 ACM
Symposium on Interactive 3D Graphics, 111–120.

FUNKHOUSER, T. A., SÉQUIN, C. H., AND TELLER, S. J. 1992. Man-
agement of large amounts of data in interactive building walkthroughs.
1992 ACM Symposium on Interactive 3D Graphics 25, 2 (Mar.), 11–20.

FUNKHOUSER, T. A. 1996. Database management for interactive display
of large architectural models. Graphics Interface ’96 (May), 1–8.

GARLICK, B. J., BAUM, D. R., AND WINGET, J. M. 1990. Interac-
tive viewing of large geometric databases using multiprocessor graphics
workstations. In Siggraph Course: Parallel Algorithms and Architec-
tures for 3D Image Generation. ACM Siggraph, 239–245.

GINDELE, B. S. 1977. Buffer block prefetching method. IBM Technical
Disclosure Bulletin 20, 2, 696–697.

KLOSOWSKI, J. T., AND SILVA, C. T. 2000. The prioritized-layered pro-
jection algorithm for visible set estimation. IEEE Transactions on Visu-
alization and Computer Graphics 6, 2 (Apr.-June), 108–123.

KLOSOWSKI, J. T., AND SILVA, C. T. 2001. Efficient conservative vis-
ibility culling using the prioritized-layered projection algorithm. IEEE
Transactions on Visualization and Computer Graphics 7, 4 (Oct.-Dec.),
365–379.

PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P. 1997. Ren-
dering complex scenes with memory-coherent ray tracing. Proceedings
of Siggraph 97 (Aug.), 101–108.

PRZYBYLSKI, S. A. 1990. Cache and Memory Hierarchy Design: A
Performance-Directed Approach. Morgan Kaufmann.

REGE, A., 2002. Occlusion extensions. http://developer.nvidia.com/docs/-
IO/2645/ATT/GDC2002 occlusion.pdf.

SAMET, H. 1990. The Design and Analysis of Spatial Data Structures.
Addison-Wesley.

SCHAUFLER, G., DORSEY, J., DECORET, X., AND SILLION, F. X. 2000.
Conservative volumetric visibility with occluder fusion. In Proceedings
of Siggraph 2000, 229–238.

SEVERSON, K., 1999. VISUALIZE workstation graphics for Windows NT.
HP product literature.

SHEN, H.-W., CHIANG, L.-J., AND MA, K.-L. 1999. A fast volume ren-
dering algorithm for time-varying fields using a time-space partitioning
(TSP) tree. IEEE Visualization ’99 (Oct.), 371–378.

SUTTON, P. M., AND HANSEN, C. D. 2000. Accelerated isosurface ex-
traction in time-varying fields. IEEE Transactions on Visualization and
Computer Graphics 6, 2 (Apr.-June), 98–107.

TELLER, S. J., AND SÉQUIN, C. H. 1991. Visibility preprocessing for
interactive walkthroughs. Proceedings of Siggraph 91 25, 4 (July), 61–
69.

UENG, S.-K., SIKORSKI, C., AND MA, K.-L. 1997. Out-of-core stream-
line visualization on large unstructured meshes. IEEE Transactions on
Visualization and Computer Graphics 3, 4 (Oct.-Dec.), 370–380.

UNC, 1999. Power plant model. http://www.cs.unc.edu/˜geom/-
Powerplant/. The Walkthru Group at UNC Chapel Hill.

VARADHAN, G., AND MANOCHA, D. 2002. Out-of-core rendering of
massive geometric environments. In IEEE Visualization 2002.

WALD, I., SLUSALLEK, P., AND BENTHIN, C. 2001. Interactive dis-
tributed ray tracing of highly complex models. Rendering Techniques
2001, 277–288.

WONKA, P., WIMMER, M., AND SCHMALSTIEG, D. 2000. Visibility pre-
processing with occluder fusion for urban walkthroughs. In Rendering
Techniques 2000, 71–82.

WONKA, P., WIMMER, M., AND SILLION, F. 2001. Instant visibility.
Computer Graphics Forum 20, 3, 411–421.

1

VRcontext, September 2006 www.VRcontext.com

Eurographics 2006
State-of-the-art in Real-time, Interactive

Massive Model Visualization

Putting Theory into Practice
(Inigo Quilez, VRcontext)

September 2006

VRcontext, September 2006 www.VRcontext.com

Perspective

VRcontext, September 2006 www.VRcontext.com

Lasser scanning - pointclouds

•About 100 billion points
•With collision detection

UEFA stadium, 2.5 billion points dataset – 200 scans

VRcontext, September 2006 www.VRcontext.com

CAD File

•An FPSO with more than 1 billion polygons
•A refinery with 4 million objects (>1 billion polygons)
•A nuclear reactor room with more than 1 million primitives

VRcontext, September 2006 www.VRcontext.com

• 1. Most real data is bad formed

• 2. About data set size

 gamming technologie are unsuitable for massive models

• 3. About quallity

 massive model rendering techniques are not design for quallity

• 4. Other practial problems

• 5. Somehow incorrect assumtions on the research

Problems

VRcontext, September 2006 www.VRcontext.com

1. Most real data is bad formed

• CAD models:

• T junctions

• incorrectly oriented geometry

• not orientable geometry

• duplicated geometry

• clashes

• Laser scanned point clouds

• noise

• GIS

• less than optimal triangulation

2

VRcontext, September 2006 www.VRcontext.com

2. Data set size

• Game technology and most scientific visualization techniques cannot do

• Shadows

• Advanced (global) lighting

VRcontext, September 2006 www.VRcontext.com

2. Data set size (demo)

VRcontext, September 2006 www.VRcontext.com

3. Raytracing – the solution for quallity…

7 million polygons + AO 5 million polygons

• It scales well with polycount

• Shading effort is the minimun possible

VRcontext, September 2006 www.VRcontext.com

… with massive models. Or may be not?

VRcontext, September 2006 www.VRcontext.com

4. Other problems

• SDKs

• how to hide our implementation, and still keep maximun performance

• Moving objects

•the evil of most algorithms

• Document/export management

• delta exporting, incremental precomputations affects data structures

• File formats

•too many standards means no standard

• Virtual Reallity setup

• Marketing, the money

VRcontext, September 2006 www.VRcontext.com

5. Incorrect assumtions

• Frame to frame coherence

• Medium density models

3

VRcontext, September 2006 www.VRcontext.com

.

5. Density of the models

• High Density

•D > 10k t/m3

•DR ~ 1:103

• Medium Density

•D ~ 100-1k t/m3

•DR ~1:105

• Low Density

•D < 1tri/m3

•DR >1:106

A typical medium density model (600 million polygons)

VRcontext, September 2006 www.VRcontext.com

.

Low Density models

A low density model: 1 billion polygons in 40 square kilometer.

Non uniform density.

2 million objects in 5 square kilometers. Uniform density.

VRcontext, September 2006 www.VRcontext.com

.

Low Density models

Can become Medium Density locally… if we
cluster the geometry

