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Abstract
This paper presents a BRDF model based on the analysis of the photon collisions with the microfacets of the
surface. The new model is not only physically plausible, i.e. symmetric and energy conserving, but provides other
important features of real materials, including the off-specular peak and the mirroring limit case. Using theoretical
considerations the reflected light is broken down to a specular component representing single reflections and a
matte component accounting for multiple reflections and re-emissions of previously absorbed photons. Unlike most
of the previous models, the proportion of the matte and specular components is not constant but varies with the
viewing angle. In order to keep the resulting formulae simple, several approximations are made, which are quite
accurate but allow for tabulation, fast calculation and even for accurate importance sampling.

1. Introduction

In order to render realistic images, we have to use realistic
material models. Material models are usually defined by Bi-
directional Reflectance Distribution Functions (BRDFs) that
describe the chance of reflection for different pairs of incom-
ing and outgoing light directions. When introducing BRDF
models, the following notations are used: �N is the unit nor-
mal vector of the surface,�L is a unit vector pointing towards
the light source,�V is a unit vector pointing towards the cam-
era, �H is a unit vector that is halfway between�L and �V , θ� is
the angle between�L and �N, θ is the angle between �V and �N,
α is the angle between �H and �N and β is the angle between
�V and �H and similarly between�L and �H. Angles θ� and θ are
also called the incoming and outgoing angles, respectively.

A BRDF can be derived from the probability density func-
tion of the reflection. Suppose that a photon comes from di-
rection�L. The reflection density w��L��V� describes the proba-
bility that the photon leaves the surface at a differential solid
angle around�V given it comes from�L:

w��L��V � �dω�V �

Prfphoton is reflected to dω�V around �V j coming from�Lg�

The BRDF is the reflection density divided by the cosine of
the outgoing angle:

fr��L��V � �
w��L��V�

cosθ
�

A realistic BRDF model is expected not to violate physics
laws including the Helmholtz-symmetry, and the law of en-
ergy conservation, and to mimic the features of real materi-
als.

The Helmholtz principle states that light and view direc-
tions can be exchanged in the BRDF, i.e. fr��L��V� � fr��V ��L��
According to energy conservation, a surface — provided that
it is not a light source — cannot reflect more photons (more
power) to the complete hemisphere Ω than what have been
received, thus the albedo defined by

a��L� � Prfphoton is reflected j coming from�Lg �

Z

Ω

w��L��V � dω�V �

Z

Ω

fr��L��V� � cosθ dω�V

cannot be greater than 1. For isotropic models, reflections
of illuminations from incident directions with the same θ�

have rotational symmetry, thus the albedo of a given point
depends only on incident angle θ�. To emphasize this, the
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Figure 1: Photos of a specular table from different angles. Note that the table becomes more mirror-like for greater viewing
angles

albedo will be denoted by a�θ��. Due to the symmetry of
the BRDF, the albedo can also be presented in the following
form:

a��V � �

Z

Ω�

fr��L��V� � cosθ� dω�L�

Note that this is the integral of the rendering equation if the
incoming radiance is 1, thus the albedo can also be inter-
preted as the response to homogeneous unit illumination16.

Concerning other important features of real materials, the
following properties are worth mentioning. If the surface is
perfectly smooth, then the reflection is described by the Fres-
nel function that is based on the refraction index and the ex-
tinction coefficient. At grazing angles glossy materials be-
come quite good mirrors, that is, specularity increases while
matte behavior fades (figure 1). Interestingly, the maximum
of the reflectance is not at the ideal reflection direction at
grazing angles, but is lower than that. This phenomenon is
called the off-specular peak.

There are two uses of BRDFs in rendering. On the one
hand, when the illumination of a point is known, then the
reflected radiance can be obtained by multiplying the indi-
cent irradiance by the BRDF to obtain the reflected radiance.
On the other hand, random-walk algorithms generate ran-
dom light-paths to find the illumination coming from mul-
tiple reflections. When doing so, a random direction should
be found in a way that the variance of the random estimation
is small. The variance can be reduced by importance sam-
pling which requires the probability density of random di-
rections to mimic fr � cos θ for shooting (i.e. when the light-

path is followed from the light-source towards the eye) and
fr � cos θ� for gathering (i.e. when the light-path is followed
from the eye towards the light-source).

BRDF models can be elaborated in two different ways.
They can be simple mathematical constructions, when the
validity is determined by checking the symmetry and the en-
ergy conservation. These models are called physically plau-
sible empirical models11� 12� 6. On the other hand, BRDFs
can also be constructed by the careful analysis of the light-
surface interaction, which results in the so called physically
based models17� 4� 7 . Physically based models are more nat-
ural, but are usually quite complex. Empirical models are
simpler and some of them are also good for importance sam-
pling, but may have artificial features.

In this paper a BRDF model is presented that meets all
the requirements of physical plausibility and all the other
mentioned features. To derive the model, physically based
analysis is carried out, which is similar to that presented by
Cook and Torrance and by Shirley et. al.14. However, the re-
sults are generalized and simplified with the aim of allowing
fast computations and importance sampling.

2. The model of microfacet reflection

Reflection can be rigorously analyzed by modeling the sur-
face irregularities by probability distributions, as has been
proposed by Torrance, Sparrow17, Cook4 and Blinn. In their
model, the surface is assumed to consist of randomly ori-
ented perfect mirrors, so-called microfacets. This model was
also generalized to more accurately mimic the scattering of
electromagnetic waves by He et. al. in 7.
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A photon may be absorbed or reflected when colliding
with a microfacet. Reflected photons may leave the surface
or may meet other microfacets, while absorbed photons can
be re-emitted into a direction that is independent of the in-
cident direction. The single reflection of photons is respon-
sible for the specular effects and is relatively easy to ana-
lyze. In this paper a physically based formula is proposed
for this specular component. The other component is called
the matte component, which includes the multiple scatter-
ing and re-emission, and is very difficult to describe ana-
lytically. This component is usually handled as a constant
diffuse factor, but this is against practical observations that
show that the ratio of the powers of the matte and specular
reflections is not constant but specular reflections become
dominant at grazing angles. This type of interdependence
was first discussed in 14 where a coupling was established
with the ideal mirror component. In this paper a simple and
physically plausible construction is proposed for the matte
component that is coupled with the glossy specular reflec-
tion. In the next sections the derivation of the specular com-
ponent is presented first, then the matte component is defined
to represent the multiple reflections and re-emissions which
are missing from the specular part. Thus the specular and
matte part are not independent but are coupled depending on
the viewing angle.

2.1. Specular component

This section discusses the derivation of the BRDF
fr�spec��L��V � for the specular part. Our specular BRDF is a
simplification of the Cook-Torrance model. For the sake of
completeness, a pobabilistic derivation of the original Cook-
Torrance model is presented in the appendix. This also al-
lows us to use the partial results of the development.

The Cook-Torrance model proposes the following BRDF
supposing P�H�

�H� to be the Beckmann distribution:

fr��L��V � �
P�H�

�H�

4��N ��L���N ��V �
�G��N��L��V � �F�λ� �H ��L�� (1)

where P�H is the probability density of halfway vector �H, F
is the Fresnel function and

G��N��L��V ��minf2 �
��N � �H� � ��N ��V �

��V � �H�
�2 �

��N � �H� � ��N ��L�

��L � �H�
�1g

is the geometric factor (see appendix for details).

2.1.1. Simplification of the geometric term

Analyzing formula (1), we can note that it is rather compli-
cated and can be numerically unstable since the ��N ��L� and
��N ��V � factors can be arbitrarily small. Note also that it is not
appropriate for importance sampling since it is quite difficult
to find a probability density that is proportional to the cosine
weighted BRDF. On the other hand, the minimum in the ge-
ometric term makes the BRDF not differentiable, which is

against practical observations15. In order to overcome these
problems, the formula is simplified. Let us consider the geo-
metric term divided by the 2��N ��L� � ��N ��V � product:

G��N��L��V �

2��N ��L���N ��V �
�

min

�
��N � �H�

��V � �H���N ��L�
�

��N � �H�

��L � �H���N ��V �
�

1

2��N ��V ���N ��L�

�
�

Instead of computing all the three terms and taking their
minimum, a common term is found in all members that is
a good approximation of this minimum. The first term can
be expressed as:

��N � �H�

��V � �H���N ��L�
�

1

1���L ��V �
�

�N ��V

��N ��L��1���L ��V ��
�

Similarly, the second term is:

��N � �H�

��L � �H���N ��V �
�

1

1���L ��V �
�

�N ��L

��N ��V ��1���L ��V ��
�

Note that when selecting the minimum of the two terms, then

min

�
��N � �H�

��V � �H���N ��L�
�

��N � �H�

��L � �H���N ��V �

�
�

1

1���L ��V �
(2)

seems to be a fairly good approximation. On the other hand,
it also meets the requirement that it is always smaller than
the third member 1�2��N ��V ���N ��L� that is also included in
the geometric term. To demonstrate this, it is enough to show
that

1���L ��V �� 2��N ��V ���N ��L��

Let us denote the angle of �N and�L by θ� and the angle of �N
and �V by θ. The right hand side of this expression is

2��N ��V ���N ��L� � 2cosθ � cosθ� � cos�θ�θ��� cos�θ�θ���

If vectors �L, �V and �N are in the same plane, the angle of
�L and �V is either θ� θ� or θ� θ�, thus the left hand side
cannot be less than the right hand side, which proves our
statement. If the vectors are not coplanar, the angle of�L and
�V gets smaller, which further increases the left side of the
inequality.

Using the approximation of equation (2), the new specular
BRDF is the following:

fr�spec��L��V � � P�H�
�H� �

F�λ� �H ��L�

2�1��L ��V �
� (3)

Taking into account that the vectors have unit lengths,
2�1��L ��V � can also be converted to the following form:

2�1��L ��V � � ��L ��L��2��L ��V �� ��V ��V � � ��L��V �2 ��h ��h

where�h is the not normalized halfway vector. On the other
hand, since the angle of�L and �V is two times the angle of �H
and�L that was denoted by β, we can obtain:

2�1��L ��V � � 2�1� cos2β� � 4cos2 β
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Using these formulae, the new BRDF can also be presented
in the following equivalent forms:

fr�spec��L��V � � P�H�
�H� �

F�λ� �H ��L�
�h ��h

� P�H�
�H� �

F�λ� �H ��L�
4cos2 β

�

The Fresnel function also depends on cosβ (see appendix).
Denoting F�λ�cosβ���4cos2 β� by gλ�cosβ�, the BRDF is
decomposed into a probability density function of �H and to
a single variate function gλ�cosβ� that is independent of the
smoothness of the material:

fr�spec��L��V � � P�H�
�H� �gλ�cos β��

For dielectric materials gλ�cosβ� can be computed by a rela-
tively simple formula. For metals, the complex refraction in-
dex makes the computation more time consuming, but stor-
ing samples of gλ�cosβ� in one dimensional arrays the com-
putation can be replaced by simple memory accesses.

2.1.2. Microfacet orientation probability density

Blinn3 proposed Gaussian distribution for P�H�
�H�, since it

seemed reasonable due to the central limit value theorem of
probability theory:

P�H�Gauss�
�H� � const � e��α�m�2

�

where α is the angle of the microfacet with respect to the
normal of the mean surface, that is the angle between�N and
�H, and m is the root mean square of the slope, i.e. a mea-
sure of the roughness. Later Torrance and Sparrow showed
that the results of the early work of Beckmann2 and Davies5,
who discussed the scattering of electromagnetic waves the-
oretically, can also be used here and thus Torrance proposed
the Beckmann distribution function instead of the Gaussian:

P�H�Beckmann�
�H� �

1
m2 cos4 α

� e
�

�
tan2 α

m2

�
�

Unfortunately the inverse of the integral of this function can-
not be obtained in closed form, thus the Beckmann distribu-
tion is not suitable for importance sampling. Let us modify
this a little obtaining the following probability density:

P�H�Ward�
�H� �

1
m2πcos3 α

� e
�

�
tan2 α

m2

�
� (4)

Integrating this function we get the following cumulative
probability distribution, which can be inverted, thus the sam-
pling scheme which uses two uniformly distributed numbers
u�v is as follows:

α � arctan�m �
p
� log�1�u��� φ � 2π � v�

Note that �1 � u� cannot be replaced by u since random
number generators produce numbers in �0�1�. This is basi-
cally the special case of the sampling scheme proposed by
Ward18 when isotropic reflection is assumed, thus the for-
mula of equation (4) will be called the Ward distribution in
this paper.

Both the Gaussian and the Beckmann distributions are

bell shaped functions, which can be well approximated by
the cosn function, as happens in the Phong reflection model.
Using this idea, the halfway vector can also be sampled from
the following probability density11:

P�H�Phong�
�H� �

�n�1�
2π

� cosn α� (5)

Now the polar angles of the required �H vector are obtained
by the following transformation:

α � arccosu1��n�1�� φ � 2π � v�

In addition to these models, other density functions can also
be used. Defining density functions by textures, for example,
interesting artificial effects can be generated1.

2.1.3. Properties of the specular component

Suppose that the Fresnel term is one, and let us examine the
mirroring direction, which is the output direction if �H � �N.
In this case α � 0 and β � θ� � θ, thus the BRDF is pro-
portional to 1�cos2 β � 1�cos2 θ, which means that the re-
flected radiance at the mirroring direction increases if the
incident direction goes towards 90 degrees (figure 2). This
may appear as an expansion of the total volume of the re-
flected radiance lobe that is called the albedo (figure 3). On
the other hand, since the albedo is bounded, further increase
of the maximum is possible only if the reflected radiance
lobe gets thinner, making the material more mirror like (fig-
ure 1).

0

2

4

6

8

5 10 15 20
x

Figure 2: Reflected radiance lobes using the Ward density
for halfway vector �H (F � 1�m � 0�1). The incident an-
gles are 22.5, 45 and 67.5 degrees, respectively. Note that
the maximum is below the ideal reflection direction, which is
called the off-specular peak.

2.1.4. Importance sampling of the specular component

In Monte-Carlo random walk algorithms random direction
�L should be obtained from a probability density P�L�

�L� that

mimics fr��L��V� �cos θ�. In our case, �H is sampled first using
probability density P�H�

�H�, then cos β is computed as a scalar

product of �V and �H, finally �L is obtained mirroring �V onto
�H:

�L � 2cosβ � �H��V �

c� The Eurographics Association 2001.
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According to equation (9), this sampling scheme results in
the following probability density of sampling�L:

P�L�
�L� � P�H�

�H� �
dω�H
dω�L

�
P�H�

�H�

4cos β
�

If importance sampling is used, then the radiance returned
from direction�L is weighted by

fr��L��V � � cosθ�

P�L�
�L�

� F�λ�cosβ� � cosθ�

cos β
�

The quality of importance, i.e. BRDF sampling is deter-
mined by the variation of this weight. If it is close to con-
stant, then the BRDF sampling is effective. Optimal sam-
pling, when the weight is constant, is unfortunately possible
only for simple BRDFs such as for the diffuse BRDF or the
ideal mirror BRDF. For example, when the reciprocal Phong
model is sampled, the weight is not constant but is the prod-
uct of cosθ� and a factor determining that portion of the lobe
which is not cut off by the surface 11� 16.

For the new model, if the Fresnel function is close to 1 and
the surface is really specular, i.e. the random halfway vector
is close the normal vector, then β � θ�, thus the weight is al-
most 1, which means a nearly optimal importance sampling.
Note that cosθ��cos β is less than 2 even in the worst case.
For more specular cases, this ratio is very close to 1. This
means that the new model has more effective BRDF sam-
pling than that of the Phong formula.

2.1.5. Albedo of the specular component

The albedo of the specular component can be obtained as an
integral of the cosine weighted BRDF:

aspec�θ�� � aspec��L� �
Z

Ω

fr�spec��L��V � � cosθ dω�V �

This integral can be evaluated by a Monte-Carlo quadrature
that applies the proposed importance sampling:

aspec��L� �
Z

Ω�H

P�H�
�H� �

F�λ�cosβ�cosθ
cosβ

dω�H �

E

�
F�λ�cosβ�cosθ

cosβ

�
�∑

i

F�λ�cosβi�cosθi

cosβi

where halfway vector samples should be generated accord-
ing to density P�H�

�H�. Due to the effective importance sam-
pling, accurate albedo values can be obtained from a few
samples. In a preprocessing phase the albedo curves of all
materials present in the scene are computed and the results
are stored in one-dimensional tables.

Figure 3 shows the albedo function assuming different mi-
crofacet densities. The correspondence between the expo-
nent n of the Phong model and the roughness m of the Ward
distribution was established to make the maximum of the
lobes equal at perpendicular illumination.

2.2. Coupling the matte and the specular components

The complete BRDF model is a sum of the proposed specu-
lar component fr�spec��L��V � which accounts for single micro-
facet reflections and a matte component fr�matte��L��V � which
represents the multiple reflections and the re-emissions of
absorbed photons:

fr��L��V� � fr�spec��L��V�� fr�matte��L��V ��

It would be very difficult to elaborate a probabilistic model
for the phenomena described by the matte component, thus a
simpler empirical approach is followed keeping in mind the
requirements of symmetry and energy conservation. To guar-
antee the symmetry, the matte BRDF is searched in symmet-
ric separable form 6� 14� 1:

fr�matte��L��V� � k�λ� � s � r�θ� � r�θ���

where k�λ� is a wavelength dependent color variable that is
between 0 and 1, s is a normalization constant that is re-
sponsible for limiting the albedo to 1, and r is an appropriate
scalar function. The albedo of such material is:

amatte�θ�� � k�λ� � s �2π � r�θ�� �
π�2Z

0

r�θ�cosθ sinθ dθ� (6)

Note that the albedo is proportional to r�θ��. Concerning
energy conservation the total albedo, including both the
specular and the matte components, cannot exceed 1, thus
amatte�θ�� cannot be greater than 1� aspec�θ��. In the per-
fectly reflecting case k�λ� and the total albedo is 1, thus the
albedo of the matte component is:

amatte�θ�� � 1�aspec�θ��� (7)

As concluded, function r�θ�� is proportional to the albedo,
thus it is also proportional to 1� aspec�θ��, which gives the
following formulae for the perfectly reflecting case:

fr�matte��L��V� � s � �1�aspec�θ��� � �1�aspec�θ���

The normalization constant s can be obtained by substituting
this BRDF into equations (6) and (7), when we can obtain:

s �
1

π�1�aave
spec�

�

where aave
spec �

1
π �

R
Ω

aspec�θ�cosθ dω�V is the average albedo

of the specular component. Summarizing, the BRDF of the
matte component is as follows:

fr�matte��L��V� � k�λ� �
�1�aspec�θ��� � �1�aspec�θ��

π�1�aave
spec�

�

2.2.1. Importance sampling of the matte component

Since the specular albedo appearing in the matte BRDF for-
mula is stored in tables, importance sampling, which con-
sists of the integration of the cosine weighted BRDF and the
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Figure 3: Albedo curves of the specular component with different microfacet orientation probabilities
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Figure 4: Lobes of the matte BRDF (left) and the of the cor-
responding reflected radiance (right) for different incident
angles. Wards halfway vector density is used with m � 0�8.

inversion of the result, cannot be an analytic process. How-
ever, since the matte component depends just on the incident
and viewing angles and is in separable form, the problem can
be solved using a single one-dimensional table. Let us define
the cumulative reflection function as follows:

I�θ�� �
θ�Z

0

�1�aspec�ξ�� � cosξ dξ�

As can be shown easily, if u is a uniformly distributed vari-
able in �0�1�, then the probability density of

θ� � I�1
�

u � I
�π

2

��

will be proportional to �1� aspec�θ��� � cosθ�, which is re-
quired by the exact importance sampling. This inverse cu-
mulative reflection function can be stored in a table, which
is accessed when a new direction is needed.
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Figure 5: Albedo curves of the specular and matte compo-
nents for m � 0�8. The total albedo is 1.

The complete BRDF can be sampled according to the
principles of Russian roulette, which selects randomly from
the possibilities of sampling the specular BRDF, sampling
the matte component, or terminating the walk. If the arrival
angle is θ, the specular BRDF is selected with aspec�θ� prob-
ability, the matte BRDF is with k̃ � �1�aspec�θ�� probability,
where k̃ is the average of the color components. The walk is
stopped with �1� k̃��1�aspec�θ�� probability.

3. Simulation results

The proposed BRDF model has been implemented in a
Monte-Carlo rendering system that uses bi-directional ray-
tracing10.

Figure 6 compares the original Cook-Torrance model with
the new BRDF and demonstrates that although the new
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model is simpler and meets the requirements of importance
sampling, the visual quality is similar to that of the Cook-
Torrance BRDF. Figure 7 shows scenes containing plastic
materials that are simulated by the coupled specular-matte
model. We also examined real billiard balls and noticed that
the proposed model accurately mimics the reflection that can
be observed in real life, for example, the balls similarly turn
whiter at grazing angles. In order to present the dynamic
coupling between the specular and matte components, fig-
ure 8 shows the same scene from different viewing angles.
Note that the base surface becomes more mirror like at larger
viewing angles, similarly to the real table in figure 1.

4. Conclusions

This paper presented a physically plausible coupled BRDF
model. The specular part is physically based and is derived
by the simplification of the results obtained by the analysis
of the microfacet reflection model. The simplifications have
only slightly modified the appearance of the materials, but
significantly simplified the computations and made impor-
tance sampling possible. The specular part provides those
important features that can be observed in real world, as for
example, it exhibits off-specular peak and becomes mirror-
like towards grazing angles.

The specular component is complemented by a matte
component which is not independent of the specular part,
but the two reflection modes are coupled. Such coupling is
also a real-world phenomenon, but has usually been ignored
in computer graphics. This paper generalized the previous
work, and proposed a scheme coupling the matte and the
non-ideal specular reflection, which is also good for impor-
tance sampling. The new matte component is also physically
plausible, but is not physically based.

Importance sampling has been proposed for both the spec-
ular and the matte component. We concluded that the qual-
ity of BRDF sampling is even better than that of the Phong
model. The proposed importance sampling scheme and cou-
pling can also be used with other BRDF models.
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Figure 6: Comparison of the Cook-Torrance (left) and the new models (right). The girl is illuminated by large light sources and
is standing in a 0�8 albedo environment. The model is from 3D Cafe (http:// www.3dcafe.com)

Figure 7: Scenes of plastic Buddha and balls. The index of refraction used by the Fresnel function is 1.7
and the roughness parameter m is 0.03. The Buddha model is from the Stanford 3D Scanning Repository
(http://graphics.stanford.edu/data/3Dscanrep/)
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Figure 8: Coupling of specular and matte components for different viewing angles
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Appendix: A probabilistic derivation of the
Cook-Torrance model

Concerning the specular reflection from direction�L to dω�V
around direction �V , only those facets can contribute whose
normal is in dω�H around the halfway unit vector �H. Suppose
that all facets have size S. If reflection is to happen, the facet
should not be hidden by other facets, nor should its reflection
run into other facets, and it should not absorb the photon.
Considering these facts, the event that “a photon is reflected
directly to dω�V around �V” can be expressed as the logical
AND connection of the following events:

1. Orientation: In the path of the photon there is a micro-
facet having its normal in dω�H around �H.

2. No shadowing or masking: The given microfacet is not
hidden by other microfacets from the photon coming
from the light source, and the reflected photon does not
run into another microfacet.

3. Reflection: The photon is not absorbed by the microfacet
that is supposed to be a perfect mirror.

Since the reflection from an ideal mirror microfacet and
the shadowing and masking are stochastically independent
if the orientation is given, the probability of the following
composed event can be expressed as

Prforientation � no mask and shadow � reflectiong �

Prfno mask and shadow j orientationg�

Prfreflectionj orientationg �Prforientationg�

If a photon arrives from direction�L to a surface element dA,
the visible area of the surface element will be dA � ��N ��L�,
while the total visible area of the microfacets having their
normal in the direction around �H will be the product of
the visible size of a single microfacet (S � ��H ��L�), and the
number of properly oriented microfacets, which, in turn, is
the product of the probability that a microfacet is properly
oriented (P�H�

�H� � dω�H ) and the number of all microfacets
(dA�S). The probability of finding an appropriate microfacet
aligned with the photon is the visible size of properly ori-
ented microfacets divided by the visible surface area, thus
we obtain:

Prforientationg�
S � ��H ��L� �P�H�

�H� �dωH �dA�S

dA � ��N ��L�
�
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dH
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dV
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Figure 9: Calculation of dω�H�dω�V
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Unfortunately, in the BRDF the transfer probability den-
sity uses dω�V instead of dω�H , thus we have to determine
dω�H�dω�V

8. Defining a spherical coordinate system (θ�φ),

with the north pole in the direction of�L (figure 9), the solid
angles are expressed by the product of vertical and horizon-
tal arcs:

dω�V � dVhor �dVvert � dω�H � dHhor �dHvert �

In this spherical coordinate system θH � β and θV � 2β.
Using geometric considerations, we get:

dVhor � dφ �sin θV � dHhor � dφ �sin θH � dVvert � 2dHvert �

which in turn yields:

dω�H
dω�V

�
sinθH

2sinθV
�

sinβ
2sin2β

�
1

4cosβ
�

1

4��L � �H�
� (8)

If view vector�V is fixed, then the same reasoning results in:

dω�H
dω�L

�
1

4cosβ
� (9)

Thus the orientation probability is

Prforientationg�
P�H�

�H�

4��N ��L�
�dω�V �

β+2α−π/2

π/2−β

β

α
L

N
H

V

l l1 2

l2

Figure 10: Geometry of masking

The visibility of the microfacets from direction �V means
that the reflected photon does not run into another micro-
facet. The collision is often referred to as masking. Look-
ing at figure 10, we can easily recognize that the proba-
bility of masking is l1�l2, where l2 is the one-dimensional
length of the microfacet, and l1 describes the boundary case
from where the beam is masked. The angles of the trian-
gle formed by the bottom of the microfacet wedge and the
beam in the boundary case can be expressed by the angles
α � angle��N� �H� and β � angle��V � �H� � angle��L� �H� by ge-
ometric considerations and by using the law of reflection.
Applying the sine law for this triangle, and some trigono-
metric formulae:

Prfnot maskingj orientationg� 1�
l1
l2

�

1�
sin�β�2α�π�2�

sin�π�2�β�
� 2 �

cos α � cos�β�α�
cos β

�

According to the definitions of the angles cosα ��N � �H ,
cos�β�α� � �N ��V and cos β ��V � �H.

If the angle of incident light and the facet normal do not
allow the triangle to be formed, the probability of no mask-
ing taking place is obviously 1. This situation can be recog-
nized by evaluating the formula without any previous con-
siderations and checking whether the result is greater than 1,
then limiting the result to 1. The final result is:

Prfnot maskingj orientationg�minf2�
��N � �H� � ��N ��V �

��V � �H�
�1g�

The probability of shadowing can be derived in exactly
the same way, only �L should be substituted with �V . Since
for a given microfacet orientation and light direction, either
masking or shadowing implies the other, the probability of
neither shadowing nor masking taking place can be obtained
by the minimum of the two probabilities:

Prfno shadow and maskj orientationg �

minf2�
��N � �H� � ��N ��V �

��V � �H�
�2�

��N � �H� � ��N ��L�

��L � �H�
�1g�G��N��L��V��

Even a perfect mirror absorbs some portion of the incident
light, as is described by the Fresnel equations. Since F�λ�θ��
is the fraction of the reflected energy, it also describes the
probability of a photon being reflected at a microfacet that is
assumed to be an ideal mirror, giving:

Prfreflectionj orientationg � F�λ��H ��L�

where variable θ� has been replaced by �H ��L � cosβ since
those microfacets that reflect from�L to�V have normal vector
equal to �H.

Now we can summarize the results by multiplying the
probabilities to express w��L��V�dω�V :

w��L��V�dω�V �
P�H�

�H�

4��N ��L�
�G��N��L��V � �F�λ� �H ��L� dω�V �

The BRDF is the reflection density divided by the cosine
of the outgoing angle ��N ��V �, thus we obtain

fr��L��V� �
P�H�

�H�

4��N ��L���N ��V �
�G��N��L��V� �F�λ� �H ��L��

If P�H�
�H� is the Beckmann distribution, this formula be-

comes the famous Cook-Torrance model.
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