
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Approximated View Reconstruction Using Precomputed
ID-Bitfields

Oscar Meruvia Pastor and Thomas Strothotte

Institute for Simulation and Graphics, Otto-von-Guericke University of Magdeburg, Germany

Abstract
A technique is presented to construct arbitrary views of a model by using previously computed views. The technique
is simple to implement, completely general for polygonal models and can be used within object hierarchies or scene
graphs. During a preprocessing step images of a model are taken from different viewpoints. These images are saved
using long bitfields (ID-bitfields) which encode the visibility information according to an array of the model’s
primitives used as the base for the bitfield. These ID-bitfield encodings, together with the primitive array, are then
used by a viewer which selects and joins them to provide an approximated (not conservative) reconstruction of
the visible elements of the object for a new viewpoint. The technique implicitly performs occlusion culling, since a
minimal set of visible polygons is the result of the reconstruction. Results show how interaction can be improved
when working with high depth complexity models. Satisfactory reconstructions are achieved by taking as few as
25 images around an object. This paper suggests how the technique can be extended to other applications such as
virtual walkthroughs and visualization of non-realistic images, and how graphics libraries and hardware could be
enhanced by allowing the application to pass an ID-bitfield.
Key words: view reconstruction, interactive display, visibility preprocessing, occlusion culling, polygon reduction.

1. Introduction

Current graphics systems typically solve the problem of de-
termining the set of visible polygons for a viewing point and
viewing direction (defined by the camera position and orien-
tation) using the z-buffer algorithm. During rendering, the z-
buffer algorithm resolves the visibility problem by compar-
ing the depth information of new primitives sent to the ren-
dering buffer with the depth information of the z-buffer on
a pixel-per-pixel basis. The z-buffer algorithm is relatively
easy to implement and is widely available in hardware for
current graphics systems. However, it is not always efficient
to solve visibility using this algorithm, since the algorithm
needs to be applied for every frame rendered. Large models
containing thousands of polygons or several layers that oc-
clude each other (e.g. buildings with several rooms or the fo-
liage of trees) are not good candidates for using the z-buffer
algorithm, because the number of polygons occluded by the
set of visible polygons may be extremely large, consuming
significant amounts of time during rendering.

email: {oscar, tstr}@isg.cs.uni-magdeburg.de

Occlusion culling techniques aim at determining the
smallest set of primitives that can be sent to the graphics
rendering pipeline in order to show a model from a particu-
lar viewpoint.

In this paper a technique that efficiently approximates the
minimal set of visible polygons (by exploiting visibility co-
herence) is presented. The use of the approximated set of vis-
ible polygons will save rendering time spent by the z-buffer
algorithm when working with high depth complexity mod-
els. As it will be described, the algorithm can be used alone
or as a preprocessing step for a number of existing occlusion
culling techniques.

The core idea of this paper is to use precomputed images
of a model to compose new images for viewpoints differ-
ent from those of the original images. In this case, the pre-
computed images here discussed are not 2D representations.
Instead, they are view-dependent subsets of the original 3D
model stored as long bitfields, called image-based samples,
or IB-samples (see Figure 1). Each bit in the bitfield of an
IB-sample indicates whether a certain polygon of the model
is visible from a specific camera position and orientation.

c The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org

Meruvia and Strothotte / ID-Bitfields

Figure 1: This sequence of images show the image-based sample that corresponds to an ID-bitfield. The first image shows the
model as seen from the point where the picture was taken, the following two images show the sample while it is being rotated.

The bitfield used to store a model’s image has as many bits
as there are polygons in the model. There is a one-to-one
mapping between each bit location within the bitfield and
the index of a polygon in a static array of primitives

The source images that define the bitfields come from ID-
buffers. An ID-buffer is a 2D image of a model where the
color of every pixel encodes the index of the visible geo-
metric primitive at the pixels location. ID-buffers have been
commonly used together with other image buffers (e.g. G-
buffers) in non-photorealistic imaging 1 2. In this work ID-
Buffers are rendered for each source camera state (composed
of the camera’s position and orientation). A bitfield for a
given ID-Buffer is computed by setting the bits that corre-
spond to the indices of polygons found visible in the ID-
buffer.

This encoding of ID-buffers into bitfields (ID-bitfields) is
convenient to handle images, since ID-bitfields can be mixed
using boolean operators. For example, it is easy to join two
images of a model by applying the OR operator to the ID-
bitfields. For the rest of this paper the term ID-bitfield will
refer to those bitfields created from ID-Buffers as described
above.

This paper is organized as follows: The next section
presents some related work. In section 3 the implementa-
tion of approximated view reconstruction is described. Sec-
tion 4 shows results of the technique and section 5 concludes
discussing future work.

2. Related Work

Two areas of research are related to the view reconstruc-
tion technique presented in this paper: Image-based render-
ing and visibility determination through occlusion culling.

Image-based rendering (IBR) defines a group of tech-
niques that use 2D images to replace original 3D models.

IBR techniques partially solve the problem of occlusion
culling by rendering complex scenes and saving them into
textures in a preprocessing stage. During rendering these
textures are placed on billboards (planar rectangles) located
in place of the actual geometry. IBR has the advantage that
complex scenes can be rendered in almost constant time and
are independent of the scene complexity represented. The
disadvantage of IBR techniques is that billboards are valid
only within a small range around the viewpoint where the
picture was taken. When the billboard is no longer valid, it
needs to be replaced by a new one 8 increasing memory re-
quirements and the overhead of managing the billboard im-
ages 9.

Darsa et al. 5 present an image-based technique for navi-
gation in a virtual environment. In this approach, the virtual
environment is divided into cells and the user navigates in
the environment by traveling between cells. The walls of the
cells are covered by images (environment maps) represent-
ing the environment around the cell. These images are not
planar, but partially reconstructed in 3D space with depth in-
formation obtained from the z-buffer. The images are then
morphed between cells to provide smooth interpolation as
the viewpoint changes. When using ID-bitfields there is no
need to do morphing or interpolation between images, since
all the bitfields refer to the same set of polygons. Instead,
binary operators are used to mix available images.

ID-bitfields are similar to images used in IBR techniques,
since they encode view-dependent images. However, images
based on ID-bitfields convey spatially correct information
about the object even when seen from points of view dif-
ferent from the point where the image was taken (See Figure
1).

Solving the visibility problem through occlusion culling
is one of the biggest problems in computer graphics, and the
literature in this respect is fairly large. Several algorithms

c The Eurographics Association 2001.

Meruvia and Strothotte / ID-Bitfields

for occlusion culling operate based on pre-processed infor-
mation 6.

Zhang, Manocha et al. 10 use object space volume par-
titioning and a hierarchy of occlusion maps for their culling
algorithm. In this algorithm a set of occluders for an arbitrary
viewpoint is selected in real-time from a database accord-
ing to their size, redundancy and geometric complexity. The
selected occluders are rendered and the image recovered af-
ter rendering is used to create Hierarchical Occlusion Maps
(HOMs) which aid in culling away those polygons which are
covered by the HOMs and lie behind them.

Occluder selection occurs in 10 using visibility prepro-
cessing. In this case, the model space is subdivided by a uni-
form grid of points, a cube surrounds each of the grid points
and a list of visible objects from inside the cube is com-
puted for each grid point. ID-bitfields can be used to further
assist the occluder selection process in 10, because they effi-
ciently exploit coherence in visibility for neighboring view-
points. ID-bitfields can be used to select occluders based on
the viewing direction using a significantly small number of
samples around an object.

Coorg and Teller 4 present an approach for real-time oc-
clusion culling where a set of occluders is selected in real-
time depending on the size and orientation of polygons
which are close to the viewpoint. A drawback of this tech-
nique is that selection based on distance from the viewpoint
may not always work in a satisfactory way, as important oc-
cluders may be located at a long distance from the view-
point 10. Coorg and Teller’s technique, as well as 10 and 6

are classified as conservative occlusion culling techniques.
Conservative occlusion culling means that not all invisible
(occluded) polygons are culled away before rendering, but
all polygons that are visible are guaranteed to be rendered.

The occlusion culling techniques mentioned above pro-
cess scenes containing several objects. Many of these tech-
niques produce visibility hierarchies at run-time by selecting
large objects or objects at a close distance from the view-
point as occluders. ID-bitfields could be used to render view
dependent reconstructions of the visible objects at the poly-
gon level, while the higher level culling techniques could
determine or approximate visibility for objects as a whole10.

The view reconstruction technique here presented solves
the visibility problem in a non-conservative way, since some
parts of the model may not be visible from any of the pre-
computed viewpoints, as explained in section 3.3. However,
this technique cannot be considered an occlusion culling
technique itself, because occlusion culling algorithms deter-
mine visibility for each polygon in real-time before sending
the primitives to the graphics pipeline in a conservative way,
whereas in this work polygon visibility is not reconsidered
when the view is reconstructed.

3. Design of the System

The system is divided in two parts: preprocessing and vi-
sualization. In the preprocessing stage the bitfields for a set
of source viewpoints are generated from images taken from
the ID-buffer. During visualization the model is read and
a viewer selects and composes image-based samples which
correspond to the viewing direction indicated by the viewer’s
camera. This selection is done using the ID-bitfields and the
information about the bitfields’ source camera positions ob-
tained in the preprocessing stage.

3.1. Preprocessing Stage

In this stage the bitfields that correspond to images of the
model from a set of source viewpoints are computed. All
image samples are taken in a 3D space around the model
(whose center is always the center of projection of the cam-
eras) at a distance such that the entire model lies within the
viewing area.

Initially, the model is read and the list of its primitives is
stored in an indexed polygon array. An invertible function
that maps the index of a polygon in this array to a unique
color value is defined. For each sample the model is rendered
using this color code, without shading nor antialiasing. Af-
ter that, the color buffer is read. Each pixel’s recovered from
the color buffer with a color different from that of the back-
ground will represent a part of a visible polygon from the
given viewpoint. The index of the visible polygon is obtained
by giving the pixel’s color as input to the inverse of the func-
tion defined to render the color-coded model. The bit corre-
sponding to the index is set on (visible). Finally, the binary
field is stored together with the camera’s viewpoint. Once
all pictures have been taken, the bitfield and corresponding
camera positions are saved in a configuration file. Note that
the size of this configuration file is small since all that needs
to be indicated is the source model file name, and camera
parameters and bitfield (as a sequence of integers) for each
of the images.

The number and position of the source viewing points
can be defined automatically by an algorithm that places a
camera on a sphere around the object. Each camera position
can be defined by an algorithm that tessellates the sphere
in facets 3, and then places cameras on the vertices of the
polygons product of the tessellation. The images can also be
taken by a user. In this case users dispose of an authoring
tool where they can set the camera position and orientation
using a standard viewer with an object centered controller
(like the Arcball or the Virtual Sphere 7) and then shoot on
the desired location. It is recommended that a minimum of
six images be taken. In practice, a larger number of samples
will provide a better reconstruction. Closed models are re-
covered using relatively few samples, but models containing
holes, grids or self-occluding parts require more sampling in
those areas where slight rotations uncover previously invisi-
ble parts of the object.

c The Eurographics Association 2001.

Meruvia and Strothotte / ID-Bitfields

In this work up to 55 samples per object have been gen-
erated, and a good compromise between culling rate and
amount of memory used has been found when working with
25 samples.

3.1.1. Image resolution and relative polygon size

Image based rendering techniques suffer the problem that
image resolution is fixed, whereas polygon size varies ac-
cording to the distance of the viewpoint. For the purposes of
our technique the model might be under-sampled when sev-
eral polygons (at the same distance) are mapped to a single
pixel, since a single pixel can only contain one polygon ID
at a time. There are two ways to deal with this situation, the
first and simplest approach is to generate images of higher
resolution when sampling. Images in this case must be suf-
ficiently large that every visible polygon falls on at least one
pixel. For this work, images size was 1320 by 1074 pixels
(rendered off-line).

The second, more robust solution, is to enhance the im-
age (represented by the ID-bitfield) by filling in the miss-
ing polygons using the polygon connectivity and viewpoint
information as a post-processing heuristic step. An iterative
process can look for all those polygons considered visible by
the ID-bitfield and then decide about the visibility of those
neighboring polygons which are not considered visible by
the ID-bitfield (hence missing in the IB-sample). If they are
front facing according to the source viewpoint, we can con-
servatively assume the polygon bit should be set in the ID-
bitfield.

3.2. Visualization

While normal 2D images of a model are valid only for a cer-
tain viewpoint, IB-samples can be rotated in 3D space and it
will still provide correct 3D information about the model, al-
though incomplete, as can be seen from Figure 1. This prop-
erty of IB-samples allows a high degree of reconstruction us-
ing a reduced number of samples in comparison to the num-
ber of samples that would be required using IBR techniques
(see Section 2).

A viewer of IB-samples will need to take a certain number
of samples and put them together to offer the user a valid
impression of the original 3D model. Reconstructing the 3D
models from a set of IB-samples can be performed in several
ways, with different results. The basic process is as follows:
a subset of the original samples has to be determined for an
arbitrary viewpoint, then these samples are joined together
and shown for the particular viewpoint.

3.2.1. Selecting a subset of IB-samples

The goal of the selection method is to select the minimum
number of samples which complement one another to offer
a comprehensive description of the 3D model to be recon-
structed. The strategy used for selecting the images deter-
mines the minimum number of samples that are used. The

first sample selected is the one that lies closest to the cur-
rent (arbitrary) viewpoint. The measure of "distance" be-
tween two camera positions that share the center of projec-
tion (COP) is obtained by computing the angle between the
vectors which start at the shared COP and end at the given
camera positions.

The rest of the IB-samples cannot be selected using the
same criterion, because there is no guarantee that the sam-
ples complement each other if their distribution is not uni-
form on the sphere formed by the set of available camera
positions. In Figure 2, the three closest samples to the view-
point ’O’ are located at the right and below this viewpoint.
Selecting them will account for good coverage of the lower
and right sections of the model (as seen from viewpoint ’O’)
but the upper left part of the model will not be appropriately
described by these three samples.

Figure 2: The sphere shown is formed by the set of possible
camera positions located at a fixed distance from a model.
The center of projection ’COP’ for all cameras is the center
of the model. The task of the viewer is to select the samples
from the set of pre-computed camera positions ’X’ (which lie
on the surface of the sphere) for an arbitrary viewpoint ’O’.

To make sure that the closest and most complementary
views are selected it would be desirable to select those three
camera positions which ’surround’ the arbitrary viewpoint.
Thus, a triangulation in 3D-space needs to be done based on
the camera positions of the IB-samples.

We compute such a triangulation by first calculating a
convex hull around the camera positions (see Figure 3). With
the information of this triangulation the three ’surround-
ing’ points are determined by testing the arbitrary viewpoint
against the triangles in the hull, and determining which tri-
angle contains the arbitrary point (the dark triangle in Figure
3). The vertices of the selected triangle are the three camera
positions used as a base to reconstruct the view.

Testing of this scheme has shown that three samples

c The Eurographics Association 2001.

Meruvia and Strothotte / ID-Bitfields

Figure 3: The convex hull computed from the set of cam-
era positions defined in Figure 2 is shown here. The vertex
indicated with ’*’ is the one that lies closest to the arbi-
trary viewpoint ’O’. The dark colored triangle is the one that
contains the vertices that surround this viewpoint. The three
vertices marked with an ’A’ form the additional set. selected
triangle are the three camera positions used as a base to
reconstruct the view.

are not enough to provide a complete representation of the
viewed object, especially in the case where the source cam-
era positions are not appropriately distributed and long trian-
gles make up the convex hull. In those cases, missing parts
of the model become visible, particularly at the borders of
the reconstructed object. Doing tests on both schemes, it was
found that six surrounding samples provide a good compro-
mise between reconstruction quality and number of samples.

The additional three points are the points on the opposite
vertices of the triangles that share an edge with the origi-
nally selected triangle (the vertices marked with an ’A’ in
Figure 3). Figure 3 shows graphically the selection criteria
described here, the envelope around the object is the con-
vex hull and the marked vertices represent the selected view-
points.

3.2.2. Joining the selected samples

There are several approaches that can be used to join the se-
lected samples. The easiest approach is to join the bitfields
of each selected sample by applying the OR operator to the
selected bitfields. Then, the model is constructed by activat-
ing those polygons which are present in the ID-bitfield. This
approach is efficient in terms of memory consumption, but
care has to be taken to traverse efficiently the bitfield and
to render rapidly the polygons in the bitfield. For example,
on a Silicon Graphics Octane using Open Inventor, the time
required for creating a polygon list of 10,000 polygons can
be as long as 310msec (3.2 frames/sec). It would not be ac-
ceptable to create such lists whenever the viewpoint changes
during interaction.

A property of this technique is that all the viewpoints
which are surrounded by the same face in the convex hull
will share the same set of polygons during visualization.
Since a viewpoint will always fall inside one face of the hull
(unless the point lies exactly in the edge that joins two faces)
computing the set of visible polygons for each face will suf-
fice to cover all possible camera positions around an object.
In this work, the list of polygons is computed for every face
of the convex hull before viewing starts. A list of polygons
for a face can be computed using the six camera positions
defined at the end of the previous section. The task of the
viewer is reduced to the selection of the appropriate face de-
pending on the viewpoint, and then rendering the polygon
list associated with the selected face.

3.3. Approximated culling

This technique allows for the pre-selection of most of the
scene, although this depends mostly on the properties of the
model. If the model exhibits closed walls or is more or less
spherical, the set of visible polygons will be efficiently de-
termined. When the model is sharply concave or has several
holes, like a group of trees, the selection of occluders will
have a higher probability of missing occluders that lie in be-
tween the precomputed viewpoints (See Figure 4).

Figure 4: Approximated culling. In this example the apex of
the model close to point C is not visible either from precom-
puted viewpoints A or B, thus an image recovered for view-
point D will miss this section of the model. Higher sampling
reduces or eliminates the problem.

This is the reason that our view reconstruction technique
is described as approximate. On the other hand, it is worth
noting that a model like one shown in Figure 1 can be suc-
cessfully reconstructed using as few as 14 uniformly dis-
tributed samples.

c The Eurographics Association 2001.

Meruvia and Strothotte / ID-Bitfields

3.4. Transparency and antialiasing

If the original model contains polygons with transparent ma-
terials, those polygons should be excluded from the model
when the IB-samples are taken, since they will not com-
pletely occlude the polygons laying behind them. During vi-
sualization, polygons with transparent materials should al-
ways be sent to the graphics pipeline, i.e. their bits in the
ID-bitfield should always be set, since it is unknown whether
they lie in front or behind of the opaque polygons for a given
viewpoint.

Antialiasing techniques can be applied to the recon-
structed views, since these are just a subset of the original
model’s polygon set. However, antialiasing is expensive in
terms of rendering time. For example, the OpenGL imple-
mentation for antialiasing works by rendering the object sev-
eral times with very slight changes in camera position.

4. Results

We used three models to test the approach here presented:
Bunny, B-gear and LH-brain. These models contain 64951,
74634 and 279526 polygons respectively.

Figure 5 shows the percentage of polygons culled away
(in average) for all three models from any viewpoint. The
values were obtained as follows: An average of the polygon
count sum of all faces in the convex hull is divided between
the total polygon count in the original model, this fraction
is subtracted to 100 % to obtain the percentage of removed
polygons.

Culled polygons across
 number of samples

0%
10%
20%
30%
40%

50%
60%
70%
80%

6 14 25 35 45 55

Number of IB-Samples

cu
lle

d
po

ly
go

ns

Bunny

B-gear

LH-brain

Figure 5: Percentages of average culling across number of
samples taken at preprocessing.

The results in Figure 5 show that the number of rendered
polygons can be greatly reduced (26%, 53% and 70%) with
respect to the original models using 25 samples.

Results also indicate that a higher number of samples in-
creases the percentage of culled polygons for each face in

Frame rate across number of samples

0

5

10

15

20

25

30

35

40

Orig. 6 14 25 35 45 55
Number of IB-samples

F
ra

m
es

/s
ec

Bunny

B-gear

LH-brain

Figure 6: Frame rates across number of samples taken at
preprocessing.

the hull. This occurs because increasing the number of (uni-
formly distributed) samples forces them to lie closer to one
another and share a higher number of polygons.

The LH-brain showed the highest reductions in average
polygon count. This is due to the fact that this model has a
high number of polygons occluded by the visible ones for
any given viewpoint.

Figure 6 shows the frame rates (as frames per second) ob-
served for the three models. The first column on the x-axis
shows the original frame rates for the models (3.87, 14.0,
17.7, frames/sec for LH-brain, B-gear and Bunny, respec-
tively). The original models were rendered without applying
any culling technique. The models were also rendered us-
ing hardware-supported back-face culling. In this case the
frame rates remained the same as those of the original mod-
els. This is probably due to the efficiency of current graphics
hardware when rendering display lists (see section 4.1).

The LH-brain model allowed for the most dramatic in-
crease in performance: up to 5.5 times the original (to 21.25
frames/sec), this is explained by the reduction in polygon
count present in the reconstructions. B-gear also presented
a significant improvement: 2.55 times the original (to 35.8
frames/sec). The speed-up for the Bunny was 1.4 times the
original frame rate (to 24.5 frames/sec). The reason for the
difference in improvement rates is that Bunny doesn’t have
as much self-occlusion as the other two models.

Figure 7 shows the histograms of the pixels missed in the
view reconstructions of the three models with respect to the
original images for an arbitrary viewpoint. Image size was
255x255 pixels and pixel intensity varied from 0 to 1. The
images used for the histogram of figure 7 are shown in Fig-
ure 8, which shows images generated using a base set of 25
IB-samples.

These results were obtained on an SGI Onyx2 Infinite Re-
ality, with 2 195MHz MIPS R10000 CPUs and video out-

c The Eurographics Association 2001.

Meruvia and Strothotte / ID-Bitfields

0

5

10

15

20

25

30

35

40

Bunny B-Gear LH-Brain

Missed pixels across pixel intensities

Number of Pixels

0 255 0 255 0 255

Figure 7: Histograms of the differences between the three
original models and their reconstructed views across pixel
intensity. Total missed pixels are 23, 294 and 623 pixels for
each model respectively.

put at 72.00Hz. The system was programmed using OpenGL
and Open Inventor and the current implementation has no
special requirements neither in hardware nor in the graphics
library, since the views are generated before interaction.

4.1. Comparison with other techniques

A well known culling technique that can be compared to ours
is the back-face test. To make a fair comparison between our
technique and back-face culling we need to analyze the im-
plementation of both algorithms. In each case, the system
goes through the list of polygons and tests each polygon.
For the back-face test, the system tests each polygon’s nor-
mal against the vector between the current viewpoint and the
center of projection, and computes the angle between these
two vectors, if the angle is greater than 90 degrees, the poly-
gon is back facing and is discarded. For the bitfield test, the
graphics system requires to retrieve the bit from the bitfield,
and inspect the value of the bit. Both tests occur in linear
time, but the number of operations is less for the bitfield test.
In addition, the pointer to the relevant byte of the bitfield can
be kept while traversing the bitfield, or the whole bitfield can
be placed in a cache, thus the decision can be done with few
instructions.

Conservative occlusion culling techniques (see Section
2) are superior in the sense that they are more general:
they work for arbitrary viewpoints close and inside of the
model or scene, and they require more preprocessing of
static scenes, by means of database construction and vox-
elization of the model space. In many cases depth maps and
depth hierarchies are computed for each viewpoint, and all
polygons in the model need to be tested against this hierar-
chy and the viewing frustum to ensure that all visible poly-
gons will be sent to the renderer. These techniques are used
to process scenes or models with millions of polygons and
achieve frame rates of 12 frames/sec in average 10 6. On the

other hand, our technique is simple to set up and implement,
general for any polygonal model, and can be used within
model hierarchies as will be shown in the next section. How-
ever, it cannot deal with extremely large model databases,
because there is no hardware implementation that permits
efficient memory use when the reconstructed views are com-
puted for each face of the convex hull.

5. Conclusions and Future Work

A technique to achieve real-time visualization of approx-
imate view reconstructions has been presented. The tech-
nique is based on the selection of precomputed view-
dependent samples of an object. These samples consist of
a bitfield indicating the visible polygons and the camera pa-
rameters where the sample was taken. The reconstruction of
the view is non-conservative, since some visible polygons
may be missing in the reconstructed views. Results show
that reconstructed IB-samples can be used to improve sys-
tem responsiveness in interactive systems that use models
with high depth complexity.

Future work can be divided in two areas: optimization of
the current technique and visualization of other model rep-
resentations. The following improvements are proposed:

* Patch-Bitfields. A way to improve the ID-Bitfields is to
group those polygons which lie in the same neighborhood
into polygonal patches and assign them a unique ID at the
bitfield. These groups of polygons can be efficiently com-
piled into polygon lists and the length of the ID-bitfields
would be smaller, since there would only be one bit per poly-
gon patch. Additionally, the current duplication of informa-
tion in the display lists would be eliminated, since a small set
of polygon patches can be combined in real-time. This re-
duction of duplicated information can drastically reduce the
set-up time required for the technique, allowing for a more
efficient use of the ID-Bitfields.

* Development of a selection node for a scene graph or
an object hierarchy. A selection node works in scene graphs
as a node that selects one of the children based on state in-
formation (e.g. distance to the viewpoint) from the graphics
system. IB-samples can be implemented in a scene graph us-
ing selection nodes, where selection depends on the viewing
matrix and the nodes to be selected are the different views.
This would permit appropriate view reconstruction of hier-
archical models, which are widely spread in current graphics
systems.

* The bitfield representation can be optimized by com-
pressing the bitfield for storage. In this paper bitfields are
saved as a sequence of 32-bit integers. In many cases, de-
pending on the way that polygons are distributed inside the
(source) indexed polygon array, whole sections of the bit-
field are filled with zeros. These sections are the ideal candi-
dates for compression when saved on disk.

When using the bitfield during execution, a hierarchical

c The Eurographics Association 2001.

Meruvia and Strothotte / ID-Bitfields

encoding of the bitfield could be computed to do a faster
traversal for individual bit queries. For example, when an in-
teger of the bitfield has value zero, we know that all values
inside the bitfield are zero and need not query those individ-
ual values any more.

* Implementation in the graphics library. Comparisons
with other algorithms, such a back-face culling (section 4.1)
suggest that if the application was allowed to pass an ID-
bitfield, rendering time could be improved, since the bit test
is simple and can be implemented in hardware. The generic
nature of the ID-bitfield could spark new applications for it.

* Application for Non-realistic images. Non-realistic im-
ages are normally time-consuming to compute, and they are
highly view-dependent. Shading parameters, stroke styles
and direction of strokes can vary for any specific viewpoint.
For the purposes of this paper, the goal of a non-realistic
viewer is to pre-compute as much information as possible
so the visualization for arbitrary viewpoints can be done in
real-time.

* Development of a navigation viewer. So far the viewer
allows viewing at any distance and from any direction out-
side of the object (without level-of-detail handling). Under
this extension the user would be able to visualize the inner
sections of an object or scene. To do this, a space partition-
ing algorithm would be necessary to determine the bound-
aries of the 3D cells. In a similar way to the visualization
algorithms based on cell partitioning 5 10, the set of visible
polygons could be precomputed for each viewing cell, and
the set could be extended to the set of neighboring cells as
well, to guarantee smooth transitions between cells.

As mentioned before, the technique here presented is
compatible with most of the existing occlusion culling appli-
cations. The encoding and visualization approach presented
here can also be used as a post-processing step once com-
plex scenes have been rendered and need to be replayed as
is the case of virtual walkthroughs where path trajectories
are predetermined and used frequently. This technique could
also be applied to level-of-detail hierarchies to reduce the
number of visible polygons during interaction.

Acknowledgments

The authors would like to thank Lourdes Castillo for
carefully proof-reading this paper and making appropriate
suggestions. The LH-brain model was provided by Thomas
Witzel. This work was supported by a Scholarship of the
University of Magdeburg, Germany.

References

1. Deussen, O., Strothotte,Th. (Ed.) Pixel-Oriented Ren-
dering of Line Drawings. Computational Visualiza-
tion Graphics, Abstraction and Interactivity, 105–120.
Springer-Verlag, 1998. 2

2. Saito, T., Takahashi, T. Comprehensible rendering of
3-D shapes. SIGGRAPH 90 Conference Proceedings,
197–206, 1990. 2

3. Bourke, P. Sphere Generation. http://www.swin.edu.au/
astronomy/pbourke/modelling/sphere/ 3

4. Coorg, S., Teller, S. Real-Time Occlusion Culling for
models with Large Occluders. Symposium on Interac-
tive 3D Graphics, 1997, 83–90, 1997. 3

5. Darsa L, Costa Silva, B., Varshney, A. Navigating
Static Environments Using Image-Space Simplification
and Morphing. Symposium on Interactive 3D Graphics,
1997, 25–34, 1997. 2, 8

6. Durand, F., Drettakis, G., Thollot, J., Puech, C. Con-
servative Visibility Preprocessing Using Extended Pro-
jections. SIGGRAPH 2000 Conference Proceedings,
239-248, 2000. 3, 7

7. Shoemake, K. Arcball Rotation Control. Graphics
Gems IV, 175–192. Academic Press, Boston, 1994. 3

8. Shade, J., Lischinski, D., Salesin, D., DeRose, T., Sny-
der, J. Hierarchical Image Caching for Accelerated
Walkthroughs of Complex Environments. SIGGRAPH
96 Conference Proceedings, 75–82, August 1996. 2

9. Shade,J., Gortler, S. J., He, L.W., Szeliski, R. Layered
Depth Images. SIGGRAPH 98 Conference Proceed-
ings, 231–242, July 1998. 2

10. Zhang, H., Manocha, D., Hudson, Tom., Hoff III, K.
Visibility Culling using Hierarchical Occlusion Maps.
SIGGRAPH 97 Conference Proceedings, 77–88, Au-
gust 1997. 3, 7, 8

c The Eurographics Association 2001.

Meruvia and Strothotte / ID-Bitfields

Figure 8: View reconstruction of LH-brain (top), B-gear and Bunny. Original models are shown on the left, reconstructed views
are shown on the right. During preprocessing, 25 IB-samples were taken for each of the models.

c The Eurographics Association 2001.

