
EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek
(Guest Editors)

Short Presentations

Frame-Coherent Stippling

Oscar E. Meruvia Pastor and Thomas Strothotte

Department of Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Germany

Abstract

Stippling is an artistic rendering technique where shading and texture is given by placing points or stipples on
the canvas until the desired darkness is achieved. Computer-generated stippling has focused on producing high
quality 2D renditions for print media, while stippling of 3D models in animation has received little attention.
In this paper we present a technique to produce frame-coherent animations of 3D models using stippling as a
rendering style. The problem for which we provide a solution is how to obtain an even distribution of stipples and
at the same time ensure frame-to-frame coherence while shading changes over time. In our approach, particles
are placed on the surface of the 3D model and adaptively rendered as stipples using OpenGL point primitives
and the input model as a canvas. At each frame, the density of particles can be increased if necessary. Selection
of particles during rendering takes into account the screen space projection of the edges of a polygon fan that
surrounds the particles and the desired tone at the position of the particles. The rendering technique presented
here can be applied to arbitrary polygonal meshes and can be extended to include grey scale textures, bump
mapping and custom illumination models.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Stippling is an artistic rendering technique where shading
and texture is given to the image by placing dots or stipples
on the canvas until the desired darkness is achieved. In stip-
pling, the artist must take care to judge the proper scale and
spacing of individual stipple dots.17

Existing work in computer-generated stippling permits
the creation of high-quality renditions of 2D images at
high resolutions. These renditions are normally intended
for printed media. Image based approaches such as that of
Deussen et al.4 and Secord18 already provide interactive and
automatic tools to obtain high quality renderings in the stip-
pling style. However, stippling and most other artistic draw-
ing styles cannot be introduced in an animation by simply
putting together a sequence of independently stippled im-
ages without introducing noise in the transitions between
frames. This happens because individual stipples or strokes
in a given frame are not guaranteed to be placed in the same
location at the next frame, or more precisely, in acorre-
spondinglocation. In other words, even when the overall
regions of an image remain properly shaded from frame to

frame, an animation built in this way is not frame-coherent
at the stipple level.

The main goal of this research is to produce animations
of polygonal 3D models rendered using the stippling style
which are also frame-coherent at the stipple level. Several
aspects need to be considered when animating stippling:
achieve frame-coherence at the stipple-level, control of stip-
ple density according to changes in illumination, and control
of stipple density as the projected size of the model in screen
space changes.

We obtain frame coherence by using a view-dependent
particle system. Particle systems, obtained by attaching par-
ticles to the surface of 3D models, are commonly used
in non-photorealistic rendering (NPR) to achieve frame-
coherence during animation. While most particle-based NPR
systems use 2D primitives to render effects like 3d paint14,
hatching21, or artistic representations of fur, grass and trees9,
we use points as our rendering primitive (see Figure1). Be-
cause each point is attached to a specific location on the
surface of the model (a vertex in a polygonal mesh), points
move along with the model as the model is moved in the
scene, which provides the frame-coherence effect.

c© The Eurographics Association 2002.

http://www.eg.org
http://diglib.eg.org

Meruvia and Strothotte / Frame-Coherent Stippling

Figure 1: The Stanford Bunny in the stippling style.

In order to handle level-of-detail and changes in shading,
we have adopted a hierarchical particle system that allows us
to select which pixels are added or removed from a scene at
a given frame. Detail hierarchies have been used inartistic
rendering12, where graphical elements calledgraftalsare or-
ganized in hierarchies. For instance, atuff has its own graph-
ical representation at a certain level-of-detail, but can be de-
composed ingraftals if more detail is required. Agraftal
itself is defined at several levels of detail and can also be re-
fined when necessary. We do not use this approach of group-
ing graphical elements because individual stipples do not
only describe a shape (which is the case withgraftals), but
they also describe tone, as is the general case in pen-and-ink
illustration21. When a darker tone is desired, the stipple den-
sity is increased. In painterly and artistic rendering, a darker
tone is achieved by darkening the color of the 2D primitives
being drawn, not by increasing the amount of primitives per
area.

Our particle hierarchy is constructed from a mesh sim-
plification and subdivision scheme (see Figure2). Our ap-
proach is based on the work of Cornish et al.3, who imple-
mented a view-dependent particle system for real-time non-
photorealistic rendering. Their solution works well for mod-
els at high resolutions, but it does not guarantee appropriate
particle density when the model is close to the viewer or has
a low resolution. We extended their approach by creating a
surface subdivision scheme which can be used for arbitrary
polygonal meshes and extends the hierarchical particle sys-
tem obtained by mesh simplification. We use mesh subdivi-
sion when the resolution of the input model is not as high as
desired.

Subdivision schemes allow NPR systems to obtain more
particles on demand. Kaplan et al.13 implemented an inter-
active rendering system for subdivision surfaces that uses
geograftalsas the drawing primitive. In their system, the
user is able to arbitrarily addgeograftalsto subdivision sur-
faces. Eachgeograftalis assigned a random scaling function
which lets somegeograftalsremain large in size, while oth-

 (-) (+)

Input Model

Mesh simplification

(Lighter Tones) (Darker Tones)

Mesh subdivision

Lower
Level-of-Detail

Higher
Level-of-Detail

Figure 2: A continuous level of detail is created to achieve
the desired shading at any given frame.

ers shrink as objects move away from the viewer. In a similar
way, we assign to each particle a relevance function which
lets some stipples remain in the image, while others vanish
when needed. Kaplan et al. define the location and scaling
of the geograftalsusing randomness. In our approach, we
use the spatial hierarchy to determine the location and or-
der of appearance of the stipples. Additionally, our system
can process arbitrary polygonal meshes and includes con-
strained randomize and projection operators to improve the
stipple distribution in the renditions.

In the stippling style, it is important to obtain even point
distributions on the final rendition. In our system, we add
and remove stipples from the surface of the models using
a spatial criteria to meet this requirement as the animation
occurs: new stipples, which are inserted lower in the par-
ticle hierarchy, are placed at locations roughly in the mid-
dle of existing stipples. Alternatively, when stipples are re-
moved from the surface of a model, stipples at the bottom
of the hierarchy are the ones that vanish first. Obtaining ap-
propriate point distributions is a central topic for dithering
techniques20. Most research on dithering focuses on improv-
ing point distributions on the image plane. Ostromoukhov15

uses meshes with arbitrary connectivity on the image plane
for pseudo-random dithering. Independently developed, our
system works on meshes with arbitrary connectivity in 3D
space, and resembles ordered dithering20: the particles on the
surface of the polygonal mesh represent the locations where
a stipple can be drawn, the particle-hierarchy represents the
order of evaluation for drawing, and the geometric attributes
of the surfaces and the illumination at the particle location
determine the desired tone value.

The rest of this paper is organized as follows: In the
next section we briefly review related work on computer-
generated stippling. Section 2 explains the implementation
of our stippling system. Section 3 presents some results and
Section 4 gives our conclusions and future work.

1.1. Related Work

In the field of computer-generated stippling, Deussen et
al.4 and Secord18 obtain high-quality stippled images using
dithering and relaxation of Voronoi diagrams. However, we
cannot rely on these approaches to build a noise-free anima-
tion sequence, because each frame is obtained by iterative

c© The Eurographics Association 2002.

Meruvia and Strothotte / Frame-Coherent Stippling

Voronoi relaxation of existing particles, and the particle dis-
tribution obtained in one frame are not guaranteed to cor-
respond with the particle distributions obtained in the next
frame. This reveals one of the questions this research at-
tempts to address: whether it is possible to obtain even point
distributions such as those obtained in image-based stippling
while providing frame-coherence at the particle level.

Winkenbach and Salesin21 presented an algorithm to ren-
der hatched and stippled images on parametric surfaces22.
However, this work heavily relies on operations in the im-
age plane and uses planar maps in 2D to divide regions of
different stroke density, whereas our approach relies on 3D
geometry, a local illumination model and a local region of
interest around each vertex to place stipples.

Our approach is mainly related to the group of techniques
in non-photorealistic rendering systems where particles14,
graftals12, or geograftals13 are placed on the surface of 3D
models to achieve frame-coherence. In our case, we have
chosen a particle system based on geometric mesh simplifi-
cation similar to that of Cornish et al.3. Gooch and Gooch7,
and Strothotte and Schlechtweg19 provide further insight
into NPR techniques.

The reader can refer to the surveys of Garland and Luebke
6, 10 for information on view-dependent mesh simplification.
Of particular importance to our stippling approach are mesh
simplification and compression schemes which create evenly
simplified meshes at different levels of detail.8, 11, 2

In point-based rendering, Alexa et al.1 present a render-
ing technique where point sets without connectivity are used
to render smooth (highly detailed) surfaces. Although point-
based rendering techniques have not been used to emulate
the stippling style, there is a natural connection between the
approach presented in this work and their approach. To ex-
plore this connection is an area for future work.

Recent improvements in texture mapping hardware per-
mit real-time frame-coherent hatching and other pen-and-ink
styles usingstroke textures5, 22 andtonal art maps16. While it
is clear that at an appropriate resolution stroke textures can
be used to emulate stippling and adapt to changes in illumi-
nation at a given viewing distance, it is not clear that stroke
textures behave appropriately for stippling during scaling.
Because textures are parameterized to the surfaces, images
on the texture scale according to the surface, but in stippling
we need to maintain stipples with a constant or a maximum
size (of a few pixels) at all times during an animation. Since
in our system we use dots as primitives, keeping the correct
stipple size is not a problem, because only the particle loca-
tion is bound to the model and not its size.

2. System Implementation

2.1. Overview

Our rendering system does the following steps:

1. Compute a connectivity graph to operate on the input
polygonal mesh.

2. Apply a randomize phase on the vertices of the input
mesh to reduce the presence of regular patterns that ap-
pear when the vertices of the input mesh are taken as lo-
cations for the stipples.

3. Perform mesh simplification on the input mesh8 and si-
multaneously create a bottom-up hierarchy for the ver-
tices in the input mesh3.

4. Render each frame of the animation using a series of
key frames, interpolating values between each key frame
to set the viewing parameters for each individual frame.
These viewing parameters include the camera position
and orientation, illumination and frame-rate among oth-
ers, and determine whether more refinement is needed to
fill in dark regions of the model.

5. Assemble the rendered frames in an animation file.

The information of each frame is passed to the renderer
which performs the following steps:

1. Test the model for refinement.
If the required level-of-detail does not satisfy the ex-
pected particle density, the model is refined until the ap-
propriate level of detail is obtained. Simultaneously, ex-
isting vertices are tested for frustum and backface culling,
and new vertices are assigned a set of neighbours creating
a hierarchy for these vertices as well.

2. Test each potentially visible vertex for rendering.
Each vertex has a list of relevant neighbors, previously
defined either by refinement or simplification operations.
Each edge departing from the vertex to a relevant
neighbor vertex is compared against a threshold value. If
all the vertices of the stipple exceed the threshold value,
the stipple is set to be rendered, otherwise it is turned
off. The threshold value is computed by using the vertex
normal and the illumination parameters.

In the following sections we describe several aspects of our
implementation in more detail.

2.2. Setup

After loading up the model a copy of the connectivity graph
is created using the LEDATM library and the initial particle
distribution is the collection of vertices of the input mesh. In-
put models contain arbitrary point distributions which some-
times are quite regular, depending on the algorithms or pro-
cedures used to create the models. To avoid the appearance
of regular patterns, we first perform "randomize and project"
operations on all the original vertices of the model. The re-
sult is a mesh which is topologically the same as that of the
input model, but slightly different in geometry. The random-
ize and project operations are also applied after a new vertex
is obtained by mesh subdivision. We describe them in more
detail in section2.4.

c© The Eurographics Association 2002.

Meruvia and Strothotte / Frame-Coherent Stippling

2.3. Creating the Point Hierarchy

According to Hodges17, artists can produce stippled draw-
ings by first placing some groups of dots in a region of in-
terest and then filling in until the desired tone is achieved. In
our system we follow the same strategy by creating a spa-
tial hierarchy of vertices which represent stipple locations
on the surface of the model. Vertices at the top of the hierar-
chy are the initial group of dots spatially distant from each
other; the vertices down the hierarchy fill-in the space be-
tween existing vertices, so that new stipples always come up
to fill-in uncovered regions of the canvas until the desired
tone is achieved.

The stipple particles are vertices of a polygonal mesh,
used for simplification and subdivision. For input models at
high resolution, we simplify the mesh and create a bottom-
up hierarchy, as is done by Cornish et al.3. For input models
with few vertices we usually need to generate more vertices
to achieve the desired tone, because a stipple dot covers only
a minimal number of pixels in the rendering area; this is done
by mesh subdivision. To ensure that the appropriate level of
detail is obtained at every frame, we mix mesh simplification
(as a preprocessing stage) and mesh subdivision (performed
at every frame if necessary) and provide seamless levels of
detail regardless of the resolution of the input model (Fig-
ure2). When the viewer gets closer to the object, additional
stipples are required to keep the target shade. The rendering
pipeline described above adaptively performs mesh subdi-
vision whenever the stipple density falls below the desired
level. If the user gets very close, the system generates a very
large amount of geometry (which can easily reach levels of
millions of vertices). This has an effect on overall system
performance, and accounts for longer rendering time.

2.3.1. Mesh Simplification

In mesh simplification we create a bottom-up vertex hierar-
chy by applying a series of edge collapse operations until
the model is simplified to a few vertices. The operator that
we use for mesh refinement is theedge collapse(ecol), as
defined by Hoppe8, shown in Figure3, top.

By performing mesh simplification we can take models
of complex geometry (like horses, Stanford bunnies or drag-
ons) and render them with few stipples by using the vertices
at the top of the hierarchy (see Figure1).

2.3.2. Hierarchical Subdivision

We generate a hierarchy by subdividing (refining) an input
3D model as follows. For each frame rendered we enforce
the required level of refinement by comparing the screen-
space projection of each edge against a varying screen space
threshold set according to the desired darkness at the ver-
tex (computed from either vertex of the edge); if the edge
exceeds the threshold, the model is refined. At each refin-
ing step, the longest edge in object space is subdivided. The

Figure 3: Top: The edge collapse operation used in mesh
simplification.8 Bottom: The refinement operation used in
mesh subdivision. The dark edges are saved in the list of
relevant neighbours of the resulting vertex.

longest edge in the mesh is taken from a BSTree containing
all the active edges sorted by their length in object space.
The operator that we use for mesh subdivision is an edge-
split that creates a point around the middle point between
two vertices of an edge (see Figure3, bottom).

Each vertex obtained by subdivision indicates the loca-
tion of a new stipple, and its neighbours are included in the
list of relevant neighbours for later use during rendering. The
model refinement loop stops when the length of the edge that
caused the model refinement does not exceed the threshold
any more. We perform refinement in this order to avoid cre-
ating extremely thin triangles, which would appear if only a
specific region of a model is refined. The algorithm checks
at every frame that the level of detail necessary has been
reached. This creates an overhead for rendering time, but is
necessary to ensure that the required darkness is obtained at
every frame. Figure4 shows the mesh after refinement for
the Utah Teapot.

2.3.3. Defining the Spatial Hierarchy

Since a stipple covers an area of influence delimited by the
stipples in its neighborhood,4, 18 we define a relevance func-
tion based on a list of neighbors to determine whether a pixel
should appear or disappear during an animation. After ap-
plying either the edge-split or the edge-collapse operators
we register the list of neighbouring vertices of the resulting
vertex (the vertices of the polygon fan which surrounds a
vertex) in a data-structure that is used during rendering to
decide whether or not a vertex should be drawn as a stip-
ple. Figure3 shows the relevant edges (as thick lines) for a
given node after a refine or simplify operation takes place.
A particle is drawn depending on the desired darkness at the
vertex and the length of the edges connected to the vertex in
screen space (see section2.5). This creates an implicit scal-
ing function, which resembles the random scaling function
in Kaplan et al.13, but is more similar to the test for edge
collapse presented by Hoppe8.

c© The Eurographics Association 2002.

Meruvia and Strothotte / Frame-Coherent Stippling

Figure 4: Right: close-up of the teapot in flat shading rendering mode. Left: Hidden-lines view of the teapot after applying a
series of refinement operations.

Since each level of refinement has neighbours at differ-
ent distances, we implicitly create a hierarchy of points by
measuring the lengths of the edges around a vertex. Points
with shorter edges are drawn only after points with larger
edges have been tested, for an evenly shaded polygon. Addi-
tionally, points down the hierarchy appear or vanish between
existing points.

2.4. Randomization and Projection

A problem that arises when the vertices of the original mesh
are used to place stipples on the model is that 3D models
exhibit significant regularity in the distribution of its ver-
tices. This may happen for several reasons related to how
3D models are generated. This situation is more apparent
under certain situations, for example when the shading tone
set exactly the stipples that correspond to the vertices of the
input mesh. Moreover, our subdivision operator also gener-
ates regular point distributions, since it creates vertices along
existing lines on the model. For these reasons, we have a ran-
domize phase applied to all vertices of the input model right
as part of the set-up process and after each subdivision oper-
ation, so that new vertices do not align with existing ones.

2.4.1. The Randomize Operator

The randomize operator receives as input the vertex to be
moved and its connectivity information. A face connected to
the vertex is selected at random, and a new point is randomly
generated on the surface of this face. We restrict the location
of the new point so that the new vertex is located in a range
of 1/8th to 1/4th of the distance between the original vertex
and the two other vertices of the triangle. Finally, the loca-
tion of the input vertex is updated to the new position (see
Figure 5). The range values are chosen to ensure that the
geometry of the input mesh is roughly kept (maximum dis-
placement), and that the new point is not left at the original
location (minimum displacement).

randomize

Figure 5: The randomize operator. On the left, the original
mesh and the new location of the input vertex are shown. On
the right, the mesh after the operation.

Whenever a randomize operation is performed on a ver-
tex, the new location of the vertex is not guaranteed to lie
on the surface of the input model, because the faces of the
particle mesh do not necessarily fit to the surface of the input
model, only its vertices. The only case where the new ver-
tex is guaranteed to lie on the surface of the input model is
when all the vertices if the polygon fan around it are copla-
nar. Otherwise, the vertex has to be projected back on the
surface using the projection operator described in the next
section.

Figure6 illustrates the effect of the randomize operator on
the overall stipple distribution. The image on the left shows a
point distribution obtained by applying only the subdivision
operator on a flat mesh with 7 vertices, where some stipples
are arranged in linear distributions. The image on the right
shows the stipple distribution obtained when the randomize
operator is applied after each subdivision.

2.4.2. The Projection Operator

Since the edges of the particle mesh are not necessarily
aligned to the surface of the input model, it is possible that

c© The Eurographics Association 2002.

Meruvia and Strothotte / Frame-Coherent Stippling

Figure 6: Stippled patterns before (left) and after (right) ap-
plying the randomize operator on a flat shape.

new vertices created by mesh subdivision do not lie on the
surface of the model, and we need to project them back to
this surface. The same can occur after a randomize opera-
tion, since a vertex may be displaced to a face which is not
aligned to the surface of the model. To counter this, we use
the projection operator shown in Figure7. The operator first

project

Figure 7: The projection operator. Black lines belong to the
input model, stippled lines belong to the particle mesh and
dark stippled lines lie on the surface of the input model.

defines a projection ray departing from the input vertex in
direction of the normalized sum of normals of the vertices
in the neighbourhood of the input vertex. After that, we test
for intersections on the set of faces of the input model that
are in the neighbourhood of the vertices in the polygon fan
of the input vertex. When an intersection has been found the
vertex is moved to the intersection point.

2.5. Rendering

After adaptive refinement has taken place, we proceed to
render the potentially visible points that successfully pass a
rendering test similar to theedge collapsetest used by Hoppe
for view-dependent mesh simplification8.

The rendering test works as follows: The screen-space
projection of every edge in the list of neighbouring nodes

(computed for every node after mesh simplification or sub-
division) is measured in pixels and compared against a dy-
namically computed threshold value. If a connected edge
falls below the threshold value, the stipple is unset. If all
edges exceed the threshold, the stipple is set to be drawn.
The threshold value is computed for each particle as a func-
tion of the illumination model, the normal of the vertex and
the viewing parameters.

In our rendering system we have stipples of variable point
size. A stipple can have a value from 0 to 2.4 pixels of size.
Stipples blend in the image when they are set, and grow in
size at each frame, until they reach their maximum size. Con-
versely, a fade-out effect for the unset vertices is achieved
in our system by smoothly decreasing their point size un-
til it becomes zero. We use OpenGL smoothing for points,
blending and multipass antialiasing to ensure that stipples
are smoothly introduced in or removed from the images dur-
ing animation.

3. Results

In Figure 8 we present frames taken from the stippling
animations, where models are shown under different con-
ditions of lighting, viewing and model orientation. The
complete animations are available underhttp://isgwww.cs.
uni-magdeburg.de/∼oscar/. The rendering times for the ini-
tial frames of the animation (when most of the geometry is
created) are 2 minutes for the sphere-model and 3 minutes
for the teapot. Rendering each frame without refinement and
saving into a file takes approximately 5 seconds. In average,
360 frames of animation are produced in one hour on an SGI
Onyx2 Infinite Reality, with 2 195MHz MIPS R10000 pro-
cessors and 900MB ram.

Better frame-rates can be obtained if we limit the amount
of stipples available for a model, by only refining the model
up to a maximum number of vertices. However, the draw-
back of such an approach is that dark areas loose darkness
(i.e. the stipple density on the image decreases) when the
viewer gets close to the model.

Due to time constraints, we were not able to produce ob-
jective metrics to evaluate the quality of the work presented
here. In particular, it is possible to evaluate the quality of
the stipple distribution following guidelines from the area of
digital halftoning. With regards to frame-coherence, the ani-
mations presented show smooth transitions between frames,
and how stipple dots emerge and disappear between existing
dots, yielding an interesting visual effect, as if sand particles
emerged or disappeared from the surface of the model, but
on the other hand, they remain attached to the surfaces as the
model moves.

To our knowledge, our approach is the first to solve the
problem of frame-coherent stippling, but more work needs
to be done to improve rendering times and the quality of the
stipple distribution.

c© The Eurographics Association 2002.

http://isgwww.cs.uni-magdeburg.de/~oscar/
http://isgwww.cs.uni-magdeburg.de/~oscar/

Meruvia and Strothotte / Frame-Coherent Stippling

Figure 8: Frames from our stippling animations, illustrating changes in the position of the light (top right) and changes in the
position of the light and the model itself (bottom right).

4. Conclusions and Future Work

In this paper we have presented the first system to produce
frame-coherent stippled drawings of 3D polygonal models.
Our system ensures frame-coherence at the stipple level, i.e.
every stipple shown in a frame of a video sequence appears
in a corresponding location on the next frame. We introduce
a mix between mesh subdivision and mesh simplification to
obtain seamless levels-of-detail on demand. Higher levels-
of-detail, produced by mesh subdivision are used to fill-in
the darker regions of the model. Lower levels of detail, pro-
duced by mesh simplification, permit removal of vertices at
levels-of-detail lower than that of the input model and are
used to stipple lighter shaded regions in the image. In the
system presented, new stipples always fill-in the spaces be-
tween existing stipples, and smoothly blend-in or fade out of
the image according to illumination and viewing parameters.
Randomization and projection operators are used to improve
the distribution of the stipples and ensure these are always
mapped to the surface of the input model, respectively. Our
algorithm is still in development, and work is under way to
improve the rendering times by simplifying the evaluation
for rendering.

Areas of extension for this work include:

• Optimization of the algorithms.
The work presented here is still under development, and
we have to improve the algorithms and operators pre-
sented here to achieve optimal rendering times.

• Stippling and point-based rendering.
An interesting area of extension is the fusion of the work
in point based rendering1 and the work here presented.
The parallels between both approaches indicates that it
is possible to obtain frame-coherent stippling in real-time
for static models.

• Objective evaluation of the particle distribution.
We need to evaluate the quality of the particle dis-
tributions in the images, using guidelines from digital
halftoning20.

• Modification of the algorithms to allow 3D warping and
morphing.
One of the most interesting areas of extension for this
work is the development of a hierarchical particle system
for a model subject to morphing transformations, which
can be obtained by allowing for relative coordinates defi-
nition, by using barycentric coordinates to define the stip-
ple locations.

• Extending the system to take input models with grey scale
textures and bump mapping.

c© The Eurographics Association 2002.

Meruvia and Strothotte / Frame-Coherent Stippling

Texture and bump mapping information can be used to de-
termine the target tone of the surfaces and control shading
with more detail.

Acknowledgments

The authors would like to thank Lourdes Peña Castillo for
reviewing drafts, the members of the Institute for Simulation
and Graphics at the University of Magdeburg, specially Nick
Halper, for providing important feedback in the development
of this technique. This work was supported by a scholarship
of the state of Sachsen-Anhalt, Germany.

References

1. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman,
D. Levin, and C. T. Silva. Point set surfaces. In
Proceedings of the IEEE Visualization Conference,
pages 21–28, 2001. http://www.igd.fhg.de/∼alexa/
paper/index.html. 3, 7

2. P. Alliez and M. Desbrun. Progressive compression
for lossless transmission of triangle meshes. InSIG-
GRAPH 2001 Conference Proceedings, pages 195–
202. ACM, ACM Press, 2001.http://doi.acm.org/10.
1145/383259.383281. 3

3. A. R. Derek Cornish and D. Luebke. View-dependent
particles for interactive non-photorealistic rendering. In
Proc. of Graphics Interface 2001. Graphics Interface,
2001. http://www.graphicsinterface.org/proceedings/
2001/158/. 2, 3, 4

4. O. Deussen, S. Hiller, C. van Overveld, and
T. Strothotte. Floating points: A method for computing
stipple drawings. InComputer Graphics Forum, Vol.
19(3), S. 40-51. Eurographics Conference Proc., 2000.
http://www.eg.org/EG/CGF/volume19/issue3. 1, 2, 4

5. B. Freudenberg. Real-time stroke textures. In
SIGGRAPH 2001 Conference Abstracts and Applica-
tions, page 252. ACM Press, 2001.http://isgwww.cs.
uni-magdeburg.de/∼bert/. 3

6. M. Garland. Developer’s survey of polygonal simpli-
fication algorithms. InEurographics ’99, State of the
Art Report (STAR), 1999. http://graphics.cs.uiuc.edu/
∼garland/papers.html. 3

7. B. Gooch and A. Gooch.Non-Photorealistic Render-
ing. A. K. Peters, Ltd., July 2001.3

8. H. Hoppe. Progressive meshes. InSIGGRAPH 96
Conference Proceedings, pages 99–108. ACM, 1996.
http://doi.acm.org/10.1145/237170.237216. 3, 4, 6

9. M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bour-
dev, R. Barzel, L. Holden, and J. F. Hughes. Art-based
rendering of fur, grass, and trees. InSIGGRAPH 99
Conference Proceedings, pages 433 – 438. ACM, 1999.
http://doi.acm.org/10.1145/311535.311607. 1

10. D. Luebke. Developer’s survey of polygonal simpli-
fication algorithms. InIEEE Computer Graphics &
Applications/ (May 2001)., May 2001. http://www.cs.
virginia.edu/∼luebke/publications.html. 3

11. D. Luebke and C. Erikson. View-dependent simplifi-
cation of arbitrary polygonal environments. InSIG-
GRAPH 97 Conference Proceedings, pages 199 – 208,
1997.http://doi.acm.org/10.1145/258734.258847. 3

12. L. Markosian, B. J. Meier, M. A. Kowalski, L. S.
Holden, J. Northrup, and J. F. Hughes. Art-based
rendering with continuous levels of detail. InProc.
of the NPAR Interational Conference 2000, Annecy,
France., 2000. Eurographics.http://doi.acm.org/10.
1145/340916.340924. 2, 3

13. B. G. Matthew Kaplan and E. Cohen. Interactive artis-
tic rendering. InProc. of the NPAR Interational Confer-
ence 2000, Annecy, France., 2000. Eurographics.http:
//www.cs.utah.edu/npr/papers.html. 2, 3, 4

14. B. J. Meier. Painterly rendering for animation. In
SIGGRAPH 96 Conference Proceedings, pages 477 –
484. ACM, 1996. http://doi.acm.org/10.1145/237170.
237288. 1, 3

15. V. Ostromoukhov. Pseudo-random halftone screening
for color and black&white printing. InProceedings of
the 9th Congress on Advances in Non-Impact Printing
Technologies, pages 579–581, 1993.2

16. E. Praun, H. Hoppe, M. Webb, and A. Finkelstein.
Real-time hatching. InSIGGGRAPH 2001 Confer-
ence Proceedings, page 581. ACM Press, 2001.http:
//doi.acm.org/10.1145/383259.383328. 3

17. E. R.S. Hodges.The Guild Handbook of Scientific Il-
lustration. Wiley Europe, 1988.1, 4

18. A. J. Secord. Weighted voronoi stippling. InProc. of
the NPAR Interational Sysmposium 2002. Eurograph-
ics, 2002. 1, 2, 4

19. T. Strothotte and S. Schlechtweg.Non-Photorealistic
Computer Graphics: Modeling, Rendering, and Anima-
tion. Morgan Kaufmann Publishers, April 2002.3

20. R. Ulichney. Digital Halftoning. MIT Press, Cam-
bridge, 1987.2, 7

21. G. Winkenbach and D. H. Salesin. Computer-generated
pen-and-ink illustration. InSIGGRAPH 94 Conference
Proceedings, pages 91 – 100. ACM, 1996.http://doi.
acm.org/10.1145/192161.192184/. 1, 2, 3

22. G. Winkenbach and D. H. Salesin. Rendering paramet-
ric surfaces in pen and ink. InSIGGRAPH 96 Con-
ference Proceedings, pages 469 – 476. ACM, 1996.
http://doi.acm.org/10.1145/237170.237287. 3

c© The Eurographics Association 2002.

http://www.igd.fhg.de/~alexa/paper/index.html
http://www.igd.fhg.de/~alexa/paper/index.html
http://doi.acm.org/10.1145/383259.383281
http://doi.acm.org/10.1145/383259.383281
http://www.graphicsinterface.org/proceedings/2001/158/
http://www.graphicsinterface.org/proceedings/2001/158/
http://www.eg.org/EG/CGF/volume19/issue3
http://isgwww.cs.uni-magdeburg.de/~bert/
http://isgwww.cs.uni-magdeburg.de/~bert/
http://graphics.cs.uiuc.edu/~garland/papers.html
http://graphics.cs.uiuc.edu/~garland/papers.html
http://doi.acm.org/10.1145/237170.237216
http://doi.acm.org/10.1145/311535.311607
http://www.cs.virginia.edu/~luebke/publications.html
http://www.cs.virginia.edu/~luebke/publications.html
http://doi.acm.org/10.1145/258734.258847
http://doi.acm.org/10.1145/340916.340924
http://doi.acm.org/10.1145/340916.340924
http://www.cs.utah.edu/npr/papers.html
http://www.cs.utah.edu/npr/papers.html
http://doi.acm.org/10.1145/237170.237288
http://doi.acm.org/10.1145/237170.237288
http://doi.acm.org/10.1145/383259.383328
http://doi.acm.org/10.1145/383259.383328
http://doi.acm.org/10.1145/192161.192184/
http://doi.acm.org/10.1145/192161.192184/
http://doi.acm.org/10.1145/237170.237287

	Introduction
	Previous Work
	System Overview

	Creating the Point Hierarchy
	The projection operator
	Hierarchical subdivision
	Mesh Simplification
	Mesh Simplification and Refinement

	Randomization and Projection
	The Randomize Operator
	The projection operator

	Rendering
	Results
	Conclusions and Future Work
	References

