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Figure 1: Bayesian network (number of nodes reduced for display) of a facility and a set of arranged tri-mesh models [Tri13].

Abstract
We present a method to arrange components of industrial facilities in a constrained site footprint. We use a prob-
abilistic graphical model of industrial sites and existing procedural modeling methods to automate the assembly
and 3D modeling of wastewater treatment plants. A knowledge engineered approach produces a combination of
components that inherently contains domain specific information like process dependencies and facility size. The
inferred combination is laid out using mathematical optimization or via a physics-based simulation resulting in
an arrangement that respects the industrial process and design plausibility.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Stand-alone Systems, G.3 [Probability and Statistics]: Probabilistic Algorithms—Bayesian Networks, I.2.6 [Com-
puting Methodologies]: Learning—Knowledge Acquisition.

1. Introduction

The built world is not easy to re-model in 3D [VAW∗10].
Research methods that try to automate the rebuilding pro-
cess generally start from images [BM99,FRL∗98,PKVG00];
LiDAR data [CL96, FNSZ06]; or use procedural meth-
ods to model buildings [MWH∗06] and detailed facades
[HWA∗10, KW11, MZWVG07]. In this work we focus on
synthesizing industrial facilities that require teams of experts
in disparate fields [BH93] to construct. To address some of
the complexity in making 3D facility models we propose
a probabilistic approach to component selection, optimized
and physics-based layouts, and 3D models with procedurally
generated and triangle-mesh geometry. To demonstrate the
usefulness of our approach we chose wastewater treatment

plants (WWTP) as the example facility type because de-
sign documents are publically available, and the structures
(clarifiers, reactors, etc.) are geometrically distinct and visi-
ble from aerial photographs. The primary motivation for this
work is to use the 3D facility models as input to synthetic
aerial image generators [Cen]. The 2D images can then be
used as benchmark imagery for verification and validation
[GDSS∗11] of automated detection, classification, and la-
beling algorithms [RTP∗10, RPV∗11].

2. Related Work

Procedural methods to automatically generate 3D build-
ing models tend to focus on residential and commercial
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buildings [PM01, WMW∗08], reconstructing cultural sites
[HMG09], creating facades [TKS∗13], and enforcing struc-
tural engineering constraints [WOD09]. There are proba-
bilistic method to assemble individual 3D models from seg-
mented and labeled shape libraries [CKGK11, KCKK12],
but there are few automated methods to generate plausible
industrial 3D facility models. One approach outlined by No-
mura and Miyata [NM11] generates 3D models of process
plants from silhouette sketches of facility images, but their
approach does not respect the facility process functionality
and the resulting geometry may contain intersections. In ad-
dition to generating geometry, 3D facility modeling consid-
ers interconnected components that interact in some fash-
ion, e.g., an assembly line, and while not directly related
to facilities, there is interest from the graphics community
in the related problem of furniture layout [GS09, MSL∗11],
open world layouts [YYW∗12] and creating new 3D ar-
rangements from existing 3D scenes [FRS∗12] that might
be adapted to work for facility layout and modeling.

3. Approach

Features of several hundred WWTP’s are used to construct
a Bayesian network (BN). The use of a BN is inspired by
Merrell et al. [MSK10] who use a probabilistic method to
derive residential layouts from user specifications. Merrell
et al. combine BN structure learning and optimization to
compute new residential layouts from a corpus of existing
homes. A sampling from our BN provides the set of facility
components given some high level user constraints like the
population in the target area. Then, a layout algorithm is ap-
plied to the set of components, a 2D footprint generated and
a 3D model constructed. (See Figure 2.)

Figure 2: High level diagram of our system.

3.1. Data Collection

Python scripts were created to scrape websites for WWTP
facility data (local population, flow rates, facility compo-

nents, etc.). The data were extracted from embedded HTML
tags and stored in tables for use in constructing the BN. Ta-
ble 1 shows a selected set of features and technical attributes
of about 445 WWTP’s located in Spain [Com13]. The set of
feature attribute values for each WWTP are encoded using
nominal (categorical) and numeric values.

3.2. Bayesian Network Representation

A BN provides the complete joint probability distribution for
a set of random variables X1, . . . ,Xn. Each Xi is represented
as a node in the BN with an associated conditional proba-
bility table (CPT) computed from the data set discussed in
Section 3.1. The joint probabilities in a BN can be computed
by multiplying together all the parent conditional probabili-
ties P(Xi|Parents(Xi)) [RN10] taken from the CPT’s:

P(X1 = x1, . . . ,Xn = xn) =
n

∏
i=1

P(Xi|Parents(Xi)), (1)

where n is the number of nodes in the BN and xi is an at-
tribute value of interest for each Xi in the network. We dis-
cretize continuous random variables prior to building the
BN.

3.3. Learning the Bayesian Network

A BN network can be learned by iteratively modifying the
network topology (adding edges, flipping edges, removing
edges, etc.) and maximizing a network score (i.e. Bayesian
information criteria) for each structure. While Merrell et al.
[MSK10] use a learned BN for room adjacencies, we rely on
the process flow diagram of a WWTP for connectivity and
use structure learning only as an automation step to build the
BN. The search over all possible networks is computation-
ally expensive and in practice greedy algorithms are used to
learn the network topology [Pe’05]. We use the K2 structure
learning algorithm [CH92] as implemented in [HFH∗09].

3.4. Inferring the Most Likely Components

A sampling of the BN conditioned on fixed attribute values
allows for 3D model variation. For example, a user might
want to create a facility for a city with a population of 1
million people. Given the conditioning, marginal probabili-
ties (P(X1), . . . ,P(Xn)) can be computed from the joint dis-
tribution (Section 3.2) using the ancestor graph of Xi. The at-
tribute value (xi) with the maximum probability at each node
in the BN is selected and placed in a set of components used
for the layout discussed in Section 3.5. We use the Junction
Tree Algorithm [LS98] as provided in [HFH∗09] to compute
marginal probabilities.

3.5. Arranging the Facility

We tested two methods to lay out the set of facility compo-
nents from Section 3.4, a random physics based approach
and a linear program (LP) mathematical optimization.
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Feature Name Nominal Attributes
Primary Treatment {Decanting, Physical-Chemical}
Secondary Treatment {Aerated Lagoons, Activated Sludge, Biocylinders, Biodiscs, Extended Aeration, . . . }
Tertiary Treatment {Infiltration-Percolation, Filtration, Floc-Coag, Reverse Osmosis, Ultrafiltration, . . . }
Disinfection {Chlorination, Ultraviolet}
Electricity Generation {Cogeneration, Solar Panels}
Integer and Boolean Attributes Feature Name
Integer types {Z} {Capacity, Population, Num. of Primary & Secondary Clarifiers, Num. Reactors, . . . }
Boolean Types{Yes|No} {Degreaser, Decanting, Aerobic, Anaerobic, Centrifuge, Composting, Incineration,. . . }

Table 1: Select features and attributes of the WWTP knowledge base.

3.5.1. Rigid Body Layout

The first method involves stochastically generating coordi-
nates and assembling the components in a chain of spring
constraints in a rigid body simulation [Bul13]. The result-
ing layout respects certain physical properties but does not
optimize pipe costs, flow rates, or distances.

3.5.2. Linear Program Optimization

The second method uses LP optimization with linear con-
straints and a linear objective function, where the goal is
to minimize cT x subject to Ax ≤ b. The decision variables
are the set of coordinates that minimize the Manhattan dis-
tance between components given the cost of piping (c), and
flow ( f ) between the component parts (p). The system is
constrained by a convex polygon site footprint and a set of
separation distances (roads, paths, etc.). Each component is
approximated with a bounding rectangle, or cell. We use
the BlockPlan LP algorithm [MV88] as described by Her-
agu [Her08], with the objective function:

n−1

∑
i=1

n

∑
j=i+1

ci j fi j(x
+
i j + x−i j + y+i j + y−i j ) (2)

where ci j is the piping cost matrix and fi j is the positive
flow between components pi and p j. We assign a 0 flow
between non-adjacent components and a random pipe cost
[U.S00] between pi and p j because we do not have piping
cost in our data set. To enforce non-negativity with respect
to the distance [MV88], positive variables are introduced
for both (x,y) and transformed to (x+i j ,x

−
i j ) and (y+i j ,y

−
i j ).

(See [Her08,MV88] for complete details.) Coordinates were
mapped to world space and a procedurally generated shape
or existing triangle-mesh placed at the centroid of each cell.

4. Results

Examples for three dynamically generated layouts are shown
in Figures 3a - 3c. Figure 3d shows objects located at the
center of cells whose coordinates were found using the LP
optimization discussed in Section 3.5.2. The objects placed
in the site are to simulate the actual components of a WWTP.
The small short cylinders are primary clarifiers, the larger

ones are secondary clarifiers. The five rectangles represent
the biologic reactors and the tallest cylinders are the di-
gesters. The spheres are gas storage tanks and the long rect-
angle represents pre-treatment. The smallest rectangle sym-
bolizes disinfection.

(a) Random layout. (b) Point constraint layout.

(c) Spring damper layout. (d) Optimized layout.

Figure 3: Various facility layouts

5. Conclusion & Future Work

We demonstrated the usefulness of arranging and modeling
plausible WWTP’s given a site and a probabilistic model.
The most difficult aspects of this work were to identify a fa-
cility type, to construct a working knowledge base, and to
find expert collaborators. Future work will include adding
WWTP geometric details and textures to the data set and us-
ing a non-linear optimization with different distance metrics
and boundary constraints to make the layouts more realistic.
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