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Abstract
In this paper, we propose and compare three kinds of mass-spring-damper (MSD) models of rheology object,

and experimentally select the best model concerning to shape deformation and volume accuracy. The MSD model
requires a few costs to calculate force propagation and shape deformation of rheology object. For this reason, the
dynamic animation can be made by a personal computer within the video-frame rate (about twenty milli-seconds).
Moreover, in order to maintain deformation precision, we calibrate all coefficients of dampers and springs under
many experimental data by the randomized algorithm. Then in the set of simple pushing experimental operations,
shape deformation and volume of virtual rheology object based on the best model is similar to these of real
rheology object. This is a case study to generate dynamic animation efficiently and precisely by the MSD model.

1. Introduction

Real-time simulation of deformable object is a younger field.
Dynamic animation is indispensable in robotics and virtual
reality, which has been aggressively used in tele-operation,
humanoid, assembly and task planning, computer animation,
game and amusement and so on. The key trade-off occurs
between calculation time and deformation/propagation ac-
curacy. In general, shape deformation should be calculated
in 33 milli seconds for the video-frame rate, and furthermore
force propagation should be calculated in a few milli seconds
for the haptic rendering. If this trade-off is broken, the ani-
mation becomes off-line, otherwise, it becomes on-line. The
performance of modern computer and graphics hardware
has made physical-based animation possible in real time.
But even with today’s best hardware and most sophisticated
technique 1,2,3, only a few hundred elements with small de-
formations have been simulated in real-time. To represent
models of elastic and visco-elastic objects, we have used
one of four approaches, i.e., the mass-spring-damper (MSD)
method 4,5,6,7, the finite difference method (FDM) 8, the
boundary element method (BEM) 9,10, and the finite element
method (FEM) 11,12,13,14,15. The computation efficiency de-
creases in this order, and the deformation/propagation ac-

curacy increases in this order. To solve such a trade-off be-
tween computation efficiency and shape accuracy, almost all
the researchers focus on FEM to save computational com-
plexity.

As the opposite major flow, we focus on MSD while
maintaining deformation precision in this paper. First of all,
we consider a rheology object and its deformation. Since a
rheology object always leaves a residual displacement, its
model should keep the displacement by many kinds of push-
ing operations. Although elastic and visco-elastic objects
have been aggressively modeled, but a rheology object is sel-
dom modeled 16,17. Also, calibrating many kinds of models
from a lot of experimental data is not still established 6,7.

On the observation, we propose an efficient MSD method
for representing flexible deformations precisely. In order
to watch shape deformation of rheology object within the
video-frame rate (about 20 ms), we adopt the MSD. It is
more efficient than the other models. They are typically done
off-line, that is, computers spend a few seconds, minutes or
hours to arrive at a single answer. The main defective point
of MSD for the practical purpose is the lack of deformation
accuracy. To overcome this problem, we calibrate three coef-
ficients of each element from many experimental data, which
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consists of one spring and two dampers. As the calibration
approach, we adopt the randomized algorithm to investigate
a set of good coefficients from deformations by many push-
ing operations 18,19.

In this paper, section 2 describes a basic voxel/lattice
structure which consists of three elements, i.e., two dampers
and one spring. In addition, we explain how to calculate
shape deformation and force propagation in the structure.
Three elements are dependently used in the dynamic equa-
tion. It is represented as the quadratic differential equation.
This can be approximately calculated by the fourth-ordered
Runge-Kutta method. Moreover, we propose two extended
structures composed of the same elements. Section 3 ex-
plains how to calibrate three coefficients of each element. In
section 4, we compare three virtual rheology models with the
real rheology object pushed by simple operations. First of
all, we explain how to evaluate each difference between real
and virtual rheology objects. Then, by an efficient random-
ized algorithm based on the difference, we calibrate three el-
ement coefficients so as to construct a virtual rheology object
flexibly. Finally in section 5, we will give a few conclusions
and future works.
2. Three Kinds of Mass-Spring-Damper Models

In this section, we propose three kinds of mass-spring-
damper (MSD) models. First of all, we introduce our ele-
ment with two dampers and one spring. Then, we explain
three kinds of MSD models. The model 1 forms a basic
voxel/lattice structure with three lengths of elements. In this
model, we explain how to calculate propagation of internal
forces in each rheology object. In order to maintain the vol-
ume constant condition in the model 2, we exchange four
longest elements with eight half-length elements in each
voxel in the model 1. In order to deform a few parts whose
differences of virtual and real rheology objects are too large
in the model 3, we add a set of extra internal forces initially
in the model 1. Finally, we propose a digitalized approach to
transmit a set of active external forces from a rigid body to a
rheology object via their encountered surface. The rheology
object is digitalized as a lot of mass points. Therefore, we
develop a virtual (digital) force transmission which approxi-
mates to a real (analog) force transmission.
2.1. Our Element with Voigt Model and Damper

First of all, we introduce our element which consists of Voigt
model and damper serially as shown in Fig.1. This is simi-
lar to elements proposed in two researches 16,17. In the paper
16, the element is tried, which consists of Voigt and Maxcell
models serially. In the paper 17, the element is investigated,
which consists of Voigt model and an adaptive damper se-
rially. The adaptive damper flexibly controls coefficient of
damper during pushing and releasing operations. In our ele-
ment, the left Voigt model represents viscosity and elasticity,
and the right damper expresses some residual displacement.
The former Voigt model generates many kinds of elastic and
visco-elastic materials. The latter damper makes many prop-
erties of rheology object.

C2 M
K

C1

Figure 1: Our basic element with two dampers and one
spring.

We briefly introduce what kinds of properties three coef-
ficients generate. The larger the coefficient K is, the stronger
the elasticity is. K controls displacement of deformation
behavior. Moreover, the larger the coefficient C1 is, the
stronger the viscosity is. C1 controls speed of the behav-
ior. Finally, the larger the coefficient C2 is, the larger the
residual displacement is. If C2 is small enough, the object
appears elastic or visco-elastic property. On the other hand,
if C2 is large enough, the object appears plastic property.
Furthermore, if K, C1, C2 are adequately selected within
[100,3000], [500,10000], [500,20000], the virtual rheology
object pushed freely is stably deformed as Fig.2(a). If some
of K, C1, C2 are too large, each element becomes unstable
and consequently the shape of rheology model is crushed
as Fig.2(b). If K, C1, C2 are too small, each element looses
elasticity, viscosity, and residual displacement, respectively.

(b)(a)

Figure 2: (a) A stable shape of a rheology model. (b) An
unstable shape of the model.

2.2. A Basic Voxel/Lattice Model (Model 1)

A rheology object deforms in a 3-D environment. In order to
describe several kinds of deformations flexibly, we adopt a
symmetric voxel/lattice structure to describe a rheology ob-
ject 16,17. In the structure, let us distribute mass points uni-
formly in a rheology object whose intervals are the same
along X, Y, and Z axes (Fig.3(a)). Let N be the number of
mass points and Mob ject be the total mass of rheology ob-
ject. Therefore, each mass is given by M = Mob ject/N.

In our experiment, a real rheology object is made by mix-
ing wheat flour and water. The rheology object (10cm × 6cm
× 10cm divisions) is horizontally and vertically two times
larger than its virtual rheology object (5cm × 3cm × 5cm
divisions). Here, the unit length l is defined as 1cm in a vir-
tual environment. Therefore, the former volume (600 [cm3]
= water weight [g]) is eight times larger than the latter vol-
ume (75 [cm3]). In the experiment, we use M = 6.0, Mob ject
= 864 [g], N = 144 (= 6 × 4 × 6).

The elements are inserted between all the neighboring
mass points as illustrated in Fig.3(b). The virtual rheology
object is deformed by expanding and contracting all the el-
ements. Let Pi, j,k be position vector corresponding to mass
point (i, j,k) (1 ≤ i ≤ 6, 1 ≤ j ≤ 4 and 1 ≤ k ≤ 6). Let us
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Figure 3: (a) A voxel/lattice model of rheology object (b)
Neighboring mass points connecting by many basic ele-
ments.

derive quadratic differential equation of each mass at Pi, j,k.
Each internal force acting on Pi, j,k by the element between
Pi, j,k and its neighboring point Pi+α, j+β,k+γ is denoted by

Fα,β,γ
i, j,k . For each mass point, 6 elements whose distance is

denoted as l (=1cm), 12 elements whose distance is denoted
as

√
2l (=

√
2cm), and 8 elements whose distance is denoted

as
√

3l (=
√

3cm) are located. Therefore, total internal force
Fe

i, j,k acting on Pi, j,k is given by the sum of 26(= 6 + 12 +

8) internal forces Fα,β,γ
i, j,k . Moreover, if the sum of active ex-

ternal forces at Pi, j,k is denoted by Fα
i, j,k, we can obtain the

following quadratic differential equation. This summation is
not so expensive on calculation time.

MP̈i, j,k = Fe
i, j,k +Fα

i, j,k (1)

In order to calculate next position Pi, j,k (1 ≤ i ≤ 6, 1 ≤
j ≤ 4 and 1≤ k ≤ 6) at each mass, we should solve the above
differential equation. This is done by the fourth Runge-Kutta
method, but it is expensive. If a human operator gives an ac-
tive external force at a mass point, its next position is cal-
culated. By the expanding and contracting its neighbor ele-
ments, adequate internal forces are received at all connecting
masses. Then, their next positions are calculated in parallel.
This serial or parallel propagation starts from a set of pushed
masses. Finally after determining all mass positions, we can
describe a pushed virtual object in a 3-D graphics PC.

Fe
i, j,k = ∑

α,β,γ∈{−1,0,1}
(α,β,γ)�=(0,0,0)

Fα,β,γ
i, j,k (2)

We note that mass positions on an encountered surface
between a rheology object and its pushing rigid body, and
on the whole floor are fixed. This means the integrations by
the Runge-Kutta method can be neglected at these points.

Finally in this model and the other models described in
previous works 16,17, we understand that shape of a cal-
culated (virtual) rheology object unfortunately differs from
shape of a practical (real) one. The shape differences mainly
occur at two areas: (1) upper side around pushing surface;
and (2) four sides of rheology object. This phenomenon oc-
curs because of weak expansion forces. The reason is that
volume of an experimental (real) object is always larger than
volume which is eight times larger than volume of a calcu-
lated (virtual) object. To overcome this drawback, we con-
struct two kinds of models in the following paragraphs.

2.3. Voxel/Lattice Model Including Volume Constant
Condition in the Model 1 (Model 2)

In our previous work 20, we understand shape of a calcu-
lated (virtual) rheology object is not easily much the same
as shape of an experimental (real) object. Especially, eight
times larger volume of the former object is too small against
volume of the latter object after the releasing. To overcome
this drawback, we expand volume of each voxel by vol-
ume constant condition. The volume constant condition ex-
tends a voxel during deformation by eliminating four longest
elements (whose distances are to be

√
3cm as shown in

Fig.4(a)) and adding eight half-length elements from its cen-
ter of gravity to eight vertices (whose distances are to be√

3/2cm as illustrated in Fig.4(b)).

This technique has been already used in a mass-spring
model 12. This controls the isotropy or anisotropy of some
elastic material. This idea can be straightforwardly extended
to a mass-spring-damper model as this paper. Three coeffi-
cient of K, C1 and C2 in each of eight shorter elements are
defined by multiplying α to K, C1 and C2 in each of four
longest elements. Note that α is set as 0.5 because each of
four elements is two times longer than each of eight ele-
ments.

(a)
The center of gravity

(b)
Figure 4: (a) Four longest elements always connect two op-
posite vertices in a voxel. (b) Eight shorter elements connect
from the gravity center of a voxel to its eight vertices.

2.4. Voxel/Lattice Model Adding Extra Internal Forces
in the Model 1 (Model 3)

With the support of volume constant condition, eight times
larger volume of virtual (calculated) rheology object is sim-
ilar to that of real (experimental) rheology object. How-
ever, this property is not always stable. It depends on the
set of coefficients. The virtual object volume is sometimes
too large because of stronger diagonal forces within each
voxel. Moreover, shape of the former object still differs from
that of the latter object. Especially, the swelling of four sides
and that beside pushing surface are not enough. To overcome
this tendency, we propose the model 3 to add extra internal
forces into all mass points neighboring pushed mass points
on the rigid body and the floor. The set of internal forces
at masses neighboring masses pushed by a rigid body is the
same against the set of active external forces received from
the rigid body. Also, the set of internal forces neighboring
masses on the floor is the same against the set of reactive
external forces received from the whole floor.

In this paragraph, we explain how to calculate two kinds
of extra internal forces in this model. If a rheology object
is pushed by a rigid body, a volume between pushed area
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on the upper side and the bottom side on the floor is forced
out. To express this phenomenon, we add two sets of special
internal forces initially (Fig.5(a)). One is a set of internal
forces at mass points neighboring upper mass points pushed
by active forces Fact from a rigid body, and another is a set
of internal forces at mass points neighboring bottom mass
points pushed by reactive forces Frea from a floor.

First of all, at each mass point neighboring mass point
pushed by a rigid body along the vertical axis, e.g., Y-axis,
we consider an extra internal force F whose direction is from
G to the mass point. The point G is the intersection between
line and plane (Fig.5(b)). The line includes the gravity cen-
ter of encountered area between rheology and rigid objects,
whose direction is coincident with a pushing direction. In
this paper’s experiments, the direction is restricted along the
vertical axis, i.e., Y-axis. On the other hand, the plane is
defined as the horizontal plane including the gravity center
Gob ject of rheology object, i.e., XZ-plane. Then, we decom-
pose each extra internal force F into three components Fx, Fy

and Fz (Fig.5(c),(d)). As contrasted with this, at each mass
point neighboring mass point pushed from the floor along
the vertical axis, i.e., Y-axis, we consider another special in-
ternal force F whose direction is from G to the mass point.
Then, we decompose each extra internal force F into Fx and
Fz (Fig.5(c),(d)).

Secondly, at each mass point neighboring mass point
pushed by a rigid body along one of the other axes, e.g.,
X-axis and Z-axis, we independently consider an extra inter-
nal force F whose direction is from G to the mass point. In
addition, we decompose each extra internal force F into Fx,
Fy and Fz (Fig.5(c),(e)). Finally, we reverse direction of the
Fx along X-axis. As contrasted with this, at each mass point
neighboring a mass point pushed from the floor along one
of the other axes, e.g., X-axis and Z-axis, we independently
consider another extra internal force F from G to the mass
point. Moreover, we decompose each special internal force
F into Fx and Fz (Fig.5(c),(e)). Finally, we reverse direction
of the Fx along X-axis.

All masses neighboring masses on a rigid body are re-
ceived by larger internal forces, whose distances are the
unit length. Also, all messes neighboring masses on the
rigid body are received by smaller internal forces, whose
distances are

√
2 times larger than the unit length. In

Fig.5(d),(e), the former masses are described as larger black
circles, and the latter masses are illustrated as smaller black
circles. The ratio between larger and smaller forces is 2 : 1.
The sum of additional internal forces running at all the
masses is the same against the sum of external active forces
at masses around the rheology object pushed by the rigid
object. Moreover, all masses neighboring masses on a rigid
floor are received by larger internal forces, whose distances
are the unit length. Also, all messes neighboring masses
on the rigid floor are received by smaller internal forces,
whose distances are

√
2 times larger than the unit length.

In Fig.5(d),(e), the former masses are described as larger
squares, and the latter masses are illustrated as smaller
squares. The ratio between larger and smaller forces is 2 : 1.
The sum of additional internal forces running at all the
masses is the same against the sum of external reactive
forces at masses around the rheology object pushed by the
rigid floor.

In all trials, two kinds of special internal forces are ini-
tially added into the model 1. Therefore, we never add any
external force after pushing a rheology object. For this rea-
son, the sum of internal forces in the rheology object is al-
ways constant after pushing. As a result, the conservation
law of momentum is exactly maintained during the defor-
mation.

2.5. A Digital Operation Pushing a Rheology Object by
a Rigid Body

The advantage of MSD model is to calculate force propaga-
tion and shape deformation efficiently. For this reason, we do
not like to divide a virtual rheology object into a lot of vox-
els. As long as the number of voxels increases, calculation
cost and memory storage in three models increase exponen-
tially. To overcome this calculation explosion, we propose a
digital operation pushing a rheology object by a rigid body.

In this research, we flexibly push a virtual rheology object
by a rigid body, which are digitalized by the unit length l.
First of all, surface around a rigid body is uniformly digital-
ized by the unit length l as illustrated in Fig.6(a). In general,
since width and length of the surface cannot be divided ex-
actly, rests m and n appear at ends of the surface (m,n ≤ l).
For this reason, there are major mass points, e.g., f ∗3 , and
are minor mass points, e.g., f ∗1 , f ∗2 and f ∗4 around the sur-
face. On the other hand, surface around a rheology object is
also uniformly digitalized by the unit length l as illustrated
in Fig.6(b). In this research, so as to keep a selected force
precisely, we push a rheology object by a rigid body located
on the tip of a robotic manipulator.

After transmitting many active forces from a digitalized
rigid body to another digitalized rheology object, the rheol-
ogy object starts to deform. In general, each active force f ∗
around the rigid body usually hits inside a cell around the
rheology object. Therefore, a major force f ∗ should be dis-
tributed into four forces fa, fb, fc and fd at four vertices of
a cell around the rheology object (Fig.6(c)). Moreover, mag-
nitudes of four forces fa, fb, fc and fd are determined as fol-
lows: First of all, we define the total force received by each
cell as the area F = l2. Secondly, we determine fa = s× t
[area a] if 0.25 × l ≤ s and 0.25 × l ≤ t, we regard fb =
(l− s)× t [area b] if s ≤ 0.75× l and 0.25× l ≤ t, we select
fc = (l− s)× (l− t) [area c] if s ≤ 0.75× l and t ≤ 0.75× l,
and finally we find fd = s×(l−t) [area d] if 0.25× l ≤ s and
t ≤ 0.75× l. Overall, magnitudes of four forces linearly cor-
respond to their opposite areas. For example, magnitudes of
fa, fb, fc and fd are linearly determined as areas a, b, c and
d (Fig.6(c)). Moreover, we should consider a minor force f ∗
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Figure 5: (a) There are two kinds of special internal forces
affecting a virtual rheology object. (b) The point G is the in-
tersection between line and plane. The line passes through
the gravity center of encountered area between rheology and
rigid objects, whose direction equals to the pushing direc-
tion. In this research, the line is limited in the vertical axis,
i.e., Y-axis. On the other hand, the plane is defined as XZ
horizontal plane including the gravity center Gob ject of rhe-
ology object. (c) An extra internal force F generated by an
active external force consists of three components Fx, Fy and
Fz. As contrasted with this, an extra internal force F gener-
ated by a reactive external force consists of two components
Fx and Fz. (d) Fx, Fy and Fz at masses denoted as black cir-
cles are made for active external and vertical forces by a
rigid body on an arbitrary sliced plane P. The magnitude
of forces at larger black circles is twice bigger than that of
forces at smaller black circles. On the other hand, Fx and Fz

at masses denoted as squares are made for reactive external
and vertical forces by a whole floor on an arbitrary sliced
plane P. The magnitude of forces at larger squares is twice
bigger than that of forces at smaller squares. (e) Fx, Fy and
Fz at masses denoted as black circles are made for active ex-
ternal and horizontal forces by a rigid body on an arbitrary
sliced plane P. Fx is to be the opposite force of X-component
of the active force. The magnitude of forces at larger black
circles is twice bigger than that of forces at smaller black
circles. On the other hand, Fx and Fz at masses denoted as
squares are made for reactive external and horizontal forces
by a whole floor on an arbitrary sliced plane P. Fx is to be
the opposite force of X-component of the active force. The
magnitude of forces at larger squares is twice bigger than
that of forces at smaller squares.
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Figure 6: (a) A set of cells around a rigid body. (b) A cell-
based relationship between encountered surfaces of a rhe-
ology object and a rigid body. (c) An original force f ∗ is
distributed into four forces fa, fb, fc and fd.

located in the margin of pushing area. That is, we consider a
horizontal force f ∗h = m/l× f ∗ if 0.25× l ≤ m, e.g., f ∗2 , we
consider a vertical force f ∗v = n/l × f ∗ if 0.25× l ≤ n, e.g.,
f ∗4 , and we regard a diagonal force f ∗d = (m2 +n2)/l2 × f ∗
if 0.25× l ≤ m and 0.25× l ≤ n, e.g., f ∗1 (Fig.6(a)). This
approach is an approximated transformation based on the
balance of all analog forces and their distances via a digi-
tal encountered surface.

3. Modified Randomized Algorithm for Calibrating C1,
C2 and K

The defective point of MSD is accuracy of force propagation
and shape deformation. To overcome this, we calibrate K, C1
and C2 by minimizing the difference between shape defor-
mations of real and virtual rheology objects in our modified
randomized algorithm.

3.1. How to Calculate Shape Difference Between Real
and Virtual Rheology Objects

In this research, a rheology object is precisely pushed by
a rigid body located at the tip of a robotic manipulator
(Fig.7(a)). The deformation, that is, the sequence of shapes
is measured by two stereo vision camera systems Digiclops
and its software development kit (SDK) Triclops (provided
by Point Grey Research Inc, Canada). Each captures about
three or more thousand points as shape of real rheology
object in the real-time manner. After capturing the shape
deformation, we finally measure how much total volume
is changed before pushing and after releasing the rheol-
ogy object. For this purpose, we use the following primitive
method. First of all, we fill a ball with water, and then drop a
deformed object into the ball (Fig.7(b)). Secondly, we gather
overflowed water and measure its weight by a precise elec-
tric balance. As a result, we can understand volume of rhe-
ology object always decreases by about three percentages.

In order to evaluate a difference between real and virtual
rheology objects, we summarize minimum distances from
captured points to their nearest surfaces around a virtual rhe-
ology object. A virtual object consists of 5 × 3 × 5 hexahe-
drons which are individually deformed from initial cubes.
Therefore in order to evaluate the difference, we calculate
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(a) (b)
Figure 7: (a)An experiment system: A real rheology object
is pushed by a rectangular rigid body located at the tip of
a robotic manipulator, and deformation of its sides is mea-
sured by two Digicrops cameras. (b)A photo when we mea-
sure volume of a rheology object before pushing and after
releasing by overflowed water.

the minimum of 5 × 3 × 5 shortest distances for each cap-
tured point to all hexahedrons by Lin-Canny closest point
algorithm 18, and then we calculate the sum S of all the min-
imum distances for all captured points, which are smaller
than the average error 0.05cm of Digiclops. In our calibra-
tion, we use the sum of four S at four times during push-
ing and after releasing. By minimizing the total sum in an
efficient randomized algorithm, we can obtain a better set
of three coefficients K, C1 and C2 of two dampers and one
spring.

3.2. A Steepest Descendent Method

1. Two parameters Tcal (threshold of calculation time) and
Tran (driving distance of random walk) are given in advance.
2. Initialize coefficients K, C1 and C2 in a 3-D search space.
3. We calculate shape difference S between real and virtual
rheology objects.
4. In order to find all the possible neighbors, we decrease
and increase K, C1 and C2 by ∆. In this 3-D case, we ob-
tain eight possibilities, that is, (K+∆, C1+∆, C2+∆), (K+∆,
C1+∆, C2-∆), (K+∆, C1-∆, C2+∆), (K+∆, C1-∆, C2-∆), (K-
∆, C1+∆, C2+∆), (K-∆, C1+∆, C2-∆), (K-∆, C1-∆, C2+∆) and
(K-∆, C1-∆, C2-∆). Then, after calculating all sums at all the
neighbors, we select their minimum.
5. If the minimum is smaller than S obtained in step 3, we
move to the neighbor with the minimum by decreasing or in-
creasing K, C1 and C2 by ∆, and return to step 3. Otherwise,
the algorithm finishes.

3.3. Our Randomized Algorithm

1. We select arbitrary K, C1 and C2 within a given 3-D search
space, whose ranges are Kmin ≤ K ≤ Kmax, Cmin

1 ≤ C1 ≤
Cmax

1 and Cmin
2 ≤C2 ≤Cmax

2 .
2. We calculate the S for the K, C1 and C2. By the steepest
descendent method described above, we get one of the local
minima whose value is the smallest S and set Sran = S. Then,
if calculation time equals to or is larger than Tcal , the algo-
rithm ends, otherwise, move to step 3.
3. We randomly increase and decrease three coefficients K,
C1 and C2 Tran times by ∆. Then, we calculate S for K, C1
and C2. Then, if S ≤ Sran is satisfied, we return to step 2,
otherwise, continued to step 3.

4.0

6.0

vertical difference (cm)

time (s)1.0 2.0 3.0

calibrating time

4.0

horizontal difference (cm)

time (s)1.0 2.0 3.0

calibrating time

(a)

(b)

second pushing (right side)

second pushing (left side)
first pushing

2.0

second pushing

first pushing

Figure 8: Two pushing operations are described as the gray
and black lines. The vertical/horizontal differences of push-
ing and releasing are described as the whole and dot lines.
(a) Y-axis direction. (b) X-axis direction.

4. Comparative Results

In this section, we compare three MSD models with each
other concerning to computation time, memory storage and
shape accuracy. The deformation of virtual rheology ob-
ject is calculated and visualized by a 3-D graphics software
OpenGL in a personal computer (CPU: Pentium4 2.26GHz,
Main memory: 1024MB) with a 3-D graphics acceleration
board (NVDPIA Quadro 2EX, 32MB).

4.1. Computation Complexity

As mentioned previously, a real rheology object pushed and
released by a rigid body deforms during 4 seconds in all
the experiments. On the other hand, 2000 deformations of
a virtual rheology object under the models 1, 2, and 3 are
calculated during about 40 seconds in the CG environment.
As shown in Table 1, we check calculation time less than
20 milli-seconds per one deformation. The speed is enough
to make dynamic animation because it is smaller than the
video-frame rate, i.e., 33 milli-seconds. Furthermore, we
show memory storage of the models 1, 2 and 3 is too small
and also relatively constant (Table 1).

The numbers of masses and elements in the models 1 and
3 are the same, but numbers of masses and elements in the
models 1 and 2 differ from each other. As mentioned pre-
viously, force calculation at each mass is not expensive, but
position calculation at the mass is time consuming because
of solving the differential equation. The force calculation is
always necessary in all the elements, but the position calcu-
lation is not always necessary in all the masses. For exam-
ple, since position of each mass on the floor and the pushing
body is fixed and can be calculated without the integration.
Moreover in the model 2, since the mass position within each
voxel is calculated as the gravity center of the voxel, the in-
tegration is not necessary.

For this reason, calculation costs of three models totally
depend on the number of mass points Ncal = (Nx × Ny ×
Nz)− fout − (Nx ×Nz) (Nx, Ny, Nz: the numbers of masses

c© The Eurographics Association 2003.
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along X, Y, Z axes, respectively, fout : the number of masses
pushed by a rigid body). As shown in Table 1, since fout = 12
is in the first pushing under the 6×4×6 model, the number
of masses to need the integration is denoted as Ncal = (6×
4×6)−12− (6×6) = 96. Similarly, the number of masses
to need the integration is denoted as 182 and 304 for 7×5×
7 and 8× 6× 8 models, respectively. As described in Table
1, calculation time of each model is proportionally evaluated
by the equation Ncal = (Nx ×Ny ×Nz)− fout − (Nx ×Nz).

Since numbers of mass points in three kinds of models
are almost the same, memory storage is also the same. The
memory storage m is approximately evaluated by summing
the mass storage mN (N: the number of masses) and basic
software storage mS including C++ compiler (VC++ 6.0).
The former is proportional to the number of masses, but the
latter is invariable. Using the results in Table 1, we calculate
mS = 19000[KB] and mN = 16×N[KB].
Table 1: Calculation time [msec] per one deformation and
memory storage [KB] in PC (CPU: Pentium4 2.26GHz,
Main memory: 1024MB)

Calculation time for the first pushing [msec]
Number of total masses [6× 4× 6] [7× 5× 7] [8× 6× 8]

(model1) 18.508 35.125 60.316
(model2) 19.553 37.141 62.805
(model3) 18.790 35.860 60.328

Memory storage [KB]
(model1) 21416 23044 25260
(model2) 21452 23048 25360
(model3) 21492 23044 25315

4.2. Deformation Accuracy

In this paragraph, we describe a global aspect of a rheology
object by changing three coefficients. In the same random-
ized algorithm, we use the same parameters ∆ = 10, Tcal =
30 [hour], and Tran = 100[number]. The search space
consists of three intervals [Kmin,Kmax], [Cmin

1 ,Cmax
1 ] and

[Cmin
2 ,Cmax

2 ] which are defined by [100,3000], [500,10000]
and [500,20000]. If each interval is divided by ∆ = 10,
the search space includes candidate points whose number
is 537225000. The resolution ∆ = 10 is experimentally se-
lected in order to find the optimal or a near-optimal solution.
If ∆ < 10, the number of candidate points is too large to find
the solution. If ∆ > 10, the magnitude of voxel resolution is
too large to find it.

To calculate the sum of differences between real and
virtual rheology objects at each candidate point, we need
about 40 seconds. In this research, we use Tcal = 30 [hour]
to investigate a better set of three coefficients, and there-
fore we can check candidate points whose number is about
2700. The search density is too sparse and therefore the ran-
domized algorithm selects a near-optimal solution by using
Tran = 100[number] and eliminating candidate points whose
sum S is larger than the present minimum sum Sran.

In order to ascertain goodness of pushing a rheology ob-
ject by a rigid body, we prepare two kinds of pushing. In both

operations, external forces at masses around a rheology ob-
ject act along the Y-axis. In the first operation, all masses
around a rheology object are simultaneously pushed by a
rigid body (Fig.9). In this case, we compare which model
is the best. Shape and volume differences between real and
virtual rheology objects are given in Table 2, and also shapes
of both objects after releasing are described in Fig.10. As
shown in Table 2 and Fig.10, the model 3 is the best con-
cerning to shape accuracy and volume consistency.
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(5,0,0)

0.6
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Figure 9: (a) 3-D view for the first pushing. (b) Front view.
(c) Upper view.

Table 2: Calibration results for the first pushing in three
models. (S: The sum of error distances)

The number of captured points is N = 15235
Calibration S S/N K C1 C2 Volume

result [cm] [cm] [g f/cm3] [g f s/cm3] [cm3]
(model 1) 2097.40 0.138 1990 510 3470 68.49
(model 2) 2308.62 0.152 1720 1300 780 83.88
(model 3) 1785.78 0.117 3000 1380 1550 69.95

The number of points whose error is more than 0.25cm
first second third fourth total

(model 1) 513 381 335 267 1496
(model 2) 498 451 459 388 2796
(model 3) 266 224 242 177 895

In the second operation, right and left endpoints of a rigid
body contact a rheology object at different times (Fig.11).
In this case, shape and volume differences between real and
virtual rheology objects are given in Table 3, and also shapes
of both objects after releasing are described in Fig.12. As
shown in Table 3 and Fig.12, the model 3 is the best con-
cerning to shape accuracy and volume consistency.

Table 3: Calibration results for the second pushing in three
models. (S: The sum of error distances)

The number of captured points is N = 14551
Calibration S S/N K C1 C2 Volume

result [cm] [cm] [g f/cm3] [g f s/cm3] [cm3]
(model 1) 2483.15 0.171 1970 510 3470 67.95
(model 2) 2746.35 0.189 1780 980 720 88.95
(model 3) 2051.96 0.141 1950 7520 8930 70.28

The number of points whose error is more than 0.25cm
first second third fourth total

(model 1) 1260 983 724 751 3718
(model 2) 1002 1629 755 832 4218
(model 3) 837 604 496 485 2422
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Figure 10: The distance error between real and virtual rhe-
ology objects for the first pushing. (a) Real rheology ob-
ject. (b),(c),(d) Virtual rheology objects which are colored
by gray, whose errors are larger in the proposed models 1, 2
and 3.
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Figure 11: (a) 3-D view for the second pushing. (b) Front
view. (c) Upper view.

5. Conclusions and Future Works

In this paper, we represent a rheology object by three kinds
of MSD models, and calibrate three coefficients of two
dampers and one spring by an efficient randomized algo-
rithm based on many experimental results. Since force prop-
agation of rheology object during each deformation is effi-
cient in the MSD model, we can watch many deformations in
the video-frame rate by a personal computer with a popular
3-D graphics acceleration board. Moreover, by the careful
calibration as pre-processing, shape and volume of virtual
(calculated) rheology object are quite similar to those of real
(experimental) one during and after simple pushing opera-
tions. As a result, the model 3 is the best concerning to shape
and volume accuracy if and only if force directions acting at
masses are along the vertical axis, i.e., Y-axis, and also force
magnitudes are not so large.

Finally as several future works, another structure (e.g.,
nested or non-nested tetrahedral meshes 2) and another ele-
ment (e.g. mass-spring element, Voigt and Maxwell element
16,17) should be tested by our experimental calibration. In
addition, as the calibration algorithm, we should try to use
another optimal algorithm such as GA (generic algorithm).

(b) (c)(a) (d)

front

Figure 12: The distance error between real and virtual rhe-
ology objects for the second pushing. (a) Real rheology ob-
ject. (b),(c),(d) Virtual rheology objects which are colored
by gray, whose errors are larger in the proposed models 1, 2
and 3.
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