
EUROGRAPHICS 2021/ H. Theisel and M. Wimmer Short Paper

Ray Tracing Lossy Compressed Grid Primitives
Carsten Benthin Karthik Vaidyanathan Sven Woop

Intel Corporation

Three example scenes (Ground 42.4M triangles, Canyon 33.5M triangles, Torus 75M triangles) generated with highly detailed 8K displace-
ment maps and interactively rendered with a diffuse path tracer. Our lossy compressed grid approach requires just 204− 380 MBytes of
memory for ray tracing these complex scenes, including geometry and the bounding volume hierarchy.

Abstract
We propose a new watertight representation of geometry for ray tracing highly complex scenes in a memory efficient manner.
Polygon meshes in the scene are first converted into compressed grid primitives, which are represented by a base bilinear patch
with quantized displacement vectors. Ray-scene intersections are then computed by efficiently decompressing these grids on-
the-fly and intersecting the implicit triangles. Our representation requires just 5.4− 6.6 bytes per triangle for the combined
geometry and acceleration structure, resulting in a 5−7× reduction in memory footprint compared to indexed triangle meshes.
This is achieved with less than 15% increase in rendering time.

CCS Concepts
• Computing methodologies → Ray tracing; Visibility; Massively parallel algorithms;

1. Introduction

Ray tracing highly complex geometry requires lots of memory
when on-the-fly generation of geometry (e.g. subdivision surfaces)
is not applicable. Given that indexed triangle meshes typically re-
quire ≈ 30 bytes per triangle, with additional bounding volume hi-
erarchy data (BVH) on top of that, a more efficient geometric repre-
sentation is required to reduce the memory footprint of large static
meshes.

In this paper, we propose an efficient lossy compression scheme
for triangle meshes which can be represented by a set of vertex
grids. Our scheme follows a hybrid approach of applying lossy
compression to the majority of the vertex data while keeping a
small subset uncompressed. At the same time, all triangle connec-
tivity data is implicitly expressed. This reduces the memory con-
sumption compared to index triangle meshes and existing grid-
based representations by multiple factors while at the same time
only slightly affecting the rendering performance.

2. Previous Work

Most previous work has been focused on reducing the memory
consumption of BVH data by applying reduced precision tech-
niques [MW04, Kee14, VAMS16, YKL17] to encode BVH nodes.

An approach which reduces memory consumption of both BVH
and geometry data has been proposed by Segovia et. al. [SE10]
who applied hierarchical mesh quantization to combine BVH and
triangle data into a single unified data structure. All vertices within
a BVH leaf are quantized with respect to the leaf bounding box.
Gaps due to different quantization reference points are avoided by
snapping the vertices and leaf bounding boxes to a global grid over
the scene.

Another combined approach are random-accessible compressed
BVHs [KMKY10] which decompose adjacent nodes into clusters
to support random access on compressed BVHs and quantized
bounding boxes. The nodes’ connectivity in each cluster and the in-
dices of the triangle are expressed with lower precision data types
or delta coding. Clusters and meshes are further compressed using
a dictionary-based compressor.

In wide BVHs, leaf nodes make up most nodes, but they are less
often intersected than the inner nodes. Benthin et al. [BWWA18] in-
troduced dedicated compressed multi-leaf nodes and reduced mem-
ory consumption within leaf nodes by exploiting data sharing while
also minimizing performance degradation by compressing only
those.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/egs.20211009 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/egs.20211009


C. Benthin, K. Vaidyanathan, S. Woop / Ray Tracing Lossy Compressed Grid Primitives

Figure 1: A 7×5 grid of vertices (yellow points) is subdivided into
two 5× 5 sub-grids. All quads of the first 5× 5 sub-grid are com-
pletely valid (red) while for the second sub-grid only a sub-region
is valid (green). A sub-grid with just valid quads corresponds to 16
quads or 32 triangles.

3. Conversion to Vertex Grids

In most cases, scene input geometry is given as a set of indexed tri-
angle or quad meshes. Converting those meshes into set of vertex
grids is done in a pre-processing step. The resulting vertex grids
have a varying resolution, depending on how many triangles/quads
could be merged into a single grid. A grid itself just stores the res-
olution and a pointer to the vertices. All triangle connectivity in-
formation is implicitly expressed. The vertices themselves are re-
arranged to fit the grid’s horizontal and vertical layout.

The conversion step uses a locally greedy algorithm to merge
adjacent triangles/quads into the grid, trying to maximize its size.
Once converted, each grid is subdivided into smaller fixed size sub-
grids, over which a BVH is finally built. In our implementation we
use a 5× 5 vertex grid resolution for the sub-grids (see Figure 1).
Therefore, each sub-grid implicitly corresponds to 4×4= 16 quads
or 32 triangles. Invalid triangles of partially filled sub-grids are ig-
nored during ray-triangle intersection.

4. Lossy Vertex Sub-Grid Compression

The conversion step from Section 3 produces a set of 5× 5 sub-
grids referencing uncompressed vertex data. The next phase con-
verts this data into a self-contained, lossy, compressed version. The
basic idea of our lossy compression scheme is to represent the un-
compressed vertices of a sub-grid as a set of quantized displace-
ment vectors starting off a simple base surface (see Figure 2), which
is closely aligned to the shape of the sub-grid. In our implementa-
tion, we use a bilinear patch as the base surface which is completely
defined by four vertices and already allows for handling a certain
amount of curvature. As bilinear control vertices, we use the sub-
grid’s four corner vertices. This means that at these points the base
primitive matches the vertex grid exactly.

The bilinear patch is now evaluated (bilinear interpolation) on a
uniform 5× 5 grid in u,v space, resulting in a 5× 5 grid of points
on the patch. For each point on the bilinear patch a displacement
vector to the corresponding point of the uncompressed vertex grid
is computed. This displacement vector is then compressed using
a lossy encoding scheme (see Section 4.1), which reduces its size
from uncompressed 12 bytes (3 floats) to 3 bytes. As the four cor-
ners of the uncompressed vertex grid are used as bilinear patch con-
trol vertices, the corresponding displacements will always be zero
and do not have to be explicitly stored. This reduces the number of
displacement vectors from 25 to 21.

Figure 2: Encoding of an uncompressed 5×5 vertex sub-grid (pur-
ple) into our lossy compressed format. First, a bilinear patch (blue)
is created based on the four corner vertices of the vertex grid (red).
Next, 5× 5 points on the bilinear patch (red and yellow) are eval-
uated using an uniform grid in u,v space. For each of the 5× 5
points on the bilinear patch a displacement vector (green) is com-
puted, taking the difference between the point on the bilinear patch
and the corresponding point on the vertex grid. The displacement
vector is then quantized with reduced precision.

In general, our lossy compression scheme is based on the as-
sumption that the displacement vectors which represent the differ-
ence between the base primitive and the original grid vertex won’t
be large relative to world space and can therefore be represented
with sufficient accuracy in compressed form.

4.1. Lossy Compressed Displacements

For compressing 3D displacement vectors from an uncompressed
12 bytes to 3 bytes, we evaluated two different approaches, but
many others are possible [CDE∗14]. The first approach represents
the displacement vector as the triple: octantID, unit vector and
length. The octantID is encoded in 3 bits while the unit vector is
mapped to a closest representative inside a set of predefined unit
vectors in the first octant. The predefined unit vectors are pre-stored
inside a small lookup table and 10 bits (1024 entries) are used to
index the table. With 8 octants 8192 different unit vectors can be
expressed for the entire unit sphere. The length component is com-
pressed to a reduced precision floating point format with a 6 bit ex-
ponent and a 5 bit mantissa. For conversion, we simply clamp the
original 8 bit exponent of the length and round the original mantissa
bits to 5 bits of accuracy.

The second approach uses a shared 6 bit exponent with 3×5 bit
mantissas (one per dimension) and a 3 bit octantID. The shared
exponent is the maximum of the three original exponents and the
mantissas are fixed-point representations with respect to the shared
exponent floating point value. Memory requirements of both ap-
proaches sum up to 24 bits, or 3 bytes per displacement vector.
The second approach offers faster decompression but the first offers
better accuracy which is why we picked it for our implementation.
In general, the chosen distribution between exponent and mantissa
bits can be adjusted for use case scenarios with different precision
requirements.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

2



C. Benthin, K. Vaidyanathan, S. Woop / Ray Tracing Lossy Compressed Grid Primitives

Listing 1: Layout of our 128 bytes 5x5 lossy compressed vertex
sub-grid, and the 3 bytes compressed displacement vector.
struct LossyCompressed5x5VertexSubGrid {
Vec3f bilinearPatchVtx[4]; // 4*3*4=48 bytes
Displacement displ[21]; // 21*3=63 bytes
uchar resX : 4; // 1 byte
uchar resY : 4;
uint objectID, primitiveID; // 2*4=8 bytes
ushort gridX, gridY; // 2*2=4 bytes
ushort gridResX, gridResY; // 2*2=4 bytes
}

struct Displacement { // 3 bytes
uchar3 octantID : 3;
uchar3 unitVectorID : 10;
uchar3 exponent : 6;
uchar3 mantissa : 5;

}

4.2. Data Layout

The 5× 5 sub-grid resolution allows for fitting 32 triangles into
128 bytes (see Listing 1), lowering memory requirements to just
4 bytes per triangle (assuming all triangles inside the sub-grid are
valid). Also, a size of 128 bytes naturally aligns with the 64 bytes
cache-line sizes found in most common CPUs. The uncompressed
control vertices of the bilinear patch require 48 bytes, while the
21 displacement vectors take up 63 bytes. The rest is taken up by
the auxiliary data, e.g. object and primitive ID. The position of the
sub-grid in the original grid (gridX,gridY,gridResX,gridResY) are
needed to compute per grid u,v coordinates (see Section 5). The
internal resolution of the sub-grid (resX,resY) is required for ex-
pressing partially filled sub-grids, which typically occur at the right
and lower border of the original grid.

4.3. Lossy Sub-Grid Decompression

Decompressing the lossy compressed sub-grid into an uncom-
pressed vertex grid is straight forward. First, the uniform 5×5 grid
in u,v space is used to evaluate the bilinear patch at 5× 5 posi-
tions. Next, the 21 displacements are decompressed, extended to
25 displacements by filling in zeros at the corners and added to the
patch positions, resulting in a 5× 5 grid of uncompressed vertex
positions. Decompressing a displacement only requires loading the
unit vector based on the unitVectorID, setting its sign bits based on
the octantID and multiplying the result by a floating point value
constructed out of the 6 bit exponent and 5 bit mantissa values.

As neighboring sub-grids share the same two bilinear control
points and the same displacement vectors along the shared bor-
der, the decompressed vertices along the border will be exactly the
same. This property is important for achieving watertight ray sub-
grid intersection (see Section 5).

5. Ray Traversal and Intersection

Once all lossy sub-grids are generated, a bounding volume hierar-
chy (BVH) is built using the bounding box of each sub-grid. As
the main focus is on saving memory, a compressed 8-wide BVH
is chosen [YKL17]. Each BVH leaf references a single sub-grid.
If the ray intersects a BVH leaf, the lossy compressed sub-grid is
loaded and temporarily decompressed into a 5× 5 grid of uncom-
pressed vertices. These 32 triangles are now intersected with a sin-
gle ray. We chose an approach which intersects all eight triangles
(four quads) of a single grid row at once using 8-wide vector in-
structions. For a 5× 5 sub-grid four rows have to be intersected at

most. Note that for wider vector instructions, e.g. 16-wide, just two
iterations would be required.

An alternative intersection approach is to first extract a set of
bounding boxes from the 16 quads and intersect them with the ray
before performing single ray-triangle intersection tests. Whether
this approach is faster depends on the underlying architecture and
efficiency of the vector instruction set. For simplicity, our imple-
mentation skips the bounding box pre-test.

Once all ray-triangle intersection tests are performed, the clos-
est valid triangle intersection is reported as hit, and its local per-
triangle u,v coordinates are transformed into per grid u,v coor-
dinates values, e.g. the final grid_u is computed by grid_u =
(triangleu+gridX)/(gridResX−1). As the shared border between
adjacent sub-grids evaluate to exactly the same vertices (see Sec-
tion 4.1), using a watertight ray triangle intersection test [WBW13]
makes the ray sub-grid intersection test watertight as well.

Scene Ground Canyon Torus
Triangles (M) 42.4 33.5 75
Vertices (M) 21.2 16.7 37.7

Embree Triangle Meshes
Geometry (MBytes) 1109.8 877.6 2092.4
BVH (MBytes) 333.5 286.6 631.4
Total (MBytes) 1443.4 1164.2 2723.8
Per Triangle (Bytes) 35.6 36.4 37.8

Embree Grids
SubGrids (M) 5.3 4.2 9.4
Geometry (MBytes) 422.0 331.9 722.2
BVH (MBytes) 101.8 81.2 137.8
Total (MBytes) 523.8 413.1 860.0
Per Triangle (Bytes) 16.3 12.9 11.9

Lossy Grids
SubGrids (M) 1.3 1.0 2.4
Geometry (MBytes) 169.9 128 288
BVH (MBytes) 42.2 37.7 90.6
Total (MBytes) 204.1 165.7 378.6
Per Triangle (Bytes) 6.6 5.4 5.2
Reduction vs. Meshes 5.4× 6.7× 7.3×
Reduction vs. Grids 2.4× 2.4× 2.3×

Table 1: Memory consumption during rendering for the three ex-
ample scenes. Including BVH data our lossy grid approach requires
just 5.2− 6.6 bytes per triangle, while Embree’s uncompressed
grid and indexed triangle mesh approach require 2.3− 2.4× and
5.4−7.3×more memory (factors even slightly higher when exclud-
ing BVH data).

6. Texture Coordinates and Vertex Attributes

Interpolating general per vertex attributes, like texture coordinates,
requires vertex data to be stored in a similar grid layout as the vertex
positions. As the ray/sub-grid intersection (see Section 5) returns
per grid u,v coordinates, these coordinates can be used to compute
the grid cell along with the four surrounding grid indices. These
indices are then used to look up per vertex attributes in the separate
vertex attribute grid. The loaded attributes are finally interpolated
using local per grid cell u,v coordinates.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

3



C. Benthin, K. Vaidyanathan, S. Woop / Ray Tracing Lossy Compressed Grid Primitives

Scene Ground Canyon Torus
Embree Tri-Meshes 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
Embree Grids 0.93 (0.65) 1.08 (0.76) 1.03 (0.83)
Lossy Grids 0.87 (0.16) 1.07 (0.19) 0.98 (0.12)

Table 2: Relative rendering performance and last-level cache
misses. Embree’s uncompressed grids achieve 0.93− 1.08× of
Embree’s triangle mesh performance. The decompression over-
head and the cost of more ray-triangle intersection tests are off-
set by a large reduction in cache misses (0.12− 0.16×) due to
a smaller memory footprint. Our lossy grid approach achieves
0.87−1.07× the rendering performance of Embree’s triangle mesh
and 0.94−0.99× of the Embree’s grid performance.

7. Results

We have integrated our lossy grids approach into the Embree ray
tracing kernel library [WWB∗14] and compared against Embree’s
standard indexed triangle meshes and uncompressed grid primi-
tives. Both of these approaches rely on uncompressed vertex data.
Embree’s grid approach sub-divides each grid into 3×3 sub-grids,
while each sub-grid just stores it’s position inside the grid and a
reference to it (12 bytes). As mentioned in Section 5 an 8-wide
compressed BVH [YKL17] is used in all three cases, either built
over triangles or sub-grids. All measurements were performed on a
dual-socket Intel® Xeon® E5-2699 v3 workstation (56 cores total)
with 96 GB of memory using the Clang 11.0 compiler.

Table 1 shows detailed memory consumption for three exam-
ple scenes during rendering. For triangle meshes, geometry data
includes vertex and index data, while for grids, it includes vertex
and sub-grid data. Including BVH data, our lossy grid approach
requires just 5.2− 6.6 bytes per triangle, while Embree’s grid ap-
proach requires 2.3−2.4×more, and indexed triangle meshes even
5.4− 7.3× more. Excluding BVH data, the memory consumption
per triangle goes down to 4.0− 4.1 bytes per triangle. It is worth
mentioning that our lossy grid approach uses 5×5 subgrids which
results in 4−5× lesser sub-grids than Embree’s 3×3 sub-grid ap-
proach. The smaller number of sub-grids results in a smaller BVH
at the expense of having larger leaves resulting in a higher number
of ray sub-grid intersection tests.

Table 2 compares rendering performance using triangle meshes,
grids, and our lossy grids approach. Due to decompression over-
head, and the BVH over coarser (5× 5) sub-grids, the rendering
performance of our lossy grid approach reduces slightly to > 0.94×
of Embree’s uncompressed grids performance. The Ground scene
has the highest number of triangle intersections per ray and there-
fore the lowest performance with lossy grids, while the Canyon
scene has the lowest intersections per ray and the highest perfor-
mance. Both grid approaches reduce the memory footprint which
leads to a reduction of last-level cache misses. This offsets the
higher intersection costs and allows for even reaching or surpassing
the performance of triangle meshes for the larger scenes.

As our grid compression scheme is mostly lossy, 84% of the ver-
tices are compressed while 16% are kept in uncompressed form,
the decompressed geometry will be different than the original un-
compressed geometry. However, displacements from the base prim-
itive rarely extend far in world space which means our local com-
pression scheme introduces just a small error (see Table 3).

Scene Ground Canyon Torus
RMS 0.00009 0.0005 0.0003
Diag(%) avg/max 0.1/4.1 0.06/4.4 0.3/6.3

Table 3: RMS error over all vertices. Diag error is computed per
sub-grid and shows relative vertex error with respect to the length
of sub-grid’s bounding box diagonal. The average error per sub-
grid is < 0.3% and the maximum over all sub-grids is between
4.1−6.3%.

8. Conclusion

We have proposed a lossy compressed representation for grid-based
triangle meshes which reduces memory consumption including
BVH data to 5.2-6.6 bytes per triangle. Ray-tracing performance
is only slightly reduced and, as vertex decompression is consistent
along shared borders, watertight ray intersection is guaranteed.

9. Future Work

Memory consumption could be further reduced for the sub-grid
data structure (see Listing 1) as the current version is designed to
be self-contained with no references to external data. However, the
bilinear patch control points are shared by up to 4 adjacent patches
and could be therefore indirectly referenced.

Acknowledgement

Canyon scene is courtesy of Bartosz Domiczek.

References
[BWWA18] BENTHIN C., WALD I., WOOP S., ÁFRA A. T.:

Compressed-leaf Bounding Volume Hierarchies. In High-Performance
Graphics (2018), pp. 6:1–6:4. 1

[CDE∗14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D., MARA M.,
MCGUIRE M., MEYER Q.: A survey of efficient representations for
independent unit vectors. Journal of Computer Graphics Techniques
(JCGT) 3, 2 (April 2014), 1–30. 2

[Kee14] KEELY S.: Reduced Precision for Hardware Ray Tracing in
GPUs. In High-Performance Graphics (2014), p. 29–40. 1

[KMKY10] KIM T.-J., MOON B., KIM D., YOON S.-E.: RACBVHs:
Random-Accessible Compressed Bounding Volume Hierarchies. IEEE
Transactions on Visualization and Computer Graphics 16, 2 (2010),
273–286. 1

[MW04] MAHOVSKY J., WYVILL B.: Memory Conserving Bounding
Volume Hierarchies with Coherent Ray Tracing. IEEE Transactions on
Visualization and Computer Graphics (submitted) (2004). 1

[SE10] SEGOVIA B., ERNST M.: Memory Efficient Ray Tracing with
Hierarchical Mesh Quantization. In Graphics Interface (2010), pp. 153–
160. 1

[VAMS16] VAIDYANATHAN K., AKENINE MÖLLER T., SALVI M.: Wa-
tertight Ray Traversal with Reduced Precision. In High-Performance
Graphics (2016), pp. 33–40. 1

[WBW13] WOOP S., BENTHIN C., WALD I.: Watertight Ray/Triangle
Intersection. Journal of Computer Graphics Techniques 2, 1 (2013), 65–
82. 3

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Transactions on Graphics 33 (2014). 4

[YKL17] YLITIE H., KARRAS T., LAINE S.: Efficient Incoherent
Ray Traversal on GPUs Through Compressed Wide BVHs. In High-
Performance Graphics (2017), pp. 4:1–4:13. 1, 3, 4

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

4


