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Skeleton computation of an image using a geometric approach
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Abstract

In this work we develop two algorithms to compute the skeleton of a binary 2D image. Both algorithms follow
a geometric approach and work directly with the boundary of the image which is an orthogonal polygon (OP).
One of these algorithms processes the edges of the polygon while the other one uses its vertices. Compared with a
thinning method, the presented algorithms show a good performance. This is a work in progress as our final goal
is to extend the vertex-based algorithm method to 3D in order to compute the surface skeleton of a binary volume.

Categories and Subject Descriptors (according to ACM CCS): Computer graphics [I.3.5]: Computational Geometry
and Object Modeling—; Image processing and computer vision [I.4.10]: Image representations—

1. Introduction

One of the challenges of the BioCAD field is to understand
the morphology of the pore space of bone, biomaterials,
rocks, etc. Several approaches exist that obtain a network
with pores and connections between them [VAGT08] or that
characterize plate and rod elements [SM06], which rely on a
previous computation of a surface skeleton.

In this work we follow a geometric approach to compute
the skeleton of a binary 2D image using as input the orthog-
onal polygon (OP) that constitutes the image boundary. Our
final goal is to obtain the surface skeleton of a binary vol-
ume by extending the proposed method. We have chosen this
approach because geometric methods compared to thinning
methods perform fewer steps as they do not need to work
at voxel level. As real datasets obtained from µCT tend to
be large, computing their skeleton with thinning approaches
is very time-consuming. We have compared the proposed
method with an optimized thinning approach and the ob-
tained experimental results have been very encouraging, so
we will extend our ideas to 3D.

We present two algorithms to compute the skeleton. Both
are based on an existing method [PL01], which computes
the Voronoi Diagram with L∞ (V D∞) of a general polygon.
Both are intended to the particular case of OP. The first algo-
rithm processes the edges of the polygon while the second
one processes its vertices. The computed skeleton is com-

posed by bisectors of the polygon edges which, in the par-
ticular case of OP, are vertical, horizontal and 45◦ edges.
The worst case of method complexity for general polygons
as well as that of the two presented methods is O(n logn) in
time and O(n) in space, being n the number of vertices.

2. Related work

Methods to compute the skeleton can be classified into three
main families: thinning, distance field and geometric. Most
methods that apply to discretized data, i.e., images or vol-
umes, are based on thinning and distance field approaches.
Thinning methods consist in iteratively removing points
from the object boundary. Distance field approaches rely on
the previous computation of the distance field. These meth-
ods are linear in the number of voxels. Geometric methods
are generally applied to polygons and polyhedra and they are
based on the Voronoi diagram. The worst case of complexity
is quadratic with the number of vertices. See [CSM05] for a
survey on skeletonization methods.

The straight skeleton, introduced in [AA96], is a concept
that coincides with the Voronoi Diagram with L∞ (V D∞)
when applied to a boundary with axis-aligned edges. It con-
sists in angular bisectors between edges (2D) or faces (3D).
In [PL01] a method that applies to rectilinear polygons is
developed and used to compute the critical area for shorts
in VLSI. It is a sweep-line based approach that character-
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izes several types of events to deal with. In [SPK05] a V D∞
is computed and applied to lithography path generation. This
algorithm applies to general polygons without horizontal and
vertical edges. Other approaches that compute the straight
skeleton can be found in [EE99] and [TV03].

Concerning 3D algorithms, in [SPB96] the medial axis
skeleton of general polyhedra without cavities is computed.
They follow a tracing approach from the boundary ele-
ments inwards to the interior taking into account the en-
countered junction points. A shrinking process beginning at
the boundary is also applied in the two methods presented
in [BEGV08] to compute the straight skeleton of an orthog-
onal polyhedron. These methods characterize and deal with
several types of events.

2.1. Algorithm for general polygons

Our method is based on the method presented in [PL01]
that we outline here briefly. This method proposes a sweep
algorithm to compute the Voronoi diagram (VD) of a pla-
nar straight-line graph G using the L∞ distance. A vertical
sweep-line L is swept from left to right.

At any instant the V D∞ of the portion of G that lies on
the left of L is computed. The boundary of the Voronoi cells
of L is called the wavefront. It is a y-monotone polygonal
line obtained by connecting the consecutive waves. A wave
is sliding along two tracks which are either bisectors or in-
tersected edges so that at any instant the endpoint of a bi-
sector corresponds to the centre of the square defined by the
sweep-line and the two elements inducing the bisector. The
wavefront is stored in a height-balanced binary tree T . There
are two kinds of events that cause the wavefront to change:
the occurrence of a point or a vertical edge (site event) and
the intersection point of two neighbour spike bisectors (spike
event). A priority queue referred to as an event list is used to
store the events in increasing priority.

Let p1 and p2 be the two vertices defining a site event (p1
is above p2). If a site event is defined by a point it is treated
as a vertical edge with zero length. To process a site event,
points v1 and v2 are computed as the intersection between
the bisectors of p1 and p2 and the wavefront. Points v1 and
v2 are found using a binary search in T . Then the finalized
portion of the wavefront between v1 and v2 is inserted in
V D∞ and deleted from T . New spike bisectors emanating
from every pair of edges incident to the site event edge and
from new Voronoi vertices vi are inserted in T . Finally, for
every pair of inserted spike bisectors new spike events in-
duced by the intersection with neighbouring spike bisectors
are created.

A spike event is the result of the intersection of two spike
bisectors. It is also induced by three edges e1, e2 and e3 be-
cause the two spike bisectors must share an edge e2. The pri-
ority of a spike event is defined by the rightmost abscissa of
the square defined by the two bisectors and the sweep-line.

Figure 1: Possible vertex configurations with orthogonal
polygons. Red line is the induced bisector and the coloured
region is the interior of polygon.

It is valid if the inducing bisectors are neighbouring in T . A
valid spike event is a Voronoi vertex and the incident spike
bisectors are Voronoi edges. A new spike bisector induced
by e1 and e3 is generated and new spike events are inserted
due the intersection with neighbour spike bisectors.

3. Edge-based algorithm for orthogonal polygons

Several simplifications can be done to the previous algorithm
when applied to the particular case of orthogonal polygons.
Site events always correspond to the occurrence of a verti-
cal edge. The two vertices that define an edge have a limited
number of configurations (see Figure 1). Type 1 vertex con-
figurations have the interior of the polygon at the right of
the edge while type 2 have the interior at the left. Note that
an edge cannot have two vertices of different types. At any
instant if a vertex is of type 1 the outgoing spike bisector
cannot intersect the current wavefront. Otherwise, if it is of
type 2 we have to retrieve the intersected point of T .

Our simplified algorithm first classifies the edge as type 1
or 2. If it is of type 1 we generate two new spike bisectors
induced by its vertices and insert new spike events due the
intersection with neighbour spike bisectors. If it is of type 2
we detect v1 and v2 in the wavefront and finalize the portion
between them. Additionally, if we have a vertex of type 2.3
or 2.4 we generate a new spike bisector induced by the site
event edge and the intersected edge of the wavefront and
insert its neighbouring spike events.

Incorrect results may arise with non-manifold polygons
when inserting spike bisectors induced by edges of type 1
that have the same abscissa. An example is shown in Fig-
ure 2. We have solved this problem by inserting spike bi-
sectors of type 1 and with the same abscissa until a valid
event has different abscissa. This solution also improves the
performance because there will be less spike bisectors in T
when processing a collection of vertical collinear edges.

4. Vertex-based algorithm for orthogonal polygons

We have developed a new method based on the previous one
(Section 3) that processes vertices instead of edges. This new
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Figure 2: Non-manifold vertex marked in red. We may insert
first the bisector defined by edges A and B. Then, when we
retrieve the intersection of the bisector defined by edges D
and C, the bisector AB collides in the intersection search
returning an invalid wave.

approach simplifies the algorithm because all the events will
be defined by a single vertex. The event treatment will be dif-
ferent depending if it is a vertex of the polygon or an spike
event vertex. The main idea is to progressively generate sin-
gle vertex-based events that will finalize the VD. The events
are sorted lexicographically in the event list. The priority of
a site event is defined first by its abscissa and then by its or-
dinate. A spike event is defined by two spike bisectors and
the priority is defined by the left-most abscissa and lowest
ordinate of the square defined with the sweep-line.

This vertex-based algorithm must support the insertion of
spike bisectors in the wavefront that do not define a unique
square with the sweep-line. We refer them as temporal spike
bisectors because they only appear when finalizing a portion
of the intersected wavefront. We need a criterion to sort these
temporal spike bisectors in T . As they are always associated
to an spike event we take the square defined by the current
associated spike event to classify them in the wavefront.

To process a site event if the vertex is of type 1 we in-
sert the induced spike bisector and retrieve neighbour spike
events. If it is of type 2.1 or 2.2 and the intersected spike bi-
sector is equal to the spike bisector induced by the site vertex
we just add an edge between them. Otherwise, we insert the
induced spike bisector and create a spike event marked as fi-
nal with the intersected wave. If it is of type 2.3 it is marked
as initial and if it is of type 2.4 it is marked as final (see
Figure 3).

To process a spike event we tune the direction (upper or
lower neighbour in T ) where we try to find neighbour spike
events. We take into account the junction points of the in-
tersections and the swept direction (from left to right). If
the spike event is not marked as initial or final, the process
is identical to that related in Section 3. Otherwise, let A be
the site event wave and B the intersected edge wave. If the
spike event is an initial spike event, we only search for up-
per neighbour spike events of B and lower spike events of
the outgoing spike bisector. If it is a final spike event we
only search for upper neighbour spike events of the outgo-
ing wave. By labelling spike events we avoid the creation of
new spike events with less priority than the current event.

Figure 3: Spike bisectors and induced wavefront (blue
edges), intersecting bisector (purple edge), finished Voronoi
diagram (red edges) and edges inducing wavefront (green
edges). Initial spike event on the left polygon and final on
the right one.

We get as output a Voronoi diagram. To obtain the straight
skeleton we erase all the edges with a vertex of degree lower
than two. Then we can rasterize in a straightforward way the
skeleton because it is only composed of vertical, horizontal
and 45◦ edges.

5. Experimental Results

We have compared the presented geometric approaches with
an optimized thinning approach [AVV07] which we are cur-
rently using to devise pore network morphologies. The three
algorithms have been implemented in C on a PC Intel E6600
2.40 Ghz with 3.2 GB RAM. Table 1 shows the results for six
datasets that are shown in Figure 4. Datasets Lizard and Ran-
dom are phantom and Newspaper is a public image. Dataset
Biomaterial is a slice of a sample of biomaterial for bone
regeneration and both Rock datasets are a slice of a sample
of a sedimentary rock (Rock1 is the solid space and Rock2
the porous space). We show the running times of the vertex-
based approach as this is the approach that we are going to
extend to 3D. Nevertheless, the running times of the edge-
based approach are almost equal to those of the vertex-based
approach. These times include the rasterization time over-
head which is almost negligible. We verified the algorithm
correctness by checking that the output skeleton coincides
exactly with the one computed using the thinning method.

Model Size Size Time Time
Pixels #Vertices Thin Geom

Lizard 430×466 1536 7.8 0.07
Random 100×100 7554 3.22 0.24
Biomaterial 357×356 11588 14.5 0.45
Rock1 474×811 18330 45.4 0.81
Rock2 474×811 18334 24.4 0.67
Newspaper 1615×2251 244528 155 10.29

Table 1: Results for several datasets. Values shown are
model size, number of vertices and running times in seconds.
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6. Conclusions and future work

We have presented an edge-based and a vertex-based al-
gorithms to compute the straight skeleton of an orthogonal
polygon. Both methods can deal with the particular case of
non-manifold vertices and collinear edges which are very
usual in an image boundary. Collinear edges are treated in
a post-processing step solving the implicit ambiguity of L∞
distance [PL01].

The good performance of the presented methods com-
pared to the thinning approach has encouraged us to con-
tinue, as immediate future work, with the extension of the
vertex-based approach to orthogonal polyhedra. We have
chosen the vertex-based approach because it has less con-
figurations and therefore is easier to extend to 3D, since it
does not implies to deal with faces, which in 3D may have a
high number of vertices.
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Figure 4: Tested datasets. From top to down and left to right:
Biomaterial, Random, Newspaper, Rock1, Rock2 and Lizard.
Straight skeleton shown in red and input polygon shown in
grey.
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