
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Managing Gigabyte Virtual Environment Walkthrough

Lidan Shou, Jason Chionh, Zhiyong Huang, Yixin Ruan, Kian-Lee Tan

Department of Computer Science, National University of Singapore, Singapore 117543
Email: tankl@comp.nus.edu.sg

Abstract
In this paper, we study the problem of interactive walkthrough of a large virtual environment (VE) where the data
representing 3D virtual objects can not reside completely in the main memory. We tap into the wealth of techniques
(indexing, caching, prefetching) that have been widely used by the database community, and investigate how
walkthrough semantics can be integrated into these techniques. In our approach, the VE data in the main memory
are dynamically managed such that only those of the relevant 3D objects pertaining to the current user’s viewpoint
are loaded into the main memory. The objects in the VE are spatially indexed by a spatial index structure (R-tree)
as opposed to splitting the VE into smaller rigid-sized grids. Queries are issued to the R-tree to retrieve only the
relevant objects.
We propose a novel complement search algorithm to improve the standard search. In addition, we propose a cache
replacement policy that considers the access pattern of walkthrough to facilitate effective memory management;
and a prediction algorithm that computes the next likely position of the user in order to prefetch data. We imple-
mented a prototype walkthrough system and evaluated it on a 1 GB synthetic dataset of a cityscape. Our results
show that the proposed techniques deployed can lead to a high constant frame rate for the walkthrough.

1. Introduction

In a virtual reality (VR) system, one of the most basic re-
quirements in supporting interactive walkthrough of the vir-
tual environment (VE) is to achieve and maintain a high and
constant rendering frame rate. However, for most VR sys-
tems, this requirement can only be realized for small VEs
whose whole data set can reside in main memory. For more
realistic VEs that are large in size (e.g., gigabytes (GB)),
secondary storage must be used. In these environments, rely-
ing on system virtual memory management for walkthrough
gives unacceptable frame rates.

In this paper, we investigate the use of database tech-
niques for walkthrough of a large virtual environment (VE)
whose data representing 3D virtual objects cannot reside
completely in the main memory. In our approach, database
techniques (such as indexing, caching and prefetching) are
adapted to exploit the semantics of walkthrough in order to
meet users’ performance requirements.

To manage large VEs in relatively small-memory systems,
we dynamically load into the main memory only those rele-
vant 3D objects that pertain to the current user’s viewpoint.
This is realized through the use of a hierarchical spatial index

structure, the R-tree structure, that clusters objects that are
spatially close together. Queries issued to the R-tree retrieves
only the relevant objects - those that are spatially close are
likely to be regions that the users will also move into.

We propose a novel R-tree complement search algorithm
to improve the standard search. This algorithm ensures that
only the non-overlapped regions of successive queries are re-
trieved. In addition, we propose (1) a cache replacement pol-
icy that considers the access pattern of walkthrough to facili-
tate effective memory management. It keeps those nodes that
are close to the current viewpoint in memory, while replac-
ing those nodes that are distant from the current viewpoint
when necessary; (2) a prediction algorithm that computes the
next likely position of the user in order to prefetch data.

We implemented a prototype walkthrough system and
evaluated it on a 1 GB synthetic dataset of a cityscape. Our
results show that the proposed techniques deployed can lead
to a high and constant frame rate for the walkthrough.

The rest of this paper is organized as follows. In the next
section, we shall review some related works. Section 3 dis-
cusses how a large VE can be organized in the secondary
storage and describes R-tree, a dynamic approach used in

c The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org

Lidan Shou, et al. / Managing Gigabyte Virtual Environment

our work. In Section 4, we present techniques that optimize
the I/O performance. We first present the novel complement
search algorithm adopted to optimize the I/O performance
of R-trees. The other two optimization techniques will be
briefly discussed: the distance-priority-based replacement
policy and a prefetching technique based on walkthrough
semantics. Section 5 presents our experimental study and re-
port our findings, and finally, Section 6 concludes the paper.

2. Related Work

The first group of work applied rigid spatial partitioning of
VEs. In the UC Berkeley Soda Hall Walkthrough Project
5, Funkhouser et al. described a method to manage a large
dataset that represents a 3D model of the Soda Hall. Their
method partitioned the entire building into rigid subdivided
cells using a variant of the k-D tree3. Rabinovich and Gots-
man 9 used large terrains generated from a Digital Terrain
Map (DTM) of Israel (consisting of 107 DTM points and
108 texels), divided their terrain into rigid tiles and subdi-
vided all DTM points of each tile into a 3D octree. Davis et
al. 4 used multiple linked quadtrees to subdivide a terrain.

The second group of work applied dynamic spatial par-
titioning of VEs. Pajarola et al.8 used an object-oriented
database to store all objects in the VE and built the R-tree
over the database. However, only results of network transfer
and database access were reported. Kofler et al.7 built the
levels-of-detail (LOD) straight into the R-tree. This method
tightly couples the rendering engine to the database and
poses a problem of scalability in a multi-user environment.

3. Organizing a Large VE

In this section, we first compare the rigid and dynamic spa-
tial partitioning approaches for organizing a large VE in the
secondary storage. Then, we describe the R-tree, a dynamic
approach used in our work.

In the rigid approach, we can split the VE space into rigid
spatial partitions or grids/cells of the same size. In the dy-
namic approach however, instead of splitting the VE, we use
a spatial index to index all objects in the VE and create cells
dynamically at runtime.

Figure 1(a) shows a simple case of a 2-dimensional en-
vironment being divided into 4 rigid cells. Assume that we
only have enough main memory to load a single cell (the as-
sumption is reasonable considering the size of a cell can be
increased to the capacity of the memory).

A swap has to be performed every time the user crosses a
cell boundary. In Figure 1(a), 18 swaps have to be performed
when the user crosses cell boundaries 18 times. Once the en-
vironment is rigidly subdivided, cell boundaries are always
present at fixed positions in the environment and excessive
swapping (and performance degradation) always occurs at

these positions when the user crosses the cell boundaries of-
ten. Performance therefore becomes dependent on the phys-
ical position of the user path. Using a dynamic partitioning
scheme, there are absolutely no fixed subdivisions of the en-
vironment. As such, we can issue queries centered to the
user’s current position to load necessary parts of the envi-
ronment into main memory. As shown in Figure 1(b), under
a dynamic partitioning scheme, it is possible to take only 1
swap in order to perform the same walkthrough. The swap
occurs at Query 2. No swapping is required in Query 3 be-
cause we have enough main memory to store the results of
both Query 2 and 3.

C e l l 2

C e l l 3 C e l l 4

C e l l 1

(a) Rigid spatial partitions

Query 3

Query 2

Query 1

(b) Dynamic spatial index

Figure 1: Example to illustrate the number of swaps needed
for rigid spatial partitions and dynamic spatial indexing.

Suppose now we have enough memory to load all cells
of the environment, the dynamic approach will require less
memory for loading the environment. For a given user path,
the shaded region in Figure 2(a) shows the area that is needed
to load into memory for a rigid cell subdivision method. In
comparison, the shaded area in Figure 2(b) shows the area
needed to load into memory for the dynamic spatial index-
ing approach. From both figures, we see that the dynamic
spatial partitioning approach requires less memory space to
load the environment for the given user path. The rigid cell
subdivision method also requires the splitting of objects if
they lie across cell boundaries.

(a) Static spatial partition (b) Dynamic spatial indexing

Figure 2: Example to illustrate the amount of data to be
loaded into memory for rigid spatial partitions and dynamic
spatial indexing.

From the comparisons, we found the dynamic spatial par-
tition is more suitable for the organization of a large VE.

c The Eurographics Association 2001.

Lidan Shou, et al. / Managing Gigabyte Virtual Environment

Now, we start to describe the R-tree index6 used in
our work. As a typical spatial index structure, it facilitates
speedy retrieval of objects according to their spatial loca-
tions. It is a height-balanced structure similar to the B-tree2

with index records in its non-leaf nodes and pointers to ob-
jects in its leaf nodes. While the B-tree index 1D objects, the
R-tree extends the indexing to n-dimensions.

The R-tree can be seen as a hierarchy of nested n-
dimensional boxes. Every node of the R-tree contains many
entries. The maximum number of entries a node can contain
depends on the fan-out configuration of the R-tree. The leaf
nodes contain entries of the form (MBR; ptr) where MBR is
the minimum bounding box of the virtual object being in-
dexed, andptr is a pointer to the object being indexed. Note
thatptr is an address when the node and objects are in mem-
ory, or a file name when the node and objects are stored in
a file or on disk. The non-leaf nodes contain entries of the
form (MBR; ptr) where MBR is the bounding box of all the
bounding boxes of the entries of the lower level nodes and
ptr is the pointer to the lower level node in the R-tree. In our
implementation, we have also optimized the R-tree using the
linear node splitting algorithm proposed in1.

4. Optimizing Disk I/O

There are essentially three major bottlenecks in a walk-
through system: I/O - loading data (index and virtual ob-
jects) into memory; CPU - transforming data from disk-
based format to in-memory format; and Graphics Processing
Unit (GPU) - loading the graphics pipeline with data to be
viewed.

In this paper, we focus on the I/O bottleneck. Our basic
strategy is to associate the user’s viewpoint with adisk cell
which contains the view frustum. A disk cell corresponds to
a region of space in the VE that contains objects that should
be accessed from the secondary storage and brought into
main memory for rendering. This approach has two main ad-
vantages. First, in an interactive walkthrough process, query
frustums in consecutive rendering frames usually have sig-
nificant overlaps, as the user’s viewpoint moves smoothly.
By using a cell whose size is larger than the view frustum,
we can store the previous results in memory and to retrieve
data merely for non-overlapped areas in the next rendering
frames. Second, if the frustums of the next frames are totally
bounded in the original box, there is no need to access data
from secondary storage. This can also lead to higher frame
rate. We propose a novel complement search algorithm to
optimize the I/O performance. The details are described in
subsection 4.1. Other I/O optimization techniques will be
briefly described in subsection 4.2.

4.1. Complement Search Algorithm

As mentioned, a user’s viewpoint is associated with adisk
cell, Whenever the user moves out of its current disk cell,

objects belonging to a new cell will have to be accessed. Fig-
ure 3 illustrates an example. Here, the user’s frustum cell is
initially within cell C1. When the user’s frustum cell moves
out of C1, data belonging to cell C2 has to be loaded. Intu-
itively, it doesn’t make sense to load all objects belonging to
cell C2 into memory, since there is a significant amount of
overlap between cell C1 and C2. In fact, ideally, we should
only load objects in the shaded region of C2. Similarly, if
C3 becomes the current cell, then only objects in the shaded
region of C3 need to be accessed.

C1

C2

C3

Figure 3: An example to motivate complement search.

Unfortunately, the non-overlapped areas of cells are usu-
ally concave geometries, so it is difficult to describe such a
region in each retrieval operation. It is also difficult to search
for objects overlapping such a concave area in R-tree as the
original search algorithm employs only box-shaped regions.

To minimize I/O, we propose a novel search method,
called ComplementSearch, for R-tree that retrieves only
objects in the non-overlapped regions. Essentially, the al-
gorithm requires us to maintain a history of cells H =
fC1;C2; : : : ;Cig. Given that we want to load objects belong-
ing to a new cell C, the problem becomes one of retrieving
objects whose bounding boxes overlap C but do not overlap
any of the cells in H. Referring to Figure 3 again, ifC3 is the
current cell whose objects we want to retrieve, then objects
that overlapC3 but notC1 andC2 are the ones that we are
interested in.

Figure 5 gives the algorithmic description for the com-
plement search. One of the main operations is theComple-
mentOverlap operation between two regions. We define the
complement overlap between these two regions as follows:
given a cell A, the space not contained in A is the comple-
ment of A, which is denoted as̄A. If a bounding box BB (of
a virtual object or a group of objects) overlaps (or intersects)
Ā, then we say that BB complement overlaps A. In Figure 4,
the bounding boxes of (a) and (b) complement overlap A,
but that of (c) does not. In Figure 5, we use T to denote an
R-tree node, and use E to denote an entry of the R-tree node.

We now explain that the algorithm for complement over-
lap listed between lines 4-5 is necessary and cannot be re-
placed by the following pseudo-code using only the Over-
laps operation:

c The Eurographics Association 2001.

Lidan Shou, et al. / Managing Gigabyte Virtual Environment

(a) BB complement overlaps A

(b) BB complement overlaps A

A

(c) BB does not complement overlap A

BB

Complement of A

Figure 4: Complement overlap relations.

4’. If BB(E) Overlaps C and BB(E) does NOTOverlaps
any ofC1;C2; : : : ;Ci)

5’. InvokeComplementSearch on the tree whose root
is the node associated with the entry E

This is because theComplementSearch using lines 4’
and 5’ may miss some data. To illustrate the problem, we
present a simple example shown in Figure 6(a). The black

Algorithm ComplementSearch (T, C, H)

1. if T is not a leaf node /* search subtrees */
2. for each entry E of node T do
3. if (BB(E) Overlaps C)
4. if BB(E) ComplementOverlaps all of

C1;C2; : : : ;Ci in H
5. InvokeComplementSearch on the sub-tree

whose root is the node associated with E
6. else /* search leaf node */
7. for each entry E of node T do
8. if (BB(E) Overlaps C)
9. if BB(E) Overlaps none ofC1;C2; : : : ;Ci in H
10. E is a qualifying record

Figure 5: The ComplementSearch algorithm.

block represents an object in the database with a bounding
box at the edges of the block. Assume (1) this bounding box
belongs to a leaf node L, which is covered by an ancestor
node with a larger bounding box BB(E) in the R-tree; (2)
C1 and C are two consecutive cells that are accessed, C be-
ing the current cell. As illustrated in the figure, the non-leaf
bounding box BB(E) overlaps both C1 and C, however, the
object is contained in C but not in C1. So when the search al-
gorithm traverses the R-tree and goes to the entry E, it finds
BB(E) overlaps C and BB(E) overlaps C1, so the search pro-
cess will not proceed to this entry, loosing the object in the
final search results.

C1

C

BB(E)

object

(a) BB(E) overlaps C1 and C

BB1

C

C1

(b)

(using 4’ and 5’, the object will not be retrieved.)

BB3

BB4

BB2

Figure 6: An example to illustrate complement search
works.

c The Eurographics Association 2001.

Lidan Shou, et al. / Managing Gigabyte Virtual Environment

To address this problem, the search algorithm has to be
conservative when processing non-leaf nodes. Our solution
is to check whether BB(E) overlaps C and the complement
of C1, as in lines 4-5 of the pseudo-code. If BB(E) overlaps
C, it means that the bounding box is partially or completely
contained in C. If BB(E) also complement-overlaps C1 at the
same time, it means that the bounding box is not completely
contained in C1, so the sub-tree under entry E needs to be
searched further.

When the search process traverses to the leaf nodes of the
R-tree, it is easy to know if the data object has been accessed
by previous cells using the overlap algorithm. If BB(E) over-
laps C1, so data object pointed to by C(E) must have been
queried for C1 or other cells in the current history list, thus
C(E) does not need to be accessed again. Otherwise, BB(E)
overlaps C but does not overlap C1, so C(E) is a qualified
object.

The algorithm ComplementSearch is conservative when
accessing non-leaf nodes to guarantee that no objects in
the new cell would potentially be lost. As the pseudo-code
shows, it is obvious that complement-overlap checking only
happens when the bounding box overlaps the current cell C,
thus ComplementSearch will not access more R-tree nodes
than the original algorithm. The algorithm will terminate the
recursive search at the R-tree nodes with bounding boxes
which are completely contained in all thei+1 cells (i history
cells + current cell), as shown in Figure 6(b). When the size
of the cell is large enough as compared to the average size of
scene objects, and the overlapping between two cells of con-
secutive query operations is also large, ComplementSearch
can stop searching at high level nodes in the R-tree, saving a
large percentage of disk accesses. At the same time, Comple-
mentSearch retrieves all data objects inside the current cell
in one traversal of the R-tree, without accessing those that
already have been retrieved in the past frames, minimizing
the result set of objects that have not been accessed.

If we denote the cells that a user accesses asC1;C2;C3; : : :,
based on the ComplementSearch algorithm, the retrieval en-
gine will issue the following queries to the database (R-tree):
C1,C2�C1,C3�(C1[C2),C4�(C3[C2[C1), : : :,Ci+1�
(Ci [: : :[C2[C1) and so on. As a comparison, a traditional
method would issue queriesC1;C2;C3, : : :, to the database.
For a complement search likeCi+1� (Ci [: : :[C2[C1), we
can remove any cells fromfC1;C2; : : : ;Cig, if the bounding
boxes of all their objects do not overlapCi+1. Such cells have
no effect on the query result because objects overlapping
them cannot overlapCi+1. Thus, before sending the query
to the database, a filtering operation can be conducted on the
cell list, so those cells not interfering the current cell do not
need to be considered in the ComplementSearch algorithm.
In our prototype walkthrough system, the number of cells
in the history to be maintained is fewer than twenty in most
cases. With such short cell lists, the CPU cost on the extra
ComplementOverlap and Overlap testing is negligible.

As a user “steps” out of a cell boundary, a complement
search returns a new result set. The complement search al-
gorithm guarantees that the result sets will have no overlap.
However, as the object buffer in the main memory gets filled
up, old objects should be freed to make space for new cells.
That is, as shown in Figure 7, only objects inCi need to be
retained in the buffer. Unfortunately, sinceC1;C2; : : : ;Ci�1
may overlap withCi , to remove the results of these cells may
also remove objects in the overlapped regions (shown as the
shaded area in the figure). A direct method to deal with this
problem is to delete from the buffer the objects that do not
overlap the latest cell, while maintaining the objects overlap-
ping it. After this operation, the object buffer contains only
the objects of cellCi , of which the user is currently walking
out.

user path

cross point

C1

C2

C3

Ci

Figure 7: Objects to be kept in memory.

4.2. Other I/O Optimization Techniques

The first technique is the distance-priority-based replace-
ment policy for R-tree index. Because of the limited memory
size (compared to the large VE), index nodes that are cached
in the memory may have to be replaced. In the R-tree, since
a search process starts from the root node (at level 0), it is
obviously beneficial to keep the root node in memory all the
time. It guarantees that:

1. High-level nodes have a higher tendency to remain in the
cache.

2. Nodes which have not been accessed for a long time or
distant from the current viewpoint will have a higher pref-
erence to be replaced;

3. For nodes on the same level, the later a node is accessed,
the more likely it is to reside in memory.

Considering the walkthrough of a large virtual environ-
ment, this distance-priority-LRU policy is expected to be su-
perior to the traditional LRU scheme since a node that is
currently distant from the user is not likely to be accessed in
the near future. On the contrary, if a user takes a circular path
and moves near to an area which was accessed long time ago,
the distance-priority-LRU algorithm will detect that the node
is near to the user and should be kept in the cache. However,

c The Eurographics Association 2001.

Lidan Shou, et al. / Managing Gigabyte Virtual Environment

under the LRU policy, this node will be assigned a low pri-
ority, since it has not been accessed for a long time, and may
be removed from the cache.

The second technique is a prefetching algorithm for the
cells the user is most likely to walk in. By observation, the
user will be more likely to move in the direction of the
current view. So it is reasonable to set the central point,
F(x;y;z), of the far clip plane of the view frustum as the
center of the new cell. An inertial termI = k� velocity is
added to F to produce the final result:

F 0 = F + I = F +k�velocity

where velocity is the current velocity vector of the user and
k is an adjusting factor. If a user moves quickly in the direc-
tion of velocity, the predicted center is further. Otherwise, if
the velocity is slow, it is more likely that the user may turn to
other directions, so the prediction should be more conserva-
tive and thus nearer to the view point. If the user turns away
from the predicted direction, the view frustum should still be
within the predicted cell.

5. Experimental Study

We implemented the REVIEW (aREal Time VIrtual
EnvironmentWalkthrough System) that employs all the pro-
posed techniques. The system was built upon a Silicon
Graphics Octane workstation running IRIX 6.5, with 400
megabytes of memory. Since the memory size is large, we
set an upper limit of memory size to 30MB for the system.

We generated a synthetic dataset to simulate a large
cityscape. There are about 900,000 virtual objects/boxes
(Figure 8), requiring about 200 MB of harddisk space (inclu-
sive of R-tree index), and more than 1 GB of memory space
if fully loaded into main memory (in scene graph format).
The distance between objects is 10 to 30 meters long, which
is quite similar to realistic cases of a city. Another dataset of
a residential area used in the experiments is shown in Figure
9.

The parameters of the view frustum include following:
The eyesight of a user, or thedepthof the view frustum, is set
to be one kilometer long for the rendering, being consistent
with the human eyes. The horizontal and verticalfield-of-
viewsare both set to 60 degrees.

As reference, we also implemented a version that makes
use of traditional R-tree queries, i.e., the search is based on
box-shaped queries without any optimization. We shall refer
to this scheme as BOX.

The experiments were conducted in two groups. The first
group of experiments allows us to fine-tune our configu-
rations to find the optimal pre-fetch factor, cache size and
cache policy. The second group illustrates the performance
improvements of REVIEW to the traditional system. Due to
space constraints, we shall not present the results of the tun-
ing experiments.

Figure 8: A snapshot of a large cityscape.

Figure 9: A snapshot of a residential area.

The user positions and orientations are recorded during
different walkthrough sessions. These user sessions have dif-
ferent motion patterns. The fast, slow, turning, backward,
and normal patterns were tested in the five sessions respec-
tively. In the experiment, one recorded user session is used
as the user path for all systems.

The metrics of measuring the quality of a walkthrough
are the frame time and the smoothness of the walkthrough.
Frame time is defined as the cycle time between two con-
secutive rendering operations. The time for database query,
memory data manipulation, rendering and other overheads

c The Eurographics Association 2001.

Lidan Shou, et al. / Managing Gigabyte Virtual Environment

are all included in frame time. A real-time walkthrough re-
quires the frame time shorter than 50ms, i.e., the frame rate
higher than 20 frames per second. The smoothness of the
walkthrough can be represented by how much each frame
time varies from the average frame time. A walkthrough with
a small average frame time and a small variance is consid-
ered of good quality.

Both the average frame time and the frame time variance
of the REVIEW system are smaller than those of the BOX
system. In addition, the frame time of REVIEW meets the
requirement of real-time walkthrough as shown in table 1.

For the BOX, as the cell size decreases, more queries
have to be issued to the database. Moreover, as the over-
laps of the cells used in the query are not considered, the
average frame time increases as the cell size decrease. In
contrast, for the REVIEW, the queries will only return data
in non-overlapped areas. Therefore, as cell size decreases,
the average frame time does not increase. This shows that
the REVIEW system is less sensitive to changes in cell sizes
than the BOX system. As the cell size increases, the aver-
age frame time of the BOX system decrease. This does not
mean that the walkthrough quality of the BOX system in-
creases. The reason for the decrease in frame time is that
fewer queries are issued to the database. The variance of the
average frame time of the BOX is larger than that of the RE-
VIEW. This means that the BOX system gives a choppy vi-
sual effect.

Cell REVIEW BOX
ratio ft (ms) vt (ms) ft (ms) vt (ms)

1.0 46.04 6.77 169.30 13.01
1.1 46.61 6.82 155.87 12.48
1.2 45.2 6.89 143.81 11.99
1.3 48.86 6.99 126.33 11.29
1.5 52.08 7.34 107.87 10.39
1.7 57.18 7.60 100.64 10.03
2.1 57.75 7.78 93.32 9.66
2.5 60.92 7.78 86.86 9.32
2.8 54.26 7.81 87.92 9.37
3.1 61.46 7.84 84.80 9.20

Table 1: Comparisons of REVIEW and BOX on the average
and variance of frame time (ft and vt) for different cell sizes.
The cell ratio is defined as the ratio of the disk cell size over
the the view frustum cell size.

6. Conclusion

In this paper, we have re-examined the issue of designing
effective walkthrough system for large VEs that cannot fit
into the memory. We have proposed a complement search
algorithm for R-tree, a dynamic indexing structure for or-
ganizing the large VE on the secondary storage, together

with a distance-priority-based cache replacement policy and
a prefetching technique based on walkthrough semantics.
We implemented REVIEW, a prototype walkthrough sys-
tem and evaluated its performance on a large VE. Our results
show that the proposed techniques can sustain relatively con-
stant real-time frame rate and improve the visual effects.

References

1. C. H. Ang and T. C. Tan. New linear node splitting
algorithm for r-trees. InAdvances in Spatial Databases,
SSD’97, pages 339–349, Berlin, Germany, 1997.

2. R. Bayer and E. McCreight. Organization and mainte-
nance of large ordered indices. InProceedings of 1970
ACM SIGFIDET Workshop on Data Description and
Access, pages 107–141, 1970.

3. J. L. Bentley. Multidimensional binary search trees
used for associative searching.Communication of the
ACM, pages 509–517, 1975.

4. W. Ribarsky D. Davis D., T. Y. Jiang and N. Faust. In-
tent, perception and out-of-core visualization applied to
terrain. InProceedings of the IEEE Visualization’98,
pages 455–458, 1998.

5. T. A. Funkhouser, C. H. Sequin, and S. J. Teller. Man-
agement of large amounts of data in interactive build-
ing walkthroughs. InProc ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics, pages 11–20, Boston,
March 1992.

6. A. Guttman. R-trees: A dynamic index structure for
spatial searching. InProc. 1984 ACM SIGMOD In-
ternational Conference on Management of Data, pages
47–57, 1984.

7. M. Kofler, M. Gervautz, and M. Gruber. R-trees for
organizing and visualizing 3d gis databases.Journal
of Visualization and Computer Animation, 11:129–143,
2000.

8. R. Pajarola, T. Ohler, P. Stucki, K. Szabo, and P. Wid-
mayer. The alps at your fingertips: Virtual reality
and geoinformation systems. InProceedings of the
ICDE’98 Conference, pages 550–557, 1998.

9. B. Rabinovich and C. Gotsman. Visualization of large
terrains in resource-limited computing environments.
In Proceedings of the IEEE Visualization’97, pages 95–
99, 1997.

c The Eurographics Association 2001.

