
EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek Short Presentations
(Guest Editors)

Using pre-integrated transfer functions in an interactive software
system for volume rendering

G. Knittel

WSI/GRIS, University of Tuebingen, Germany, knittel@gris.uni-tuebingen.de

Abstract
We explore possibilities to implement classification based on pre-integrated transfer functions in a software sys-
tem for high-speed volume rendering. The major obstacle to remove is the large size of the multi-dimensional
look-up tables. For high rendering performance, all parameters must be available in the L1-cache of the CPU,
which is usually by far too small to hold the required tables. We discuss a cache-efficient and fast approximate
solution and present a comparison to the standard classification method with respect to performance and image
quality.
1. Introduction

The use of pre-integrated transfer functions was

introduced by Max et al. 5 and Engel et al 3. In 3, the
authors give an approximation to the opacity α and

the emitted light intensity of an interval between
two raypoints having a distance d and scalar values
of sb and sf, respectively, as

(1)

and

(2)

with the integral functions

(3)

In (3), τ(s) is the extinction density. Color density
has often the form , c being r, g or b.

Assuming d as constant, the authors compute a two-
dimensional table from the user-supplied transfer
functions τ(s) and c(s), which is stored in the texture
memory of a suitable graphics accelerator. Render-
ing is done using texturing hardware. Classification
is performed by accessing the table using the values
of the actual and the previous raypoint. The method
can reduce aliasing introduced by high frequencies
in the user-supplied transfer functions. Note that this

is the simplified version, which does not consider
self-attenuation within a ray interval. It was pro-
posed by the authors to reduce computation times
for the table. This is also the basis for our software
implementation, although for different reasons.

For an efficient software implementation any large
look-up table should be avoided, even at the costs of
more complex computations. This is because mod-
ern CPUs are bandwidth-limited, and perform well
only if all data items are available in the on-chip
cache (L1-cache). The two-dimensional table
addressed by sb and sf is too large to fit in an L1-

cache of usual size. Assuming 8 bits for both
addresses and 64 bits per entry, the table would
occupy 512Kbytes. Furthermore, there is no locality
in the access pattern. Thus, using a table like this
will result in a high number of cache misses. The
resulting memory reads, however, are the most
severe performance drain. Literally hundreds of
CPU-cycles can be wasted during a single cache line
fill.

In the following we will discuss a cache-efficient
implementation which uses only a one-dimensional
table containing the integral functions. Equations
(1) and (2) are computed on-the-fly using advanced
features of modern CPUs. Rendering performance
and image quality is compared to the standard clas-
sification at the end of the paper.

C̃

α sf sb d, ,() 1 exp
d

sb sf–
-------------- T sf() T sb()–()⋅()–≈

C̃ sf sb d, ,()
d

sb sf–
-------------- K sb() K sf()–()⋅≈

T s() τ s()ds
0

s
∫= and K s() c̃ s()ds

0

s
∫=

c̃ s() c s() τ s()⋅
 The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org

G. Knittel / Pre-integrated transfer functions in software systems
2. Implementation

2.1. Processor features

The raycasting routines have been implemented in
assembly language for the Intel Pentium-4 CPU.
They make use of the MMX- and SSE-units for
SIMD-computations. For a comprehensive descrip-

tion of these techniques, please refer to 1. Here we
will explain only the necessary details. The SSE-
unit provides eight registers, each 128 bits wide.
They can be loaded with four single-precision float-
ing-point operands. An SSE-instruction can process
four such operands or operand pairs in parallel.
Instructions referred to in this paper compute an
approximation to the reciprocals of the operands
contained in one register (RCPPS), and the prod-
ucts, sums or differences of the operands in a regis-
ter pair (MULPS, ADDPS and SUBPS),
respectively. The MINPS-instruction returns the
minima of four operand pairs. ADDPS, SUBPS and
MINPS have a latency of four, MULPS and RCPPS

a latency of six cycles 2.
Also mentioned must be the conditional move
instruction CMOVcc, which is either skipped or
moves the contents of one integer register into
another, depending on the condition code cc set by a
preceding logical, arithmetic or compare operation.
This operation can be used to avoid conditional
branches.

2.2. Arithmetic evaluation

As first approximation we assume that the raypoint
distance d is constant for all rays, and can therefore
be multiplied into the integral functions. The inte-
gral functions as given in equation (3) are pre-com-
puted as one summed table with 256 entries. Each
entry contains the accumulated associated colors

and the accumulated opacity
as 32-bit floating-point numbers. Thus, the table
size is only 4Kbytes and will result in a high hit ratio
in the L1-cache.
During rendering, the raycaster operates such that
always the newly interpolated value at the current
raypoint location as well as the previous raypoint
value are available. The larger and smaller of the
two values, here called smax and smin, are determined
using CMOVcc instructions. The difference is con-
verted into floating-point format while being trans-
ferred into an SSE-register. The RCPPS-operation

creates the (positive) denominator. Using smax and
smin, two sequential table accesses are performed. A

SUBPS followed by a MULPS delivers the (posi-

tive) raypoint light emission .

The remaining problem is the evaluation of

, where (4)

This must be done in only a few clock cycles. The
basic idea is to approximate this function by four
lines , and to evaluate the four expressions

by one MULPS- and one ADDPS-instruction for the
given x. The correct value is the minimum of the
four results, which can be found using two MINPS-
operations (data movement and format conversions
are not detailed here).

Assuming it follows that and so
the parameters mi and bi can be computed once for

all times by any brute-force method. The approxi-
mation error is sufficiently small, as shown in Fig-
ure 1. For reader’s interest, an approximation for

has a maximum absolute error of
0.022593, about nine times as much, but is probably
still useful for many applications.

In summary, there are three memory read accesses
necessary: one for the previous raypoint value, and
two for the table entries, for a total of 33 bytes.
Using an optimized memory layout, it has been
shown that most of these read requests can be satis-

fied out of the L1-cache 4. Memory writes can in

K s() R̃A G̃A B̃A, ,= T s()

Figure 1: Approximation of 1-e-x

C̃ smax smin,()

1 exp x–()– x
T smax() T smin()–

smax smin–
--= 0≥

mi x⋅ bi+

0 τ 1<≤ 0 x 1<≤

0 x ∞≤ ≤
 The Eurographics Association 2002.

G. Knittel / Pre-integrated transfer functions in software systems
most cases be hidden. Most other computational
expenses are fast arithmetic vector operations, so
that a high performance can still be expected.

2.3. Thresholds and empty-space-skipping

Often, small values in the data set are noise and
should not contribute to the image. Such raypoints
can be discarded by setting the transfer functions
correspondingly. In software systems it can be faster
to compare the raypoint value directly after tri-linear
interpolation to a user-supplied threshold value, and
to skip the otherwise useless table accesses and
compositing operations. However, a raypoint below
the threshold may not simply be discarded, since the
(linear) function between this and the previous ray-
point may exceed the threshold in a fraction of the
interval. Provided the transfer functions are clamped
to zero below the threshold as well, processing of
the raypoint in question will still deliver the
intended result.
However, a raypoint can be discarded if smax is
below the threshold (which was the primary reason
to sort the two values). This is shown in Figure 2.
Depending on the data set and rendering parameters,
a significant speed-up can still be achieved.
Empty-space-skipping is basically the same,
although on a larger scale and often with the use of
a hierarchical data base. For entering and leaving
empty space, however, the same principles apply.

3. Results

The methods were integrated in the UltraVis 4 sys-
tem. The test data set was the “neghip” data set, with

a resolution of 64×64×64 voxels. The voxels have
been placed in memory redundantly (i.e., each voxel
was present eight times), so that all voxels for tri-
linear interpolation could be obtained from memory
in a single access. Early-ray-termination was
applied when the translucency fell below 0.004.
Empty-space-skipping (ESS) was used if it provided
a speed-up. A threshold was set to 32. A total of
256×256 rays were shot to produce images of the
same size. The (somewhat arbitrary) transfer func-
tion is shown in Figure 3. The test machine was a
Pentium-4 PC running at 2GHz with 1Gbyte
RDRAM (RAMBUS) main memory.

The images are shown in Figure 4a through Figure
4f. On the left side, the raypoint distance d was set to
0.45 grid units, on the right side to 0.9. The top row
was generated with standard classification (point
sampling in the transfer function tables). The middle

Figure 2: Using threshold values.

User-defined

Threshold

This Raypoint
can be skipped

Raypoint n n+1 n+2 n+3

S

Contributions
from the
Transfer
Functions
Figure 3: Transfer Functions

Blue

Green

Red

Alpha

255

127

63

63 127 191 2550

191

 The Eurographics Association 2002.

G. Knittel / Pre-integrated transfer functions in software systems
row was rendered with pre-integrated transfer func-
tions as described in section 2.2. For the bottom row,
however, the opacity α was computed exactly like
the color components as given in equation (2), i.e.,
without the approximation of .
As found by the inventors, the proposed methods
can reduce aliasing artifacts for a given raypoint dis-
tance substantially. The question for an interactive
software implementation is of course whether or not
a speed-up can be achieved. This is indeed the case:
using Figure 4a (standard classification) as a refer-
ence, it can be seen that even by doubling the ray-
point distance a comparable image quality can be
obtained. Then the proposed methods provide the
highest frame rates. Using the simplified α is proba-
bly the best compromise between speed and image
quality, although a certain loss in contrast is clearly
visible (cf. Figure 4d and Figure 4f).
The results are summarized in Table 1.

4. Conclusion and future work

This snapshot of ongoing work leads to the follow-
ing conclusions. The software implementation was
in so far successful as it achieved a speed-up for
comparable image quality despite significantly
increased computing expenses.
Alternative implementations, such as evaluation of

by table look-up, have been found to be
slower. Also, reducing the table entries from 32-bit

floating-point to 16-bit fixed-point operands didn’t
have a measurable effect on rendering speed.

Future work is dedicated to more fundamental
research. Although the benefits of the use of pre-
integrated transfer functions are undisputed, the
method is also limited in several ways. First, it is no
remedy against resampling artifacts resulting from
high frequencies already present in the data set itself
(cf. Figure 4b and Figure 4d). Second, it is limited in
practice to simple scalar fields, post-classification
and no or very simple shading models. A software
system may be able, for example, to render pre-seg-
mented data sets with gradients and apply diffuse
and specular shading from multiple light sources
using material-dependent rendering parameters. It is
unclear how pre-integrated tables can be of practical
use here.

Thus, other more general techniques must be exam-
ined and compared. An obvious candidate is render-
ing with an adaptive ray sampling rate, which
constitutes our short-term research activity.

Acknowledgments

This work was done for the SFB 382 funded by the
DFG, Deutsche Forschungsgemeinschaft. UltraVis
is a joint Research Project of HP Labs, Palo Alto,
CA, and WSI/GRIS. I would like to thank my col-
leagues Stefan Guthe and Andreas Schilling for
many fruitful discussions.

References

1. Anonymous, “IA-32 Intel Architecture Software
Developer’s Manual, Vol. 2”, Intel Corp., Order
Number 245471. 2

2. Anonymous, “Intel Pentium 4 and Intel Xeon Pro-
cessor Optimization Reference Manual”, Intel Corp.,
Order Number 248966-04. 2

3. K. Engel, M. Kraus, T. Ertl, “High-Quality Pre-
Integrated Volume Rendering Using Hardware-
Accelerated Pixel Shading”, Proceedings Graphics
Hardware 2001, ACM Press, pp. 9-16 (August 2001).
1

4. G. Knittel, “The UltraVis System”, Proceedings of
the Volume Visualization and Graphics Symposium
2000, ACM Press, pp. 71-79 (October 2000). 3

5. N. Max, P. Hanrahan, R. Crawfis, “Area and Vol-
ume Coherence for Efficient Visualization of 3D Sca-
lar Functions”, in Computer Graphics, Proceedings
of San Diego Workshop on Volume Visualization, pp.
27-33 (1990). 1

Image d Method
Rendering
Time [s]

Frame Rate [Hz]
ESS

a 0.45 Standard
Class.

0.182
5.5

no

b 0.9 Standard
Class.

0.082
12.2

no

c 0.45 Pre-Int. 0.295
3.4

yes

d 0.9 Pre-Int. 0.158
6.33

no

e 0.45 Pre-Int.
simpl. α

0.253
3.95

yes

f 0.9 Pre-Int.,
simpl. α

0.132
7.6

no

Table 1: Rendering results

1 exp x–()–

1 exp x–()–
 The Eurographics Association 2002.

G. Knittel / Pre-integrated transfer functions in software systems
Figure 4: Sample Images

a b

c d

e f
 The Eurographics Association 2002.

	1. Introduction
	2. Implementation
	3. Results
	4. Conclusion and future work

