
EUROGRAPHICS 2003 STAR – State of The Art Report

A Survey of Real-time Soft Shadows Algorithms

J.-M. Hasenfratz†, M. Lapierre‡, N. Holzschuch§ and F.X. Sillion§

Artis GRAVIR/IMAG-INRIA ∗∗

Abstract

Recent advances in GPU technology have produced a shift in focus for real-time rendering applications, whereby
improvements in image quality are sought in addition to raw polygon display performance. Rendering effects
such as antialiasing, motion blur and shadow casting are becoming commonplace and will likely be considered
indispensable in the near future. The last complete and famous survey on shadow algorithms -Woo, 1990- has
to be updated in particular in view of recent improvements in graphics hardware, which make new algorithms
possible. This STAR covers all current methods for real-time shadow rendering, without venturing into slower,
high quality techniques based on ray casting or radiosity. Shadows are useful for a variety of reasons: first, they
help understand relative object placement in a 3D scene by providing visual cues. Second, they dramatically
improve image realism and allow the creation of complex lighting ambiances. Depending on the application, the
emphasis is placed on a guaranteed framerate, or on the visual quality of the shadows including penumbra effects
or “soft shadows”. Obviously no single method can render physically correct soft shadows in real-time for any
dynamic scene! However our survey aims at providing an exhaustive study allowing a programmer to choose the
best compromise for his/her needs. In particular we discuss the advantages, limitations, rendering quality and
cost of each algorithm. Recommendations are included based on simple characteristics of the application such
as static/moving lights, single or multiple light sources, static/dynamic geometry, geometric complexity, directed
or omnidirectional lights, etc. Finally we indicate which methods can efficiently exploit the most recent graphics
hardware facilities.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Color, shading, shadowing, and texture, I.3.1 [Computer Graphics]: Hardware Archi-
tecture – Graphics processors, I.3.3 [Computer Graphics]: Picture/Image Generation – Bitmap and framebuffer
operations
Keywords:shadow algorithm, soft shadows, real-time

1. Introduction

Cast shadows are crucial for the human perception of the 3D
world. Probably the first thorough analysis of shadows was
Leonardo Da Vinci47 (see figure1), focusing on painting and
static images. Also of note is the work of Lambert35 who

† University Pierre Mendès France – Grenoble II
‡ University Joseph Fourier – Grenoble I
§ INRIA
∗∗ Artis is a team of the GRAVIR/IMAG laboratory, a joint re-
search unit of CNRS, INPG, INRIA, UJF.

described the geometry underlying cast shadows (see figure
1), and more recently the paper from Knillet al.34.

With the emergence of computer graphics technology, re-
searchers have developed experiments to understand the im-
pact of shadows on our perception of a scene. Through dif-
ferent psychophysical experiments they established the im-
portant role of shadows in understanding:

• the position and size of the occluder48, 38, 27, 30, 31;
• the geometry of the occluder38;
• the geometry of the receiver38.

Wanger48 studied the effect of shadow quality on the per-
ception of object relationships, basing his experiments on

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Hasenfratz et al / Real-time Soft Shadows

Figure 1: Left: Study of shadows by Leonardo da Vinci47 –
Right: Shadow construction by Lambert35.

shadow sharpness. Hubonaet al.27 discuss the general role
and effectiveness of object shadows in 3D visualization. In
their experiments, they put in competition shadows, viewing
mode (mono/stereo), number of lights (one/two), and back-
ground type (flat plane, ’stair-step’ plane, room) to measure
the impact of shadows.

Kerstenet al.30, 31, 38 study the relationship between ob-
ject motion and the perception of relative depth. In fact, they
demonstrate that simply adjusting the motion of a shadow is
sufficient to induce dramatically different apparent trajecto-
ries of the shadow-casting object.

These psychophysical experiments convincingly establish
that it is important to take shadows into account to pro-
duce images in computer graphics applications. Cast shad-
ows help in our understanding of 3D environments and soft
shadows take part in realism of the images.

Since the comprehensive survey of Wooet al.50, progress
in computer graphics technology and the development of
consumer-grade graphics accelerators have made real-time
3D graphics a reality3. However incorporating shadows, and
especially realistic soft shadows, in a real-time application,
has remained a difficult task (and has generated a great re-
search effort). This paper presents a survey of shadow gen-
eration techniques that can create soft shadows in real-time,
and is organized as follows:

We first review in Section2 basic notions about shadows:
what are hard and soft shadows, evaluate the importance
of shadow effects through concrete examples, problems en-
countered when working with soft shadows, and classical
techniques for producing hard shadows in real-time. Sec-
tion 3 then presents existing algorithms for producing soft
shadows in real-time. Section4 offers a discussion and clas-
sifies these algorithms based on their different abilities and
limitations, allowing easier algorithm selection depending
on the application’s constraints.

2. Basic concepts of hard and soft shadows

2.1. What is a shadow?

Consider a light sourceL illuminating a scene:receiversare
objects of the scene that are illuminated byL. A point P of
the scene is considered to be in theumbra if it can not see
any part ofL, i.e. it doesn’t received any light from the light
source.

If P can view a part of the light source, it is in thepenum-
bra. The union of the umbra and the penumbra is the shadow,
the set of objects for which at least one point of the light
source is occluded. Objects that hide a point from the light
source are calledoccluders.

Following Yonas52, we can distinguish two types of shad-
ows:

• attached shadows orself-shadowsthat occur when the
shadow of the occluder is projected on itself (the occluder
and receiver are the same);

• cast shadowsthat occur when the shadow is projected on
an other object.

We shall see later, in section4, that this distinction
is important because some algorithms cannot handle self-
shadows.

2.2. Importance of shadow effects

As discussed in the introduction, shadows play an important
role in our understanding of 3D geometry, which we now
illustrate with a concrete example.

Shadows help tounderstand relative object position
and sizein a scene48, 38, 27, 30, 31. For example, without a cast
shadow, we are not able to determine the position of an ob-
ject in space (see figure2).

Figure 2: Shadows provide information about the relative
positions of objects. On the left-hand image, we cannot de-
termine the position of the robot, whereas on the other three
images we understand that it is more and more distant from
the ground.

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

Figure 3: Shadows provide information about the geometry of the occluder. Here we see that the robot holds a ring on the
left-hand image and a teapot on the right-hand image.

Shadows also provide useful visual cues that help inun-
derstanding the geometry of a complex occluder38 (see
figure3).

Finally, shadows can also help usunderstanding the ge-
ometry of a complex receiver38 (see figure4).

Figure 4: Shadows provide information about the geome-
try of the receiver. Left:not enough cues about the ground.
Right: shadow reveals ground geometry.

2.3. Hard shadows vs soft shadows

The common-sense notion of shadow is a binary status,i.e.
a point is either “in shadow” or not. This corresponds to
hard shadows, as produced by point light sources: indeed,
a point light source is either visible or occluded for any re-
ceiving point. However, point light sources do not exist in
practice and hard shadows give a rather unrealistic feeling
to images (see figure5). Note that even the sun, probably
the most common shadow-creating light source in our daily
life, has a significant angular extent and does not create hard
shadows. Still, point light sources are easy to model in com-
puter graphics and we shall see that several algorithms let us
compute hard shadows in real time.

In the more realistic case of a light source with finite ex-
tent, a point on the receiver can have a partial view of the
light, i.e. only a fraction of the light source is visible from
that point. We distinguish theumbra region (if it exists) in
which the light source is totally blocked from the receiver,
and thepenumbraregion in which the light source is par-
tially visible. The determination of the umbra and penumbra
is a difficult task in general, as it amounts to solving visibility

Receiver

Occluder

Hard Shadow

Point light source

Figure 5: Hard shadows.

relationships in 3D, a notoriously hard problem. In the case
of polygonal objects, the shape of the umbra and penumbra
regions is embedded in a discontinuity mesh13 which can be
constructed from the edges and vertices of the light source
and the occluders (see figure6).

Soft shadows are obviously much more realistic than hard
shadows (see figure7), in particular the degree of softness
(blur) in the shadow varies dramatically with the distances
involved between the source, occluder, and receiver. Note
also that a hard shadow, with its crisp boundary, could be
mistakenly perceived as an object in the scene, while this
would hardly happen with a soft shadow.

In computer graphics we can approximate small or distant
light source as point sources only when the distance from the
light to the occluder is much larger than the distance from
the occluder to the receiver, and the resolution of the final
image does not allow proper rendering of the penumbra. In
all other cases great benefits can be expected from properly
representing soft shadows.

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

Figure 7: Hard vs. soft shadows

Receiver Receiver

Occluder Occluder

Sh
ad

ow
s

du
e

to

ea
ch

 v
er

tic
es

Umbra

Penumbra

Area light source Area light source

Figure 6: Soft shadows.

2.4. Important issues in computing soft shadows

2.4.1. Composition of multiple shadows

While the creation of a shadow is easily described for a (light
source, occluder, receiver) triple, care must be taken to allow
for more complex situations.

Shadows from several light sources Shadows produced
by multiple light sources are relatively easy to obtain if we
know how to deal with a single source (see figure8). Due to
the linear nature of light transfer we simply sum the contri-
bution of each light (for each wavelength or color band).

Shadows from several objects For point light sources,
shadows due to different occluders can be easily combined
since the shadow area (where the light source is invisible) is
the union of all individual shadows.

With an area light source, combining the shadows of sev-
eral occluders is more complicated. Recall that the lighting
contribution of the light source on the receiver involves a
partial visibility function: a major issue is that no simple
combination of the partial visibility functions of distinct oc-
cluders can yield the partial visibility function of the set of
occluders considered together. For instance there may be
points in the scene where the light source is not occluded
by any object taken separately, but is totally occluded by
the set of objects taken together. The correlation between

the partial visibility functions of different occluders cannot
be predicted easily, but can sometimes be approximated or
bounded44, 5.

As a consequence, the shadow of the union of the objects
can be larger than the union of the shadows of the objects
(see figure9). This effect is quite real, but is not very visible
on standard scenes, especially if the objects casting shadows
are animated.

Light source

Occluder 2

Occluder 2

Occluder 1 and 2

Occluder 1

Occluder 1

Vi
si

bi
lit

y
of

 li
gh

t
so

ur
ce

 (i
n

%
)

Figure 9: The shadow of two occluders is not a simple com-
bination of the two individual shadows. Note in particular
the highlighted central region which lies in complete shadow
(umbra) although the light source is never blocked by a sin-
gle occluder.

2.4.2. Physically exact or fake shadows

Shadows from an extended light source Soft shadows
come from spatially extended light sources. To model prop-
erly the shadow cast by such light sources, we must take into
account all the parts of the occluder that block light com-
ing from the light source. This requires identifying all parts
of the object casting shadow that are visible from at least
one point of the extended light source, which is algorithmi-
cally much more complicated than identifying parts of the
occluder that are visible from a single point.

Because this visibility information is much more difficult

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

Figure 8: Complex shadow due to multiple light sources. Note the complex interplay of colored lights and shadows in the
complementary colors.

Figure 10: When the light source is significantly larger than the occluder, the shape of the shadow is very different from the
shape computed using a single sample; the sides of the object are playing a part in the shadowing.

to compute with extended light sources than with point light
sources, most real-time soft shadow algorithms compute vis-
ibility information from just one point (usually the center of
the light source) and then simulate the behavior of the ex-
tended light source using this visibility information (com-
puted for a point).

This method produces shadows that are not physically ex-
act, of course, but can be close enough to real shadows for
most practical applications. The difference between the ap-
proximation and the real shadow is harder to notice if the
objects and their shadow are animated – a common occur-
rence in real-time algorithms.

The difference becomes more noticeable if the difference
between the actual extended light source and the point used
for the approximation is large, seen from the object casting
shadow. A common example is for a large light source, close
enough from the object casting shadow that points of the

light source are actually seeing different sides of the object
(see figure10). In that case, the physically exact shadow is
very different from the approximated version.

While large light sources are not frequent in real-time al-
gorithms, the same problem also occurs if the object casting
shadow is very extended along the axis of the light source,
e.g. a character with elongated arms whose right arm is
pointing toward light source, and whose left arm is close to
the receiver.

In such a configuration, if we want to compute a better
looking shadow, we can either:

• Use the complete extension of the light source for visibil-
ity computations. This is algorithmically too complicated
to be used in real-time algorithms.

• Separate the light source into smaller light sources24, 5.
This removes some of the artefacts, as each light source
is treated separately, and is geometrically closer to the

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

point sample used to compute the silhouette. The speed
of the algorithm is usually divided by the number of light
sources.

• Cut the object into slices44. We then compute soft shad-
ows separately for each slice, and combine these shadows
together. By slicing the object, we are removing some of
the visibility problems, and we allow lower parts of the
object – usually hidden by upper parts – to cast shadow.
The speed of the algorithm is divided by the number of
slices, and combining the shadows cast by different slices
remains a difficult problem.

Approximating the penumbra region As real-time soft
shadow algorithms approximate extended light sources us-
ing points, they are in fact computing a hard shadow, and
extending it to compute a soft shadow.

We can either extend the umbra region, by computing an
outer penumbra region, or compute a smaller umbra region,
completed by an inner penumbra region.

The first method will always create shadows made of an
umbra and a penumbra. It cannot accurately compute shad-
ows that contain only a penumbra. The difference is easily
noticeable, especially with large sources, or objects that are
at a distance from the receiver.

The second method, on the other hand, can create light
leaks between neighboring objects whose shadow overlaps.

Illumination in the umbra region An important question
is the illumination in regions that are in the umbra – com-
pletely hidden from the light source. There is no light reach-
ing theses regions, so they should appear entirely black, in
theory.

However, in practice, some form of ambient lighting is
used to avoid completely dark regions and to simulate the
fact that light eventually reaches these regions after several
reflections.

Real-time shadow methods are usually combined with
illumination computations, for instance using the simple
OpenGL lighting model. Depending on whether the shadow
method operates before or after the illumination phase, am-
bient lighting will be present or absent. In the latter case the
shadow region appears completely dark, an effect that can be
noticeable. Another solution is to add the ambiant shading as
a subsequent pass, but it slows down the algorithm.

Shadows from different objects As shown in Sec-
tion 2.4.1, in presence of extended light sources, the shadow
of the union of several objects is larger than the union of
the individual shadows. Furthermore, the boundary of the
shadow caused by the combination of several polygonal ob-
jects can be a curved line13.

Since these effects are linked with the fact that the light
source is extended, they can not appear in algorithms that

use a single point to compute surfaces visible from the light
source. All real-time soft-shadow algorithms therefore suffer
from this approximation.

However, while these effects are both clearly identifiable
on still images, they are not as visible as on animated scenes.
There is currently no way to model these effects with real-
time soft shadow algorithms.

2.4.3. Real-time

Our focus in this paper is on real-time applications, therefore
we have chosen to ignore all techniques that are based on an
expensive pre-process even when they allow later modifica-
tions at interactive rates37. Given the fast evolution of graph-
ics hardware, it is difficult to draw a hard distinction between
real-time and interactive methods, and we consider here that
frame rates in excess of 10 fps are an absolute requirement
for “real time” applications. Note that stereo viewing can
easily require double this performance.

For real-time applications, the display refresh rate is often
the crucial limiting factor, and must be kept high enough (if
not constant) through time. An important feature to be con-
sidered in shadowing algorithms is therefore their ability to
guarantee a sustained level of performance. This is of course
impossible to do for arbitrary scenes, and a more impor-
tant property for these algorithms is the ability to paramet-
rically vary the level of performance (typically at the price
of greater approximation), which allows an adaptation to the
scene’s complexity.

2.4.4. Shadows of special objects

Most shadowing algorithms make use of an explicit repre-
sentation of the object’s shapes, either to compute silhou-
ettes of occluders, or to create images and shadow maps.
Very complex and volumetric objects such as clouds, hair,
grass etc. typically require special treatment.

2.4.5. Constraints on the scene

Shadowing algorithms may place particular constraints on
the scene. Examples include the type of object model (tech-
niques that compute a shadow as a texture map typically re-
quire a parametric object, if not a polygon), or the neces-
sity/possibility to identify a subset of the scene as occlud-
ers or shadow receivers. This latter property is important in
adapting the performance of the algorithm to sustain real-
time.

2.5. Basic techniques for real time shadows

In this State-of-the-Art Report, we focus solely on real-time
soft shadows algorithms. As a consequence, we will not de-
scribe other methods for producing soft shadows, such as ra-
diosity, ray-tracing, Monte-Carlo ray-tracing or photon map-
ping.

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

We now describe the two basic techniques for computing
shadows frompoint light sources, namely shadow maps and
shadow volumes.

2.5.1. Shadow map

The basic operation for computing shadows is identifying
the parts of the scene that are hidden from the light source.
Intrisically, it is equivalent to visible surface determination,
from the point-of-view of the light source.

The first method to compute shadows17, 43, 49 starts by
computing a view of the scene, from the point-of-view of
the light source. We store thez values of this image. This
Z-buffer is theshadow map(see figure11).

Figure 11: Shadow map for a point light source. Left: view
from the camera. Right: depth buffer computed from the light
source.

The shadow map is then used to render the scene (from
the normal point-of-view) in a two pass rendering process:

• a standard Z-buffer technique, for hidden-surface re-
moval.

• for each pixel of the scene, we now have the geometri-
cal position of the object seen in this pixel. If the distance
between this object and the light is greater than the dis-
tance stored in the shadow map, the object is in shadow.
Otherwise, it is illuminated.

• The color of the objects is modulated depending on
whether they are in shadow or not.

Shadow mapping is implemented in current graphics
hardware. It uses an OpenGL extension for the comparison
between Z values,GL_SGIX_SHADOW†.

The depth buffer is sampled at a limited precision. If sur-
faces are too close from each other, sampling problems can
occur, with surfaces shadowing themselves. The solution41

is to offset the Z values in the shadow map by a small bias.

If the light source has a cut-off angle that is too large, it
is not possible to project the scene in a single shadow map
without excessive distortion. In that case, we have to replace

† This extension, or its replacementGL_ARB_SHADOW, is avail-
able on Silicon Graphics Hardware above Infinite Reality 2, on
NVidia graphics cards after GeForce3 and on ATI graphics cards
after Radeon9500.

the light source by a combination of light sources, and use
several depth maps, thus slowing down the algorithm.

Shadow mapping can result in large aliasing problems if
the light source is far away from the viewer. In that case, in-
dividual pixels from the shadow map are visible, resulting in
a staircase effect along the shadow boundary. Several meth-
ods have been implemented to solve this problem:

• Storing the ID of objects in the shadow map along with
their depth26.

• Using deep shadow maps, storing coverage information
for all depths for each pixel36.

• Using multi-resolution, adaptative shadow maps18, com-
puting more details in regions with shadow boundaries
that are close to the eye.

• Computing the shadow map in perspective space45, effec-
tively storing more details in parts of the shadow map that
are closer to the eye.

The last two methods are directly compatible with exist-
ing OpenGL extensions, and therefore require only a small
amount of coding to work with modern graphics hardware.

An interesting alternative version of this algorithm is to
warp the shadow map into camera space53 rather than the
usual opposite: it has the advantage that we obtain a modu-
lation image that can be mixed with a texture, or blurred to
produce antialiased shadows.

2.5.2. Shadow volume

Another way to think about shadow generation is purely ge-
ometrical. This method was first described by Crow12, and
first implemented using graphics hardware by Heidmann23.

Method The algorithm consists in finding the silhouette
of occluders along the light direction, then extruding this
silhouette along the light direction, thus forming ashadow
volume. Objects that are inside the shadow volume are in
shadow, and objects that are outside are illuminated.

The shadow volume is calculated in two steps:

• the first step consists in finding the silhouette of the oc-
cluder as viewed from the light source. The simplest
method is to keep edges that are shared by a triangle fac-
ing the light and another in the opposite direction.

• then we construct the shadow volume by extruding these
edges along the direction of the point light source. For
each edge of the silhouette, we build the half-plane sub-
tended by the plane defined by the edge and the light
source. All these half-planes define the shadow volume,
and knowing if a point is in shadow is then a matter of
knowing if it is inside or outside the volume.

• for each pixel in the image rendered, we count the num-
ber of faces of the shadow volume that we are crossing
between the view point and the object rendered. Front-
facing faces of the shadow volume (with respect to the

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

1 12 0

-1

-1
-1

+1

+1

+1

+1

+1

+1

+1

Light source

Occluder 1
Viewer

Occluder 2

Figure 12: Shadow volume.

view point) increment the count, back-facing faces decre-
ment the count (see figure12). If the total number of faces
is positive, then we are inside the shadow volume, and the
pixel is rendered using only ambient lighting.

The rendering pass is easily done in hardware using a
stencil buffer23, 32, 15; faces of the shadow volume are ren-
dered in the stencil buffer with depth test enabled this way:
in a first pass, front faces of the shadow volumes are ren-
dered incrementing the stencil buffer; in a second pass, back
faces are rendered, decrementing it. Pixels that are in shadow
are “captured” between front and back faces of the shadow
volume, and have a positive value in the stencil buffer. This
way to render volumes is calledzpass.

Therefore the complete algorithm to obtain a picture using
the Shadow Volume method is:

• render the scene with only ambient/emissive lighting;
• calculate and render shadow volumes in the stencil buffer;
• render the scene illuminated with stencil test enabled:

only pixels which stencil value is 0 are rendered, others
are not updated, keeping their ambient color.

Improvements The cost of the algorithm is directly linked
to the number of edges in the shadow volume. Batagelo7

minimizes the number of volumes rendered by precalculat-
ing in software a modified BSP tree. McCool39 extracts the
silhouette by first computing a shadow map, then extracting
the discontinuities of the shadow map, but this method re-
quires reading back the depth buffer from the graphics board
to the CPU, which is costly. Brabec10 reports a method to
compute the silhouette of the occluders using programmable
graphics hardware14, thus obtaining an almost completely
hardware-based implementation of the shadow volume al-
gorithm (he still has to read back a buffer into the CPU for
parameter transfer).

Roettger42 suggests an implementation that doesn’t re-
quire the stencil buffer; he draws the shadow volume in the
alpha buffer, replacing increment/decrement with a multi-
ply/divide by 2 operation.

If the shadow volume is in front of the near clipping plane
of the camera, the stencil values are wrong. Everitt15 sug-
gested thezfail technique to correct this; it works by render-
ing the shadow volumebackwards:

• we render the scene, storing the Z-buffer;
• in the first pass, we increment the stencil buffer for all

back-facing faces, but only if the face is behind an existing
object of the scene;

• in the second pass, we decrement the stencil buffer for all
front-facing faces, but only if the face is behind an existing
object;

• The stencil buffer contains the intersection of the shadow
volume and the objects of the scene.

The main problem with this algorithm is that it requires
drawing large polygons, the faces of the shadow volume.
The fillrate of the graphics card is often the bottleneck.
Everitt15, 16 lists different solutions to reduce the fillrate, ei-
ther using software methods or using the graphics hardware
, such as scissoring, constraining the shadow volume to a
particular fragment.

Finally, recent extensions to OpenGL16, 21 allow the use of
shadow volumes using stencil buffer in a single pass, instead
of the two passes required so far.

Discussion The shadow volume algorithm has many ad-
vantages:

• it works for omnidirectional light sources;
• it renders eye-view pixel precision shadows;
• it handles self-shadowing.

It also has several drawbacks:

• the computation time depends on the complexity of the
occluders;

• it requires the computation of the silhouette of the occlud-
ers as a preliminary step;

• at least two rendering passes are required;
• rendering the shadow volume consumes fillrate of the

graphics card.

3. Soft shadow algorithms

In this section, we review algorithms that produce soft shad-
ows, either interactively or in real-time. As in the previous
section, we distinguish two types of algorithms:

• Algorithms that are based on an image-based approach,
and build upon the shadow map method described in sec-
tion 2.5.1. These algorithms are described in section3.1.

• Algorithms that are based on an object-based approach,
and build upon the shadow volume method described

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

in section2.5.2. These algorithms are described in sec-
tion 3.2.

3.1. Image based approach

In this section, we present soft shadow algorithms based on
shadow maps (see section2.5.1). There are several methods
to compute soft shadows using image-based techniques:

1. Combining several shadow maps taken from point sam-
ples on the extended light source25, 22.

2. Using layered shadow maps1, replacing the shadow map
with a Layered Depth Image, storing depth information
about all objects visible from at least one point of the
light source.

3. Using several shadow maps24, 51, taken from point sam-
ples on the light source, and an algorithm to compute the
percentage of the light source that is visible.

4. Using a standard shadow map, combined with image
analysis techniques to compute soft shadows9.

5. Convolving a standard shadow map with an image of the
light source44.

The first two methods approximate the light source as a
combination of several point samples. As a consequence,
the time for computing the shadow map is multiplied by the
number of samples, resulting in slower rendering. On the
other hand, these methods actually compute more informa-
tion than other soft-shadow methods, and thus compute more
physically accurate shadows. Most of the artefacts listed in
section2.4.2will not appear with these two methods.

3.1.1. Combining several point-based shadow maps25, 22

The simplest method22, 25 to compute soft shadows using im-
age based methods is to place sample points regularly on the
extended light source. These sample points are used to com-
pute binary occlusion maps, which are combined into an at-
tenuation map, used to modulate the illumination (calculated
separately).

Method Herf25 makes the following assumptions on the ge-
ometry of the scene:

• a light source of uniform color,
• subtending a small solid angle with respect to the receiver,
• and with distance from the receiver having small variance.

With these three assumptions, contributions from all sam-
ple points placed on the light source will be roughly equal.

The user identifies in advance the object casting shadows,
and the objects onto which we are casting shadow. For each
object receiving shadow, we are going to compute a texture
containing the soft shadow.

We start by computing a binary occlusion map for each
sample point on the light source. For each sample point on
the light source, we render the scene into an auxiliary buffer,

using 0 for the receiver, and 1 for any other polygon. These
binary occlusion maps are then combined into an attenuation
map, where each pixel stores the number of sample points
on the light source that are occluded. This attenuation map
contains a precise representation of the soft shadow (see fig-
ures13and14).

Figure 13: Combining several occlusion maps to compute
soft shadows. Left: the occlusion map computed for a single
sample. Center: the attenuation map computed using 4 sam-
ples. Right: the attenuation map computed using 64 samples.

Figure 14: With only a small number of samples on the light
source, artefacts are visible. Left: soft shadow computed us-
ing 4 samples. Right: soft shadow computed using 1024 sam-
ples.

In the rendering pass, this soft shadow texture is combined
with standard textures and illumination, in a standard graph-
ics pipeline.

Discussion The biggest problem for Herf25 method is ren-
dering the attenuation maps. This requiresNpNs rendering
passes, whereNp is the number of objects receiving shad-
ows, andNs is the number of samples on the light source.
Each pass takes a time proportionnal to the number of poly-
gons in the objects casting shadows. In practice, to make this
method run in real-time, we have to limit the number of re-
ceivers to a single planar receiver.

To speed-up computation of the attenuation map, we can
lower the number of polygons in the occluders. We can also
lower the number of samples (n) to increase the framerate,
but this is done at the expense of image quality, as the attenu-
ation map contains onlyn−1 gray levels. With fewer than 9
samples (3×3), the user sees several hard shadows, instead
of a single soft shadow (see figure14).

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

Herf’s method is easy to parallelize, since all occlusion
maps can be computed separately, and only one computer is
needed to combine them. Isard28 reports that a parallel im-
plementation of this algorithm on a 9-node Sepia-2a parallel
calculator with high-end graphics cards runs at more than
100 fps for moderately complex scenes.

3.1.2. Layered Shadow Maps1

The Layered Attenuation Maps1 method is based on a modi-
fied layered depth image29. It is an extension of the previous
method, where we compute a layered shadow map for the
entire scene, instead of a specific shadow map for each ob-
ject receiving shadow.

Method It starts like the previous method: we place sam-
ple points on the area light source, and we use these sample
points to compute a modified attenuation map:

• For each sample point, we compute a view of the scene,
along the direction of the normal to the light source.

• Theses images are all warped to a central reference, the
center of the light source.

• For each pixel of these images:

– In each view of the scene, we have computed the dis-
tance to the light source in the Z-buffer.

– We can therefore identify the object that is closest to
the light source.

– This object makes the first layer of the layered attenu-
ation map.

– We count the number of samples seeing this object,
which gives us the percentage of occlusion for this ob-
ject.

– If other objects are visible for this pixel but further
away from the light they make the subsequent layers.

– For each layer, we store the distance to the light source
and the percentage of occlusion.

The computed Layered Attenuation Map contains, for all
the objects that are visible from at least one sample point,
the distance to the light source and the percentage of sample
points seeing this object.

At rendering time, the Layered Attenuation Map is used
like a standard attenuation map, with the difference that all
the objects visible from the light source are stored in the
map:

• First we render the scene, using standard illumination and
textures. This first pass eliminates all objects invisible
from the viewer.

• Then, for each pixel of the image, we find wheter the cor-
responding point in the scene is in the Layered Attenu-
ation Map or not. If it is, then we modulate the lighting
value found by the percentage of occlusion stored in the
map. If it isn’t, then the point is completely hidden from
the light source.

Discussion The main advantage of this method, compared
to the previous method, is that a single map is used to store
the shadowing information for the entire scene, compared to
one shadow map for each shadowed object. Also, we do not
have to identify beforehand the objects casting shadows.

The extended memory cost of the Layered Attenuation
Map is reasonable: experiments by the authors show that
on average, about 4 layers are used in moderately complex
scenes.

As with the previous method, the speed and realism are
related to the number of samples used on the light source.
We are rendering the entire sceneNs times, which precludes
real-time rendering for complex scenes.

3.1.3. Quantitative Information in the Shadow Map24

p1 q2q1p2

Light source

Occluder

Vi
si

bi
lit

y
of

 li
gh

t
so

ur
ce

 (i
n

%
)

Figure 15: Percentage of a linear ligth source that is visible.

Heidrich24 introduced another extension of the shadow
map method, where we compute not only a shadow map,
but also a visibility channel(see figure15), which encodes
the percentage of the light source that is visible. Heidrich24’s
method only works for linear light sources, but it was later
extended to polygonal area light sources by Ying51.

Method We start by rendering a standard shadow map for
each sample point on the linear light source. The number of
sample points is very low, usually they are equal to the two
end vertices of the linear light source.

In each shadow map, we detect discontinuities using im-
age analysis techniques. Discontinuities in the shadow map
happen at shadow boundaries. They are separating an object
casting shadow from the object receiving shadow. For each
discontinuity, we form a polygon linking the frontmost ob-
ject (casting shadow) to the back object (receiving shadow).
These polygons are then rendered in the point of view of the
other sample, using Gouraud shading, with value 0 on the
closer points, and 1 on the farthest points.

This gives us a visibility channel, which actually encodes

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

the percentage of the edge linking the two samples that is
visible.

The visibility channel is then used in a shadow mapping
algorithm. For each pixel in the rendered image, we first
check its position in the shadow map for each sample.

• if it is in shadow for all sample points, we assume that it
is in shadow, and therefore it is rendered black.

• if it is visible from all sample points, we assume that it
is visible, and therefore rendered using standard OpenGL
illumination model.

• if it is hidden for some sample point, and visible from
another point, we use the visibility channel to modulate
the light received by the pixel.

a

b

P1

P0

P4

P3

P34

P2
P12

Figure 16: Using the visibility channel to compute visibil-
ity from a polygonal light source. The shadow maps tell us
that vertices P0, P1 and P4 are occluded and that vertices
P2 and P3 are visible. The visibility channel for edge[P1P2]
tells us that this edge is occluded for a fraction a; similarly,
the visibility channel for edge[P3P4] tells us that this edge
is occluded for a fraction b. The portion of the light that is
occluded is the hatched region, whose area can be computed
geometrically using a and b.

Ying51 extended this algorithm to polygonal area light
sources: we generate a shadow map for each vertex of the
polygonal light source, and a visibility channel for each
edge. We then use this information to compute the percent-
age of the polygonal light source that is visible from the cur-
rent pixel.

For each vertex of the light source, we query the shadow
map of this vertex. This gives us a boolean information,
whether this vertex is occluded or not from the point of view
of the object corresponding to the current pixel. If an edge
links an occluded vertex to an non occluded one, the visibil-
ity channel for this edge gives us the percentage of the edge
that is occluded (see figure16). Computing the visible area
of the light source is then a simple 2D problem. This area can
be expressed as a linear combination of the area of triangles
on the light source. By precomputing the area of these trian-
gles, we are left with a few multiplications and additions to
perform at each pixel.

Discussion The strongest point of this algorithm is that it
requires a small number of sampling points. Although it can
work with just the vertices of the light source used as sam-
pling points, a low number of samples can result in artefacts
in moderately complex scenes. These artefacts are avoided
by adding a few more samples on the light source.

This method creates fake shadows, but nicely approxi-
mated. The shadows are exact when only one edge of the
occluder is intersecting the light source, and approximate if
there is more than one edge, for example at the intersection
of the shadows of two different occluders, or when an oc-
cluder blocks part of the light source without blocking any
vertex.

The interactivity of the algorithm depends on the time it
takes to generate the visibility channels, which itself depends
on the complexity of the shadow. On moderately complex
scenes, the authors report computation times of a few frames
per second.

The algorithm requires having a polygonal light source,
and organising the samples, so that samples are linked by
edges, and for each edge, we know the sample points it links.

3.1.4. Single Sample Soft Shadows9, 33

A different image-based method to generate soft shadows
was introduced by Parker40 for parallel ray-tracing and later
modified to use graphics hardware by Brabec9.

Receiver

Umbra

Inner penumbra

Outer penumbra

Occluder

Point
light

Figure 17: Extending the shadow of a point light source: for
each occluder identified in the shadow map, we compute a
penumbra, based on the distance between this occluder and
the receiver.

This method is very similar to standard shadow mapping.
It starts by computing a standard shadow map, then uses
the depth information available in the depth map to extend
the shadow region and create a penumbra. In this method,
we distinguish between the inner penumbra (the part of the
penumbra that is inside the shadow of the point sample) and
the outer penumbra (the part of the umbra that is outside the
shadow of the point sample, see figure17). Parker40 com-
putes only the outer penumbra; Brabec9 computes both the

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

inner and the outer penumbra; Kirsch33 computes only the
inner penumbra. In all cases, the penumbra computed goes
from 0 to 1, to ensure continuity with areas in shadow and
areas that are fully illuminated.

Method In a first pass, we create a single standard shadow
map, for a single sample – usually at the center of the light
source.

During rendering, as with standard shadow mapping, we
identify the position of the current pixel in the shadow map.
Then:

• if the current pixel is in shadow, we identify the nearest
pixel in the shadow map that is illuminated.

• if the pixel is lit, we identify the nearest pixel in the
shadow map that corresponds to an object that is closer
to the light source than the current pixel (see figure18).

Umbra

Inner penumbra

Outer penumbra

r

R

P

P
Shadow map

Blocked
pixels

Receiver

Occluder

Point light

r

P'

Figure 18: Extending the shadow of a single sample: For
each pixel in the image, we find the corresponding pixel P
in the shadow map. Then we find the nearest blocked pixel.
P is assumed to be in the penumbra of this blocker, and we
compute an attenuation coefficient based on the relative dis-
tances betwen light source, occluder and P.

In both cases, we assume that the object found is casting a
shadow on the receiver, and that the point we have found is
in the penumbra. We then compute an attenuation coefficient
based on the relative positions of the receiver, the occluder
and the light source:

f =
dist(PixelOccluder,PixelReceiver)
RSzReceiver|zReceiver−zOccluder|

whereR andSare user-defineable parameters. The inten-
sity of the pixel is modulated using8:

• 0.5∗ (1+ f), clamped to[0.5,1] if the pixel is outside the
shadow,

• 0.5∗ (1− f), clamped to[0,0.5] if the pixel is inside the
shadow.

For pixels that are far away from the boundary of the

shadow, either deep inside the shadow or deep inside the
fully lit area, f gets greater than 1, resulting in a modulation
coefficient of respectively 0 or 1. On the original shadow
boundary, f = 0, the two curves meet each other continu-
ously with a modulation coefficient of 0.5. The actual width
of the penumbra region depends on the ratio of the distances
to the light source of the occluder and the receiver, which is
perceptually correct.

The slowest phase of this algorithm is the search of neigh-
bouring pixels in the shadow map, to find the potential oc-
cluder. In theory, an object can cast a penumbra than spans
the entire scene, if it is close enough to the light source. In
practice, we limit the search to a maximal distance to the
current pixel ofRmax= RzReceiver.

To ensure that an object is correctly identified as being in
shadow or illuminated, the information from the depth map
is combined with an item buffer, following Hourcade26.

Discussion The aim of this algorithm is to produce percep-
tually pleasing, rather than physically exact, soft shadows.
The width of the penumbra region depends on the ratio of
the respective distances to the light source of the occluder
and the receiver. The penumbra region is larger if the oc-
cluder is far from the receiver, and smaller if the occluder is
close to the receiver.

Of course, the algorithm suffers from several shortcom-
ings. Since the shadow is only determined by a single sam-
ple shadow map, it can fail to identify the proper shadowing
edge. It works better if the light source is far away from the
occluder. The middle of the penumbra region is placed on
the boundary of the shadow from the single sample, which
is not physically correct.

The strongest point of this algorithm is its speed. Since it
only needs to compute a single shadow map, it can achieve
framerates of 5 to 20 frames per second, compared with 2 to
3 frames per second for multi-samples image-based meth-
ods. The key parameter in this algorithm isR, the search
radius. For smaller search values ofR, the algorithms works
faster, but can miss large penumbras. For larger values ofR,
the algorithm can identify larger penumbras, but takes longer
for each rendering.

A faster version of this algorithm, by Kirsch33, computes
both the shadow map and a shadow-width map: for each
point in shadow, we precompute the distance to the near-
est point that is illuminated. For each pixel, we do a look-up
in the shadow map and the shadow-width map. If the point
is occluded, we have the depth of the current point (z), the
depth of the occluder (zoccluder) and the shadow width (w). A
2D function gives us the modulation coefficient:

I(z,w) =
{

1 if z= zoccluder
1+cbias−cscale

w
zoccluder−z

The shadow-width map is generated from a binary occlu-

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

sion map, transformed into the width map by repeated appli-
cations of a smoothing filter. This repeated filtering is done
using graphics hardware, during rendering. Kirsch33 reports
framerates of 20 frames per second, and performance does
not depend on the search radius.

3.1.5. Convolution technique44

As noted earlier, soft shadows are a consequence of partial
visibility of an extended light source. Therefore the calcula-
tion and soft shadows is closely related to the calculation of
the visible portion of the light source.

Soleret al.44 observe that the percentage of the source area
visible from a receiving point can be expressed as a simple
convolution for a particular configuration. When the light
source, occluder, and receiver all lie in parallel planes, the
soft shadow image on the receiver is obtained by convolving
an image of the receiver and an image of the light source.
While this observation is only mathematically valid in this
very restrictive configuration, the authors describe how the
same principle can be applied to more general configura-
tions:

First, appropriate imaging geometries are found, even
when the objects are non-planar and/or not parallel. More
importantly, the authors also describe an error-driven algo-
rithm in which the set of occluders is recursively subdivided
according to an appropriate error estimate, and the shadows
created by the subsets of occluders are combined to yield the
final soft shadow image.

Discussion The convolution technique’s main advantages
are the visual quality of the soft shadows (not their phys-
ical fidelity), and the fact that is operates from images of
the source and occluders, therefore once the images are ob-
tained the complexity of the operations is entirely under con-
trol. Sampling is implicitly performed when creating a light
source image, and the combination of samples is handled
by the convolution operation, allowing very complex light
source shapes.

The main limitation of the technique is that the soft
shadow is only correct in a restricted configuration, and the
proposed subdivision mechanism can only improve the qual-
ity when the occluder can be broken down into smaller parts.
Therefore the case of elongated polygons in th direction of
the light source remains problematic. Furthermore, the sub-
division mechanism, when it is effective in terms of quality,
involves a significant performance drop.

3.2. Object based approach

Several methods can be used to compute soft shadows in
animated scenes using object-based methods:

1. Combining together several shadow volumes taken from
point samples on the light source, in a manner similar to
the method described for shadow maps in section3.1.1.

2. extending the shadow volume19, 11 using a specific heuris-
tic (Plateaus19, Smoothies11).

3. computing a penumbra volume for each edge of the
shadow silhouette2, 4, 5.

3.2.1. Combining several hard shadows

Method The simplest way to produce soft shadows with
the shadow volume algorithm is to take several samples on
the light source, compute a hard shadow for each sample
and average the pictures produced. It simulates an area light
source, and gives us the soft shadow effect.

However, the main problem with this method, as with
the equivalent method for shadow maps, is the number of
samples it requires to produce a good-looking soft shadow,
which precludes any real-time application. Also, it requires
the use of an accumulation buffer, which is currently not sup-
ported on standard graphics hardware.

An interesting variation has been proposed by Vignaud46,
in which shadow volumes from a light source whose position
changes with time are added in the alpha buffer, mixed with
older shadow volumes, producing a soft shadow after a few
frames where the viewer position does not change.

3.2.2. Soft Planar Shadows Using Plateaus

The first geometric approach to generate soft shadows has
been implemented by Haines19. It assumes a planar receiver,
and generates an attenuation map that represents the soft
shadow. The attenuation map is created by converting the
edges of the occluders into volumes, and is then applied to
the receiver as a modulating texture.

Method The principle of the plateaus method19 is to gener-
ate an attenuation map, representing the soft shadow. The
attenuation map is first created using the shadow volume
method, thus filling in black the parts of the map that are
occluded.

Figure 19: Extending the shadow volume of an occluder
with cones and planes.

Then, the edges of the silhouette of the objects are trans-
formed into volumes (see figure19):

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

• All the vertices of the silhouette are first turned into cones,
with the radius of the cone depending on the distance be-
tween the occluder vertex and the ground, thus simulating
a spherical light source.

• then edges joining adjacent vertices are turned into sur-
faces. For continuity, the surface joining two cones is an
hyperboloid, unless the two cones have the same radius
(that is, if the two original vertices are at the same distance
of the ground), in which case the hyperboloid degenerates
to a plane.

These shadow volumes are then projected on the receiver
and colored using textures: the axis of the cone is black, and
the contour is white. This texture is superimposed with the
shadow volume texture: Haines’ algorithm only computes
the outer penumbra.

One important parameter in the algorithm is the way we
color the penumbra volume; it can be done using Gouraud
shading, values from the Z-buffer or using a 1D texture.
The latter gives more control over the algorithm, and allows
penumbra to decrease using any function, including sinu-
soid.

Discussion The first limitation of this method is that it is
limited to shadows on planar surfaces. It also assumes a
spherical light source.

The biggest limitation, however, is that it only computes
the outer penumbra. As a consequence, objects will always
have an umbra, even if the light source is very large with re-
spect to the occluders. Also, the size of the penumbra only
depends on the distance from the receiver to the occluders,
not from the distance between the light source and the oc-
cluders.

Finally, it suffers from the same fillrate bottleneck as the
original shadow volume algorithm.

3.2.3. Smoothies11

Chan11 presents a variation of the shadow volume method
that uses only graphics hardware for shadow generation.

Method We start by computing the silhouette of the object,
using vertex programs14. This silhouette is then extended
using smoothies, that are planar surfaces connected to the
edges of the occluder and perpendicular to the surface of the
occluder.

We also compute a shadow map, which will be used for
depth queries. The smoothies are then textured taking into
account the distance of each silhouette vertex to the light
source, and the distance between the light source and the
receiver.

In the rendering step, first we compute the hard shadow
using the shadow map, then the texture from the smooth-
ies is projected onto the objects of the scene to create the
penumbra.

Discussion As with Haines19 and Parker40, this algorithm
only computes the outer penumbra. As a consequence, oc-
cluders will always project an umbra, even if the light source
is very large with respect to the occluders.

The size of the penumbra depends on the ratio of the dis-
tances between the occluder and the light source, and be-
tween receiver and light source, which is perceptually cor-
rect.

Connection between adjacent edges is still a problem with
this algorithm, and artefacts appear clearly except for small
light sources.

The shadow region is produced using the shadow map
method, which removes the problem with the fill rate bot-
tleneck experienced with all other methods based on the
shadow volume algorithm. As a consequence, they achieve
framerates of 20 frames per second.

3.2.4. Penumbra wedges2, 4, 5

Akenine-Möller2 and Assarsson4, 5 have presented an algo-
rithm to compute soft shadows that builds on the shadow
volume method and uses the programmable capability of
modern graphics hardware6, 20, 14 to produce real-time soft-
shadows.

Figure 20: Computing the penumbra wedge of a silhouette
edge: the wedge is a volume based on the silhouette edge
and that encloses the light source.

Method The algorithm starts by computing the silhou-
ette of the object, as seen from a single sample on the
light source. For each silhouette edge, we build asilhouette
wedge, that encloses the penumbra caused by this edge (see
figure20). The wedge can be larger than the penumbra, that
is we err on the safe side.

Then, we render the shadow volume, using the standard
method (described in section2.5.2) in a visibility buffer.
After this first pass, the visibility buffer contains the hard
shadow.

In a subsequent pass, this visibility buffer is updated so

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

c

e0

e1

Figure 21: Computing the area of the light source that is
covered by a given edge. The fragment program computes
the hatched area for each pixel inside the corresponding
wedge.

c c c
a

a

a
b

b

b

100% 10% 8% 82%

- - =
1-a-b

Figure 22: Combining together several connected edges.
The portion of the light source that is occluded is equal to
the sum of the portions of the light source occluded by the
different edges.

that it contains the soft shadow values. This is done by ren-
dering the front triangles of each wedge. For each pixel cov-
ered by these triangles, we compute the percentage of the
light source that is occluded, using fragment programs20. For
pixels that are covered by the wedge but in the hard shadow
(as computed by the previous pass), we compute the percent-
age of the light source that is visible, and add this value to
the visibility buffer. For pixels covered by the wedge but in
the illuminated part of the scene, we compute the percentage
of the light source that is occluded and substract this value
from the visibility buffer.

After this second pass, the visibility buffer contains the
percentage of visibility for all pixels in the picture. In a third
pass, the visibility buffer is combined with the illumination
computed using standard OpenGL lighting model, giving the
soft-shadowed picture of the scene.

Discussion The complexity of the algorithm depends on
the number of edges in the silhouette of the object, and on
the number of pixels covered by each penumbra wedge. As
a consequence, the easiest optimisation of the algorithm is
to compute tighter penumbra wedges5.

The main point of this algorithm is its speed. Using pro-
grammable graphics hardware for all complex computations,

and tabulating complex functions into pre-computed tex-
tures, framerates of 150 frames per second are obtained on
simple scenes, 50 frames per second on moderately complex
scenes, with very convincing shadows.

It should be noted that although a single sample is used to
compute the silhouette of the object, since visibility is com-
puted on the entire light source, the soft shadow computed
by this algorithm is physically exact in simple cases, such as
the shadow of a convex object that is distant enough from
the light source.

The weak point of the algorithm is that it computes the sil-
houette of the object using only a single sample. It would fail
on scenes where the actual silhouette of the object, as seen
from the area light source, is very different from the silhou-
ette computed using the single sample. Such scenes include
scenes where a large area light source is close to the object
(see figure10), and scenes where the shadows of several ob-
jects are combined together (as in figure9). In those circum-
stances, it is possible to compute a more accurate shadow
by splitting the light source into smaller light sources. The
authors report that splitting large light sources into 2×2 or
3×3 smaller light sources is usually enough to remove visi-
ble artefacts. It should be noted that splitting the light source
inton light sources does not cut the speed of the algorithm by
n, since the rendering time depends on the number of pixels
covered by each penumbra wedge, and smaller light sources
have smaller penumbra wedges.

One key to the efficiency of the algorithm is its use of
fragment programs20. The fragment programs take as input
the projections of the extremities of the edge onto the plane
of the light source, and give as output the percentage of the
light source that is occluded by the edge (see figure21). If
several edges are projecting onto the light source, their con-
tributions are simply added (see figure22) – this addition
is done in the framebuffer. The authors have implemented
several fragment programs, for spherical light sources, for
textured rectangular light sources and for non-textured rect-
angular light sources.

4. Classification

4.1. Controlling the time

Algorithms used in real-time or interactive applications must
be able to run at a tuneable framerate, in order to spend less
time for rendering at places where there is a lot of computa-
tion taking place, and more time when the CPU is available.

Ideally, soft shadow methods used in real-time applica-
tions should take as input the amount of time available for
rendering, and return a soft shadow computed to the best of
the algorithm within the prescribed time limit. As this STAR
focuses on hot research algorithms, this feature has not been
implemented in any of the algorithms reviewed here. How-
ever, all of these algorithms are tunable in the sense that there

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

Réf Time Quality Tunable Light Scene Required Hardware

Image-based

Multi-samples22, 25 I * Y Polygon 1 planar receiver
Distributed Multi-samples28 RT ** Y Planar ShadowMap
Single sample9, 33 RT * Y Sphere ShadowMap
Convolution44 I ** Y Polygon 2D Convol.
Visibility Channel24, 51 I ** Y Linear, Polygon 2D Convol.

Geometry-based

Plateaus19 I ** Y Sphere 1 planar receiver
Smoothie11 RT ** Y Sphere Vertex & Frag. Programs
Penumbra Wedges2, 4, 5 RT *** Y Sphere, Rect. Fragment Programs

Table 1: Comparison of soft shadows algorithms (see Section4 for details)

is some sort of parameter that the user can tweak, going from
soft shadows that are computed very fast, but are possibly
wrong, to soft shadows that can take more time to compute
but are either more visually pleasing or more physically ac-
curate.

There are several of these parameters that are available to
a various degree in the methods reviewed:

• The easiest form of user parameter is the use of a dif-
ferent level-of-detail for the geometry of the occluders.
Simpler geometry will result in faster rendering, either
with image-based methods or with object-based methods.
It can be expected that the difference in the shadow will
not be noticeable with animated soft shadows.

• Another form of user parameter is to add more sam-
ples on the light source22, 25, 1, or to subdivide large light
sources into a set of smaller ones2, 4, 5, 24, 51. It should be
noted that the order of magnitude for this parameter is
variable: 256 to 1024 samples are required for point-
based methods22, 25, 1 to produce shadows without arte-
facts, while area-based methods2, 4, 5, 24, 51 just need to cut
the light source into 2× 2 or 3× 3 smaller sources. Ei-
ther way, the rendering time is usually multiplied by the
number of samples or sources.

• All image-based methods are also tuneable by changing
the resolution of the buffer.

• Other parameters are method-specific:

– the single sample soft shadows9 method is tuneable by
changing the search radius;

– Convolution44 is tuneable by subdividing the occluders
into several layers;

– Plateaus19 are tuneable by changing the number of ver-
tices used to discretize the cones and patches;

– Smoothies11 are tuneable by changing the maximum
width of the smoothies;

4.2. Controlling the aspect

Another important information in chosing a real-time soft-
shadow algorithm is the aspect of the shadow it produces.
Some of the algorithms described in this STAR can produce
a physically exact solution if we allow them a sufficient ren-
dering time. Other methods produce a physically exact solu-
tion in simple cases, but are approximate in more complex
scenes, and finally a third class of methods produce shadows
that are always approximate, but are usually faster to com-
pute.

Physically exact (time permitting): Methods based on
point samples on the light source22, 25, 1 will produce
physically exact shadows if the number of samples is
sufficient. However, with current hardware, the number
of samples compatible with interactive applications gives
shadows that are not visually excellent (hence the poor
mark these methods receive in table1).

Physically exact on simple scenes:Methods that compute
the percentage of the light source that is visible from the
current pixel will give physically exact shadows in places
where the assumptions they make on the respective ge-
ometry of the light source and the occluders are veri-
fied. For example, penumbra wedges4, 5 give physically
exact shadows for isolated convex objects, provided that
the silhouette computed is correct (that the occluder is far
away from the light source). Visibility channel24, 51 gives
physically exact shadows for convex occluders and linear
light sources, and for isolated edges and polygonal light
sources. Convolution44 is physically exact for planar and
parallel light source, receiver and occluder.

Always approximate: All methods that restrict them-
selves to computing only the inner- or the outer-
penumbra are intrisically always approximate. They in-
clude single-sample soft shadows using shadow-width
map33, plateaus19 and smoothies11. The original imple-
mentation of single sample soft shadows9 computes both

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

the inner- and the outer-penumbra, but gives them always
the same width, which is not physically exact.

The second class of methods is probably the more inter-
esting for producing nice looking pictures. While the con-
ditions imposed seem excessively hard, it must be pointed
out that they are conditions for which it isguaranteedthat
the shadow is exact inall the points of the scene. In most
places of a standard scene, these methods will also produce
physically exact shadows.

4.3. Number and shape of the light sources

The first cause for the soft shadow is the light source. Each
real-time soft-shadow method makes an assumption on the
light sources, their shapes, their angles of emission and more
importantly their number.

Field of emission: All the methods that are based on an
image of the scene computed from the light source are re-
stricted with respect to the field of emission of the light
source, as a field of emission that is too large will result in
distortions in the image. This restriction applies to all image-
based algorithms, plus smoothies11 and volume-based algo-
rithms if the silhouette is computed using discontinuities in
the shadow map39.

On the contrary, volume-based methods can handle omni-
directional illumination.

Shape: For extended light sources, the influence of the
shape of the light source on a soft shadow is not directly per-
ceptible. Most real-time soft shadow methods use this prop-
erty by restricting themselves to simple light source shapes,
such as spheres or rectangles:

• Single-sample soft shadows9, 33, plateaus19 and
smoothies11 assume a spherical light source. Penumbra
wedges5 also work with a spherical light source.

• Visibility channel24 was originally restricted to linear light
sources.

• Subsequent implementation of the visibility channel
works with polygonal light sources51.

• Other methods place less restriction on the light source.
Multi-sample methods25, 1 can work with any kind of light
source. Convolution44 are also not restricted. However, in
both cases, the error in the algorithm is smaller for planar
light sources.

• Convolution44 and penumbra wedges4, 5 work with tex-
tured rectangles, thus allowing any kind of planar light
source. The texture can even be animated.

Number: All real-time soft-shadow algorithms are assum-
ing a single light source. Usually, computing the shadow
from several light sources results in multiplying the ren-
dering time by the number of light sources. However, for
all the methods that work for any kind of planar light

source25, 1, 44, 4, 5, it is possible to simulate several co-planar
light sources by placing the appropriate texture on a plane.

This gives us several soft shadows in a single application
of the algorithm. However, it has a cost: since the textured
light source is larger, the algorithms will run more slowly.

4.4. Constraints on the scene

The other elements causing shadows are the occluders and
the receivers. Most real-time soft-shadows methods make
some assumptions on the scene, either explicit or implicit.

Receiver: The strongest restriction is when the object re-
ceiving shadows is a plane, as with the plateaus method19.
Multi-sample soft shadow25, 22 is also restricted to a small
number of receivers for interactive rendering. In that case,
self-shadowing is not applicable.

Self-shadowing: The convolution44 method requires that
the scene is cut into clusters, within which no self-shadows
are computed.

Silhouette: For all the methods that require a silhouette ex-
traction – such as object-based methods – it is implicitly as-
sumed that we can compute a silhouette for all the objects
in the scene. In practice, this usually means that the scene is
made of closed triangle meshes.

4.5. New generation of GPUs

Most real-time soft-shadow methods use the features of the
graphics hardware that were available to the authors at the
time of writing:

Shadow-map: all image-based methods use the
GL_ARB_SHADOWextension for shadow maps (or
the earlier version,GL_SGIX_SHADOW). This extension
is available, for example, on Silicon Graphics hardware
above the Infinite Reality 2, on NVIDIA graphics cards
above the GeForce 3 and on ATI graphics above the
Radeon9500.

Imaging subset: along with this extension, some methods
also compute convolutions on the shadow map. These
convolutions can be computed in hardware if theImag-
ing Subsetof the OpenGL specification is present. This is
the case on all Silicon Graphics machines and NVIDIA
cards.

Programmable GPU: finally, the most recent real-time
soft-shadow methods use the programming capability in-
troduced in recent graphics hardware. Vertex programs14

and fragment programs21 are used for single-sample soft
shadows33, smoothies11 and penumbra wedges4, 5. In prac-
tice, this restricts these algorithms to only the latest gener-
ation of graphics hardware, such as the NVIDIA GeForce
FX or the ATI Radeon 9500 and above.

c© The Eurographics Association 2003.

Hasenfratz et al / Real-time Soft Shadows

5. Conclusions

In this State-of-the-Art Report, we have described the is-
sues encountered when working with soft shadows. We have
presented existing algorithms that produce soft shadows in
real-time. Two main categories of approaches have been re-
viewed, based either on shadow maps or on shadow vol-
umes. Each one has advantages and drawbacks, and none
of them can simultaneously solve all the problems we have
mentioned. This motivated a discussion and classification of
these methods, hopefully allowing easier algorithm selection
based on a particular application’s constraints.

We have seen that the latest algorithms benefit from the
programmability of recent graphics hardware. Two main di-
rections appear attractive to render high-quality soft shadows
in real-time: by programming graphics hardware, and by
taking advantage simultaneously of both image-based and
object-based techniques. Distributed rendering, using for in-
stance PC clusters, is another promising avenue although lit-
tle has been achieved so far. Interactive display speeds can
be obtained today even on rather complex scenes. Continu-
ing improvements of graphics technology - in performance
and programmability- let us expect that soft shadows will
soon become a common standard in real-time rendering.

Acknowledgments

The “Hugo” robot used in the pictures of this STAR was
created by Laurence Boissieux.

This work was supported by the “ACI Jeunes Chercheurs”
CYBERof the French Ministry of Research.

Remark: All the smooth shadows pictures in this STAR
were computed with distributed ray-tracing, using 1024
samples on the area light sources.

References

1. Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich,
and Laurent Moll. Efficient image-based methods for
rendering soft shadows. InComputer Graphics (SIG-
GRAPH 2000), Annual Conference Series, pages 375–
384. ACM SIGGRAPH, 2000.9, 10, 16, 17

2. Tomas Akenine-Möller and Ulf Assarsson. Approxi-
mate soft shadows on arbitrary surfaces using penum-
bra wedges. InRendering Techniques 2002 (13th Eu-
rographics Workshop on Rendering), pages 297–306.
Springer-Verlag, 2002.13, 14, 16

3. Tomas Akenine-Möller and Eric Haines.Real-Time
Rendering. A K Peters Ltd, 2nd edition, 2002.2

4. Ulf Assarsson and Tomas Akenine-Möller. A
geometry-based soft shadow volume algorithm using
graphics hardware.ACM Transactions on Graphics
(SIGGRAPH 2003), 22(3), 2003.13, 14, 16, 17

5. Ulf Assarsson, Michael Dougherty, Michael Mounier,
and Tomas Akenine-Möller. An optimized soft shadow
volume algorithm with real-time performance. In
Graphics Hardware, 2003. 4, 5, 13, 14, 15, 16, 17

6. ATI. SmartshaderTM technology white pa-
per. http://www.ati.com/technology/hardware/pdf/
smartshader.pdf, 2001. 14

7. Harlen Costa Batagelo and Ilaim Costa Junior. Real-
time shadow generation using BSP trees and stencil
buffers. InSIBGRAPI, volume 12, pages 93–102, Oc-
tober 1999.8

8. Stefan Brabec. Personnal communication, May 2003.
12

9. Stefan Brabec and Hans-Peter Seidel. Single sample
soft shadows using depth maps. InGraphics Interface,
2002. 9, 11, 16, 17

10. Stefan Brabec and Hans-Peter Seidel. Shadow vol-
umes on programmable graphics hardware.Computer
Graphics Forum (Eurographics 2003), 25(3), Septem-
ber 2003. 8

11. Eric Chan and Fredo Durand. Rendering fake soft
shadows with smoothies. InRendering Techniques
2003 (14th Eurographics Symposium on Rendering).
Springer-Verlag, 2003.13, 14, 16, 17

12. Franklin C. Crow. Shadow algorithms for computer
graphics. Computer Graphics (SIGGRAPH 1977),
11(3):242–248, 1977.7

13. George Drettakis and Eugene Fiume. A fast shadow
algorithm for area light sources using backprojection.
In Computer Graphics (SIGGRAPH 1994), Annual
Conference Series, pages 223–230. ACM SIGGRAPH,
1994. 3, 6

14. Cass Everitt. OpenGL ARB vertex program.
http://developer.nvidia.com/docs/IO/4449/SUPP/
GDC2003_OGL_ARBVertexProgram.pdf, 2003. 8,
14, 17

15. Cass Everitt and Mark J. Kilgard. Practical and robust
stenciled shadow volumes for hardware-accelerated
rendering. http://developer.nvidia.com/docs/IO/2585/
ATT/RobustShadowVolumes.pdf, 2002. 8

16. Cass Everitt and Mark J. Kilgard. Optimized stencil
shadow volumes.http://developer.nvidia.com/docs/IO/
4449/SUPP/GDC2003_ShadowVolumes.ppt, 2003. 8

17. Cass Everitt, Ashu Rege, and Cem Cebenoyan. Hard-
ware shadow mapping.http://developer.nvidia.com/
docs/IO/1830/ATT/shadow_mapping.pdf. 7

18. Randima Fernando, Sebastian Fernandez, Kavita Bala,
and Donald P. Greenberg. Adaptive shadow maps.
In Computer Graphics (SIGGRAPH 2001), Annual

c© The Eurographics Association 2003.

http://www.ati.com/technology/hardware/pdf/smartshader.pdf
http://www.ati.com/technology/hardware/pdf/smartshader.pdf
http://developer.nvidia.com/docs/IO/4449/SUPP/GDC2003_OGL_ARBVertexProgram.pdf
http://developer.nvidia.com/docs/IO/4449/SUPP/GDC2003_OGL_ARBVertexProgram.pdf
http://developer.nvidia.com/docs/IO/2585/ATT/RobustShadowVolumes.pdf
http://developer.nvidia.com/docs/IO/2585/ATT/RobustShadowVolumes.pdf
http://developer.nvidia.com/docs/IO/4449/SUPP/GDC2003_ShadowVolumes.ppt
http://developer.nvidia.com/docs/IO/4449/SUPP/GDC2003_ShadowVolumes.ppt
http://developer.nvidia.com/docs/IO/1830/ATT/shadow_mapping.pdf
http://developer.nvidia.com/docs/IO/1830/ATT/shadow_mapping.pdf

Hasenfratz et al / Real-time Soft Shadows

Conference Series, pages 387–390. ACM SIGGRAPH,
2001. 7

19. Eric Haines. Soft planar shadows using plateaus.Jour-
nal of Graphics Tools, 6(1):19–27, 2001. 13, 14, 16,
17

20. Evan Hart. ARB Fragment Program: Frag-
ment level programmability in OpenGL.
http://www.ati.com/developer/gdc/GDC2003_OGL_
ARBFragmentProgram.pdf, 2003. 14, 15

21. Evan Hart. Other New OpenGL Stuff: Important
stuff that doesn’t fit elsewhere.http://www.ati.com/
developer/gdc/GDC2003_OGL_MiscExtensions.pdf,
2003. 8, 17

22. Paul S. Heckbert and Michael Herf. Simulating soft
shadows with graphics hardware. Technical Report
CMU-CS-97-104, Carnegie Mellon University, January
1997. 9, 16, 17

23. Tim Heidmann. Real shadows, real time. InIris Uni-
verse, volume 18, pages 23–31. Silicon Graphics Inc.,
1991. 7, 8

24. Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Sei-
del. Soft shadow maps for linear lights high-quality. In
Rendering Techniques 2000 (11th Eurographics Work-
shop on Rendering), pages 269–280, 2000.5, 9, 10,
16, 17

25. Michael Herf. Efficient generation of soft shadow tex-
tures. Technical Report CMU-CS-97-138, Carnegie
Mellon University, 1997.9, 16, 17

26. J.-C. Hourcade and A. Nicolas. Algorithms for
antialiased cast shadows.Computers & Graphics,
9(3):259–265, 1985.7, 12

27. Geoffre S. Hubona, Philip N. Wheeler, Gregory W. Shi-
rah, and Matthew Brandt. The role of object shadows
in promoting 3D visualization.ACM Transactions on
Computer-Human Interaction, 6(3):214–242, 1999.1,
2

28. M. Isard, M. Shand, and A. Heirich. Distributed ren-
dering of interactive soft shadows. In4th Eurograph-
ics Workshop on Parallel Graphics and Visualization,
pages 71–76. Eurographics Association, 2002.10, 16

29. Brett Keating and Nelson Max. Shadow penumbras for
complex objects by depth-dependent filtering of multi-
layer depth images. InRendering Techniques 1999
(10th Eurographics Workshop on Rendering), pages
205–220. Springer-Verlag, 1999.10

30. Daniel Kersten, Pascal Mamassian, and David C. Knill.
Moving cast shadows and the perception of relative
depth. Technical Report no 6, Max-Planck-Institut fuer
biologische Kybernetik, 1994.1, 2

31. Daniel Kersten, Pascal Mamassian, and David C. Knill.
Moving cast shadows and the perception of relative
depth.Perception, 26(2):171–192, 1997.1, 2

32. Mark J. Kilgard. Improving shadows and reflections
via the stencil buffer.http://developer.nvidia.com/docs/
IO/1348/ATT/stencil.pdf, 1999. 8

33. Florian Kirsch and Juergen Doellner. Real-time soft
shadows using a single light sample.Journal of WSCG
(Winter School on Computer Graphics 2003), 11(1),
2003. 11, 12, 13, 16, 17

34. David C. Knill, Pascal Mamassian, and Daniel Kersten.
Geometry of shadows.Journal of the Optical Society
of America, 14(12):3216–3232, 1997.1

35. Johann Heinrich Lambert.Die freye Perspektive. 1759.
1, 2

36. Tom Lokovic and Eric Veach. Deep shadow maps.
In Computer Graphics (SIGGRAPH 2000), Annual
Conference Series, pages 385–392. ACM SIGGRAPH,
2000. 7

37. Céline Loscos and George Drettakis. Interactive
high-quality soft shadows in scenes with moving ob-
jects.Computer Graphics Forum (Eurographics 1997),
16(3), September 1997.6

38. Pascal Mamassian, David C. Knill, and Daniel Kersten.
The perception of cast shadows.Trends in Cognitive
Sciences, 2(8):288–295, 1998.1, 2, 3

39. Michael D. McCool. Shadow volume recontsruction
from depth maps. ACM Transactions on Graphics,
19(1):1–26, 2000.8, 17

40. Steven Parker, Peter Shirley, and Brian Smits. Single
sample soft shadows. Technical Report UUCS-98-019,
Computer Science Department, University of Utah, Oc-
tober 1998.11, 14

41. William T. Reeves, David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth maps.
Computer Graphics (SIGGRAPH 1987), 21(4):283–
291, 1987. 7

42. Stefan Roettger, Alexander Irion, and Thomas Ertl.
Shadow volumes revisited. InWinter School on Com-
puter Graphics, 2002. 8

43. Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim
Foran, and Paul Haeberli. Fast shadows and lighting ef-
fects using texture mapping.Computer Graphics (SIG-
GRAPH 1992), 26(2):249–252, July 1992.7

44. Cyril Soler and François X. Sillion. Fast calculation of
soft shadow textures using convolution. InComputer
Graphics (SIGGRAPH 1998), Annual Conference Se-
ries, pages 321–332. ACM SIGGRAPH, 1998.4, 6, 9,
13, 16, 17

c© The Eurographics Association 2003.

http://www.ati.com/developer/gdc/GDC2003_OGL_ARBFragmentProgram.pdf
http://www.ati.com/developer/gdc/GDC2003_OGL_ARBFragmentProgram.pdf
http://www.ati.com/developer/gdc/GDC2003_OGL_MiscExtensions.pdf
http://www.ati.com/developer/gdc/GDC2003_OGL_MiscExtensions.pdf
http://developer.nvidia.com/docs/IO/1348/ATT/stencil.pdf
http://developer.nvidia.com/docs/IO/1348/ATT/stencil.pdf

Hasenfratz et al / Real-time Soft Shadows

45. Marc Stamminger and George Drettakis. Perspective
shadow maps.ACM Transactions on Graphics (SIG-
GRAPH 2002), 21(3):557–562, 2002.7

46. Sylvain Vignaud. Real time soft shadows on geforce
class hardware. http://tfpsly.planet-d.net/english/3d/
SoftShadows.html, 2003. 13

47. Leonardo Da Vinci.Codex Urbinas. 1490. 1, 2

48. Leonard Wanger. The effect of shadow quality on
the perception of spatial relationships in computer gen-
erated imagery. Computer Graphics (Interactive 3D
Graphics 1992), 25(2):39–42, 1992.1, 2

49. Lance Williams. Casting curved shadows on curved
surfaces. Computer Graphics (SIGGRAPH 1978),
12(3):270–274, 1978.7

50. Andrew Woo, Pierre Poulin, and Alain Fournier. A sur-
vey of shadow algorithms.IEEE Computer Graphics
and Applications, 10(6):13–32, November 1990.2

51. Zhengming Ying, Min Tang, and Jinxiang Dong. Soft
shadow maps for area light by area approximation. In
10th Pacific Conference on Computer Graphics and
Applications, pages 442–443. IEEE, 2002.9, 10, 11,
16, 17

52. A. Yonas. Attached and cast shadows. InPerception
and Pictural Representation, pages 100–109. Praeger,
1979. 2

53. Hansong Zhang. Forward shadow mapping. InRen-
dering Techniques 1998 (9th Eurographics Workshop
on Rendering), pages 131–138, 1998.7

c© The Eurographics Association 2003.

http://tfpsly.planet-d.net/english/3d/SoftShadows.html
http://tfpsly.planet-d.net/english/3d/SoftShadows.html

	Introduction
	Basic concepts of hard and soft shadows
	What is a shadow?
	Importance of shadow effects
	Hard shadows vs soft shadows
	Important issues in computing soft shadows
	Basic techniques for real time shadows

	Soft shadow algorithms
	Image based approach
	Object based approach

	Classification
	Controlling the time
	Controlling the aspect
	Number and shape of the light sources
	Constraints on the scene
	New generation of GPUs

	Conclusions
	References

