
EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Path Regeneration for Interactive Path Tracing

Jan Novák1, Vlastimil Havran2, and Carsten Dachsbacher1

1VISUS, University of Stuttgart
2Czech Technical University in Prague

Abstract

Rendering of photo-realistic images at interactive frame rates is currently an extensively researched area of com-

puter graphics. Many of these approaches attempt to utilize the computational power of modern graphics hardware

for ray tracing based methods. When using path tracing algorithms the ray paths are highly incoherent, hence we

propose an efficient technique that minimizes the divergence in execution flow and ensures full utilization by in-

telligently regenerating the paths. We analyze the conditions under which our improvements provide the highest

speedup, and demonstrate the performance of the overall system by rendering interactive previews of global illu-

mination solutions using (bidirectional) path tracing with progressive refinement.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—[Ray tracing]

1. Introduction

Physically correct computation of light transport is consid-
ered to be a hardly solvable problem in real-time on con-
temporary hardware. Path tracing algorithms [Kaj86,LW93]
terminate the paths with Russian roulette to ensure unbiased
results, but require a tremendous amount of paths to pro-
duce converged results. Porting these algorithms on wide
SIMD architectures can achieve notably higher throughput,
but the probabilistic termination of paths poses a significant
issue for the parallel computation. Unoptimized implemen-
tations suffer from high execution flow divergence that re-
sults in poor hardware utilization: while some threads still
trace paths, others have already been terminated and just
occupy the processing units without any contribution to the
overall result.

The vast majority of current GPU algorithms based on
tracing paths avoids the divergence by tracing all paths up
to a certain length. This is very inefficient since some of
the paths deliver a negligible amount of energy after a few
bounces, whereas others may contribute considerably even
after exceeding the preset length. Therefore, our method still
uses the Russian roulette, but alleviates the poor utilization
by restarting terminated threads and computing new paths,
leading to higher overall performance. We also show how to
limit the length of paths if necessary, such that a user-defined
maximum amount of bias is not exceeded.

2. Related Work

While many papers have been devoted to ray tracing on
GPUs, only few address efficient implementations of general
rendering algorithms in the parallel environment of modern
graphics cards. Cassagnabère et al. [CRR04] discuss an im-
plementation of path tracing on the AR350 processor of the
RenderDrive product family. Path tracing and distribution
ray tracing have been highly optimized on CPUs by Boulos
et al. [BEL∗06]. Cassagnabère et al. [CRR06] describe soft-
ware architectures for the mapping path tracing algorithms
on several GPUs. Coulthurst et al. [CDDC08] present a path
tracing algorithm with a high utilization of wide SIMD pro-
cessors by data buffering on the ClearSpeed CSX architec-
ture. Recently, Budge et al. [BBS∗09] suggested a software
architecture that allows sharing the resources of CPUs and
GPUs and supports path tracing. Sugerman et al. [SFB∗09]
describe the GRAMPS programming model that handles
varying workload automatically by queues. This concept has
been verified by Aila and Laine [AL09] for traversing a kd-
tree with persistent threads and a pool of rays.

Our technique is complementary to the persistent threads
since we focus on maximal utilization on a higher level by
intelligently restarting terminated paths with no necessity to
enqueue them. We demonstrate the applicability on bidirec-
tional path tracing and present, to our best knowledge, the
first efficient (bidirectional) path tracing on the GPU.

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org

J. Novák & V. Havran & C. Dachsbacher / Path Regeneration for Interactive Path Tracing

100
[%]

4th3rd 7th0th
0

20

40

60

80

bounce1st 2nd 5th 6th

(a) Office

4th3rd 7th0th bounce1st 2nd 5th 6th

100
[%]

0

20

40

60

80

(b) Conference Room

Figure 1: The relative number of active (green) and all (red)

threads in warps after first few bounces. The difference be-

tween the columns expresses the fraction of inactive (idle)

threads. The overall utilization of processing units is only

32% and 35% for the Office and Conference Room.

3. Path Tracing on SIMD

The parallelization of path tracing follows similar concepts
as for ray tracing. In the simplest form, each thread, having
been assigned one primary ray, traces the ray until the closest
intersection with the scene geometry is found. Then it esti-
mates direct illumination due to one randomly selected light
source and stores it in a temporary image buffer. To account
for indirect illumination, the algorithm samples the bidirec-
tional scattering distribution function (BSDF) of the hit sur-
face, and with probability derived from material and geomet-
ric configuration continues to incrementally construct a path,
until it is stochastically terminated by the Russian roulette.
At each path vertex, one light source is sampled and the
weighted contribution accumulated in the image buffer.

3.1. Sparse Warps

The major problem arising from the Russian roulette is
the high divergence in the length of individual paths. At
each bounce, a certain fraction of paths is terminated and
the corresponding threads become inactive. On GPUs with
CUDA architecture, the threads are processed simultane-
ously in groups of 32, called warps. Since the number of
active threads in a warp is dropping as the paths are ran-
domly terminated, we call such warps sparse. Notice that a
warp is considered to be sparse only if it contains at least one
active and one inactive thread. Consider for example the Of-
fice scene with the average probability of continuing a path
equal to 38%. The number of active threads in a warp after
i bounces can be estimated as 0.38i

× 32, giving 12, 5, and
2 active threads after first, second, and third bounce. The
performance of any SIMD architecture scales with the oc-
cupancy of the available resources; therefore, sparse warps
will prevent any path tracing algorithm from exploiting the
full GPU power.

Figure 1 shows the ratio between actively working and
idle threads for two different scenes. The difference between
columns expresses the total number of inactive threads
(wasted resources) in sparse warps, which drastically re-
duces the utilization of the GPU.

0th k k + lm

Path Regeneration Phase

...........

Closing Phase

4th3rd 7th bounce1st 2nd 5th 6th

100
[%]

0

20

40

60

80

Figure 2: Regeneration of paths that were terminated by

Russian roulette or did not intersect the scene geometry. The

color emphasizes different path generations, e.g. green, blue,

or red color show the relative number of threads that per-

formed zero, one, or two restarts, respectively.

3.2. Path Regeneration

We address the problem of sparse warps by restarting the ter-
minated paths and tracing additional ones. Once a path Pi is
terminated, we generate a new path Pi+1, assign it to the in-
active thread and continue with tracing the next bounce. The
path restart is handled by a routine, which is executed af-
ter the Russian roulette. For all terminated paths, the routine
stores their contributions and generates new samples that are
used to shoot new paths. The rest of the pipeline remains
unaffected. This step ensures that all threads that would be-
come inactive continue contributing to image synthesis.

Restarting the new paths in the origin (camera) and trac-
ing additional primary rays is beneficial only in some cases,
such as rendering of motion blur or depth-of-field effects. In
these situations the routine generates completely new paths
for the terminated ones. On the other hand, if the primary
rays are used to suppress aliasing artifacts only, we not al-
ways create a new path, but reuse the primary ray traced by
Pi and continue tracing Pi+1 from the first found intersec-
tion. Due to stochastic sampling of BSDFs, the new path will
take a different random walk and compute indirect lighting
from other parts of the scene than Pi. By sharing the primary
rays among the paths, we dedicate the majority of available
resources to computation of indirect illumination, the main
source of variance.

Since a complete avoidance of tracing multiple primary
rays would prevent anti-aliasing, we could enforce creation
of an entirely new path after a certain number of restarts has
been performed. In our implementation we take different ap-
proach: we allow the user to adjust the anti-aliasing by set-
ting the number of samples per pixel, whereas by the length
of the path regeneration phase Tr the user controls the com-
putation of indirect lighting. For each pixel sample, a single
SIMD thread traces (and restarts) paths until Tr bounces are
found. Then it stops restarting and continues tracing for an-
other Tc bounces, to which we refer as the closing phase. The
length of the closing phase Tc, formalized in the next section,
should suffice to let the Russian roulette gradually terminate
all the remaining paths, as shown in Figure 2. Notice the full
utilization of threads during the path regeneration phase.

c© The Eurographics Association 2010.

62

J. Novák & V. Havran & C. Dachsbacher / Path Regeneration for Interactive Path Tracing

3.3. Path Length Limitation

In order to avoid introducing bias from forcedly terminating
the paths in the closing phase, the algorithm would have to
wait for all the paths to be terminated by the Russian roulette.
In such case, the length of the closing phase Tc is unpre-
dictable and the algorithm needs to determine the number of
remaining paths, e.g. by parallel reduction, at each step. As
this would be too expensive, we rather precompute a max-
imum path length lm in a way that allows us to control the
amount of bias introduced from terminating the path after
lm bounces. Since the termination probability of the Rus-
sian roulette is derived from the hemispherical reflectance
of the hit material, the average path length is proportional
to the average reflectance of the scene ρS. Bearing this in
mind, we can estimate lm in the following manner: first,
we compute ρS as the mean value of material reflectance
weighted by the area Si covered by the respective material i

as: ρS = 1
S ∑

N
i=1 ρiSi. The maximum path length lm is then

set to logρS
c, where c is the fraction of paths that we admit

to terminate forcedly.

By setting the length of the closing phase Tc to lm, we en-
sure that the number of forcedly terminated paths is approx-
imately c. Limiting the path length with respect to material
properties is a general idea and can be used in another algo-
rithms, i.e. distribution of VPLs for instant radiosity [Kel97]
on the GPU.

3.4. Bidirectional Path Tracing

We examined the usability of the path regeneration tech-
nique on a basic version of bidirectional path tracing follow-
ing the original paper by Lafortune and Willems [LW93].
As the main idea is to combine eye subpaths with light sub-
paths, a straightforward approach would be to precompute
one light subpath per image sample and then combine it with
all eye subpaths created for the sample. Such implementa-
tion introduces a significant coherence into the Monte Carlo
estimator, since all eye subpaths generated for one sample
get combined with one light subpath only. To break this cou-
pling, we randomly select a different light subpath at each
bounce of the eye subpath (Figure 3).

This technique has two major advantages. First, we over-
come the problem of combining one particular light subpath
with all eye subpaths that are traced for one image sample.
Second, we also reduce the deterministic noise caused by
connecting vertices of one light subpath with one eye sub-
path. If the light path happens to carry a lot of energy, it will
greatly contribute to each vertex of the eye subpath. Conse-
quently, this eye subpath will tend to gather much more light
than another one, which is combined with a low contribution
light subpath. By permuting the light subpaths, we allow the
energy to be spread among multiple eye subpaths that belong
to different image plane samples. It can be shown that the es-
timator is still unbiased and the Neumann series converges
if the contribution of each path is correctly weighted.

Light subpaths

Eye subpaths

Figure 3: Path regeneration technique applied to bidirec-

tional path tracing: the combination of eye and light sub-

paths is shown for the first thread only. Shadow rays towards

the lights (gray solid lines) refer to classic path tracing.

4. Implementation Details

Since obtaining converged results in real-time is currently
impossible, we render the final image progressively with
successive refinements. This requires interrupting the com-
putation in the path regeneration phase and displaying the
intermediate results. When the camera is moving, the re-
sults are displayed after only a few iterations. Optionally,
we use an edge-preserving bilateral filter to blur the noise
in the renderings. Once the position of the camera is fixed,
the screen is updated with increasing intervals, which en-
ables interactive frame rates when exploring the scene, while
keeping the overhead of interrupting the computation fairly
low when waiting for converged results. Figure 4 shows re-
sult images of interactive renderings, and more converged
solutions. The filtering can be switched on and off at anytime
during the progressive refinement. For accelerating the inter-
section search we use a kd-tree data structure. Random num-
bers are generated on-the-fly using Mersenne twister random
number generator. Converged results are shown in Figure 5.

5. Results

We measured all results using an NVIDIA GeForce
GTX 285. Table 1 shows the performance improvements of
the optimized path tracing with path regeneration. The unop-
timized version (NO) traces one path for each sample up to
a maximum length lm that has been computed with c = 1%.
For the path regeneration version (PR) we used regeneration
and closing phases with 100 and lm iterations, respectively.
The number of per-pixel samples for both algorithms was
adjusted to obtain images with similar quality.

For each tested scene, we also created a brighter and a
darker version to examine the performance dependency on
ρS. For the darker scenes, where the paths are shorter on
average, the hardware is still well utilized. However, as the
scenes become brighter, the performance of the unoptimized
version decreases, since the ratio of active to inactive threads
in the sparse warps is lower. The path regeneration technique
is by far less prone to introduce any dependency on the ma-
terials in the scene, which makes it more robust and stable in
terms of throughput. Another advantage of path regeneration

c© The Eurographics Association 2010.

63

J. Novák & V. Havran & C. Dachsbacher / Path Regeneration for Interactive Path Tracing

Initial Scene Configuration Lower Avg. Reflectance Higher Avg. Reflectance
ρS la lm NO PR S ρS lm NO PR S ρS lm NO PR S

Cornell Box 0.32 1.5 5 30.03 48.52 1.6 0.16 3 38.55 49.02 1.3 0.52 8 23.76 49.16 2.1

Office 0.43 1.8 6 10.34 15.37 1.5 0.22 4 12.09 15.49 1.3 0.71 14 7.81 15.57 2.0

Sibenik 0.67 3.0 12 8.99 17.24 1.9 0.34 5 12.51 17.41 1.4 0.80 22 7.80 17.49 2.2

Conference R. 0.44 1.8 6 6.64 9.64 1.5 0.23 4 7.77 9.50 1.2 0.73 15 5.20 9.66 1.9

Golf Balls 0.67 4.0 12 6.79 11.13 1.6 0.34 5 8.03 11.12 1.4 0.81 23 6.29 11.16 1.8

Table 1: Performance of the unoptimized path tracing (NO) and our version with path regeneration (PR) in 106 rays/sec.

Column ρS shows the average scene reflectance. la and lm report the average and maximum path length, respectively. Column

S states the relative speedup of the optimized algorithm (PR/NO). Notice the dependence of S on the average scene reflectance.

Figure 4: Interactive rendering of the Sibenik Cathedral and

Conference Room. Each triple contains a filtered/original

preview image with corresponding frame rates, and render-

ing results after 1 and 10 seconds of progressive refinement.

is that it also inherently restarts paths that were terminated
for some other reason than the Russian roulette, i.e. those
that did not hit the scene geometry.

The upper bound on the saved computation cost due to
reusing the primary rays can be derived from the average
path length la, which equals ∑i=1 i(1− r)ri−1 = 1/(1− r),
where r is the average probability of continuing the path.
Since we trace one shadow ray at each bounce, the total num-
ber of rays per path is 2la and the upper bound on the saved
computation is 1/(2la). In our tests, the rendering time was
reduced by 9% to 20%, which is slightly less than 1/(2la),
since tracing rays is only a part of the total rendering cost.

6. Conclusion and Future Work

We presented an efficient GPU implementation of (bidi-
rectional) path tracing that fully utilizes processing units
achieving performance of 48 millions of incoherent rays per
second for simple scenes, and about 13 million rays per
second for more complex ones. The algorithm has stable
throughput regardless of materials in the scene achieving up
to double performance just by regenerating the paths. We
would like to continue exploring path re-usability on SIMD
architectures in similar spirit as Bekaert et al. [BSH02].

Figure 5: Converged results rendered with our path tracer.

References

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on gpus. In HPG ’09: Proceedings of the Conference on

High Performance Graphics 2009 (New York, NY, USA, 2009),
ACM, pp. 145–149. 1

[BBS∗09] BUDGE B. C., BERNARDIN T., SENGUPTA S., JOY

K. I., OWENS J. D.: Out-of-core data management for path trac-
ing on hybrid resources. In Proc. Eurographics 2009 (2009). 1

[BEL∗06] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS

J., KAUTZ J., SHIRLEY P., WALD I.: Interactive Distribution

Ray Tracing. Tech. Rep. UUSCI-2006-022, 2006. 1

[BSH02] BEKAERT P., SBERT M., HALTON J.: Accelerating
path tracing by re-using paths. In EGRW ’02: Proc. of the 13th

Eurographics workshop on Rendering (2002), pp. 125–134. 4

[CDDC08] COULTHURST D., DUBLA P., DEBATTISTA K.,
CHALMERS A.: Parallel path tracing using incoherent path-
atom binning. In Spring Conference on Computer Graphics 2008

(2008), pp. 103–108. 1

[CRR04] CASSAGNABÈRE C., ROUSSELLE F., RENAUD C.:
Path tracingusing theAR350processor. InGRAPHITE’04 (2004),
pp. 23–29. 1

[CRR06] CASSAGNABERE C., ROUSSELLE F., RENAUD C.:
Cpu-gpu multithreaded programming model: Application to the
path tracing with next event estimation algorithm. In ISVC06

(2006), pp. II: 265–275. 1

[Kaj86] KAJIYA J. T.: The rendering equation. In Computer
Graphics (Proc. of SIGGRAPH ’86) (1986), pp. 143–150. 1

[Kel97] KELLER A.: Instant radiosity. In SIGGRAPH ’97 (1997),
pp. 49–56. 3

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-directional path
tracing. In Proc. of Third International Conference on Compu-
tational Graphics and Visualization Techniques (Compugraphics

’93 (Alvor, Portugal, 1993), pp. 145–153. 1, 3

[SFB∗09] SUGERMAN J., FATAHALIAN K., BOULOS S., AKE-
LEY K., HANRAHAN P.: Gramps: A programming model for
graphics pipelines. ACM Trans. Graph. 28, 1 (2009), 1–11. 1

c© The Eurographics Association 2010.

64

