
EUROGRAPHICS 2000 / A. de Sousa, J.C. Torres Short Presentations

“Meshsweeper”: From Closest Point to Hausdorff Distances
Between Meshes

A. Guéziecy Multigen-Paradigm, Inc., a Computer Associates company

Abstract

We introduce a new algorithm for computing the distance from a point to an arbitrary polygonal mesh. Our algo-
rithm uses a multi-resolution hierarchy of bounding volumes generated by geometric simplification. Our algorithm
is dynamic, exploiting coherence between subsequent queries using a priority process (without caching the closest
point), and achieving constant time queries in some cases. The method also applies to a mesh that deforms non-
rigidly. Achieving from about 500 to several thousand queries per second for a complex polygonal shape on a PC,
our method has applications both for interactive and photo-realistic graphics. In particular, we study in this paper
the application to computing the Hausdorff distance between two polygonal shapes, with an arbitrary precision.

1. Introduction

Computing the Euclidean distance from a point to a com-
plex polygonal shape is a fundamental problem in computer
graphics. There are numerous applications both in interac-
tive techniques (for collision prevention or tolerance verifi-
cation) and in photo-realistic graphics (for accurate motion
dynamics, 3-D path planning or self-intersection detection).
Distance carries more information than occurrence or non-
occurrence of collision, because it permits prediction, use of
coherence, and dynamic path modification.

The existing options for computing the distance to a
polygonal shape are as follows: A brute force computation
visits all the polygons of the shape and reports the smallest
distance. Since the closest point to a convex shape may be ef-
ficiently determined 1; 2, another option is to decompose an
arbitrary shape into a collection of convex shapes. A Voronoi
diagram of the shape may be computed. A Voronoi diagram
reports for each point of space, the closest element on the
shape 3. While in general computing a Voronoi diagram of
a scene containing tens of thousands of polygons is a very
complex endeavor, Hoff et al. 4 recently introduced an ele-
gant method, exploiting rasterization hardware, which gen-
erates a discretized version of the Voronoi diagram. Another
option is to use a spatial data structure, such as an octree 5 to
index the shape, and permit efficient querying for the closest
point.

y gueziec@computer.org

While the first two methods are generally impractical, the
latter two become more complex when polygonal shapes
move with respect to one another, e.g., requiring a separate
octree for each shape. Further, the methods simply fail when
the shapes move non-rigidly.

Another approach is to build a hierarchy on the polygo-
nal mesh itself. While such hierarchies have been used to
decompose planar polygonal curves for a long time 6; 7, the
generalization to arbitrary polygonal meshes that do not have
subdivision connectivity (that is, are not obtained by regular
subdivision of a base mesh) was made possible only recently,
with the introduction of Progressive Meshes 8 and similar
hierarchies generated using geometric simplification. Using
these hierarchies, multi-resolution modeling techniques can
be applied to arbitrary meshes.

1.1. Main contributions

In this paper we present a new algorithm for computing the
closest point on an arbitrary polygonal mesh.

1. Our algorithm uses a multi-resolution hierarchy of
bounding volumes generated by geometric simplification.
This hierarchy can be reused for display. As the mesh re-
fines, improving closest point estimates appear to sweep
the mesh until the true closest point is found (Section 4),
hence the name of the algorithm.

2. The refinement process can be interrupted at any time,
providing an approximation to the distance. Otherwise,
the final result is the exact closest point and distance.

c The Eurographics Association 2000.

Gueziec / “Meshsweeper”: From Closest Point to Hausdorff Distances Between Meshes

3. The hierarchy is represented using a few arrays and ta-
bles, limiting memory usage and fragmentation.

4. Our algorithm is dynamic, exploiting coherence between
subsequent queries (without caching the closest point; see
Section 5). This dynamic process is responsible for much
of the algorithm’s speed.

5. Our dynamic algorithm also applies to a mesh that de-
forms. This is possible because our bounding-volume hi-
erarchy, departing from commonly used ones 9; 10, under-
goes little changes when a shape deforms smoothly.

6. The dynamic algorithm can be applied to measuring dis-
tances between meshes, by finely sampling one mesh and
visiting the samples along continuous paths, while query-
ing the other mesh for the closest point. In this way, we
can approximate the expensive Hausdorff distance met-
ric with an arbitrary precision at a reasonable cost (Sec-
tion 6).

Other possible applications include robot motion plan-
ning and shape registration using the Iterative Closest Point
method 11.

2. Previous Work

Our method straddles three closely-related areas where there
is significant previous work.

2.1. Closest Point

Aside from Voronoi diagrams and methods applying to con-
vex shapes that we mentioned earlier, k-D trees 5 have been
used to compute the closest point on an arbitrary triangle
mesh 12.

2.2. Separation Distance Between Objects and Collision
Detection

To compute the separation distance between arbitrary
meshes, a solution is to employ a hierarchy of bounding
volumes, such as bounding spheres 9, Oriented Bounding
Boxes (OBBs) 13; 14 or segments and rectangles swept by
a sphere 15. Starting with two bounding volume hierarchies,
each corresponding to one object, the hierarchies are recur-
sively traversed. Pairs of primitives are tested for determin-
ing whether the current estimate of minimum distance can
be improved. Pruning strategies are employed to reduce the
number of pairs tested. A similar framework has been com-
monly used for collision detection 16.

2.3. Selective Refinement of Progressive Meshes

Hoppe introduced Progressive Meshes 8, a continuous repre-
sentation using a base mesh and a sequence of vertex splits,
which are mesh refinement operations inverting the contrac-
tion of an edge. Algorithms and data structures for applying
the vertex splits out of sequence were introduced in 17; 18; 19

and used for applying view-dependent levels of detail to
meshes.

In 17; 18 and 20 the contraction of an edge of the mesh
is represented with two children vertices (the endpoints of
the edge) connected to a single parent vertex (the vertex re-
sulting from the contraction) in a dependency graph, while
in 21, a single parent-child relationship between vertices rep-
resents an edge contraction. Another structure is necessary
to record the dependency between edge contractions, which
is different from the above-described dependency. This de-
pendency can be expressed using a Directed Acyclic Graph
or DAG 19.

Aside from visualization, simplification-based hierarchies
have been used for solving GIS queries such as horizon de-
termination 22, point location, iso-contour extraction and vis-
ibility queries 20.

3. Distance to Polygonal Curves

The main contribution of this paper is the computation of the
closest point on a 3-D polygonal mesh, developed in Sec-
tion 4 and subsequent sections. To lay the foundation, we
start by addressing the problem for a 2-D or 3-D polygonal
curve in the present section. The author did not find a simi-
lar description in the literature, and therefore this section is
most certainly original.

We consider a query point p and a polygonal curve S

(two- or three-dimensional). We build a hierarchy of bound-
ing elements on the polygonal shape with each level of the
hierarchy covering the shape in its entirety. At the lowest
resolution in the hierarchy, very few bounding regions cover
the polygonal shape. A simple observation is that the clos-
est point from p to the shape S must occur inside one of the
bounding regions.

3.1. Bounding Elements

While various types of bounding elements could be accom-
modated (axis- or shape-aligned rectilinear boxes are a com-
mon choice), we have chosen as a bounding element the set
of points in space whose distance to the segment is less than
�. As represented in Fig. 1, in the plane the elements are
formed with segment-aligned rectangles capped with two
half-circles. In this way a well-known algorithm for polyg-
onal approximation described in 23 may be directly used to
build the hierarchy: starting with a segment, insert the most
distant point, associating the distance (or approximation er-
ror �) to the segment, and splitting the segment in two; repeat
until the error is sufficiently small.

Referring to Fig. 1, the distance d0 from p to the portion
of the shape S contained in a bounding region R is such that
d� � � d0 � d+ �, where d is the distance to the segment
defining R.

c The Eurographics Association 2000.

Gueziec / “Meshsweeper”: From Closest Point to Hausdorff Distances Between Meshes

p

d

�
S
R

d0

d-�

d+�

Figure 1: The distance d0 between p and the portion of S
contained inside the bounding region R is such that d� ��
d0 � d+ �.

d-�, d+�

q

Pruned

Pruned

q

d-�

p

d
�d+

�

Figure 2: A priority structure q represents each region of the
hierarchy as an interval. An upper bound to the distance is
used to prune the queue.

3.2. Priority Process

After computing the distances to all regions in the coarsest
level of the hierarchy, each region is associated with an inter-
val of the type [d� �;d+ �] and indexed in a priority queue.
When the key used in the queue to assign priorities is d� �,
the interval listed in the front of the queue represents a min-
imum bound to the Euclidean distance between the query
point and the shape. Fig. 2 shows this option, where the front
of the queue is on the left side, and the back on the right side.
The d+ � value corresponding to the leftmost interval pro-
vides an upper bound to the distance. As shown in Fig. 2,
this upper bound can be used to prune all the elements of the
queue whose key exceeds the bound. (When using d+ � as
the key in the queue, the leftmost interval provides a better
upper bound to the distance, but no lower bound, which is
why we prefer d� � as a key).

After pruning, the process loops on, removing the left-
most interval from the queue, splitting the corresponding re-

p

S
p

d1+ε1

ε1

d2-ε2

ε2

R2

R1

A B

Figure 3: A: Regions that must be split during a clos-
est point query. B: Configuration permitting constant-time
queries. p denotes the query point.

gion in two regions using the hierarchy described above, and
reentering the two new regions in the queue. At each step of
the process, the leftmost interval provides both an upper and
lower bounds to the distance. If the difference between the
upper and lower bounds is acceptably small, the process may
be stopped, returning an approximate Euclidean distance to
the shape. If the process continues until the upper and lower
bounds are the same, then the exact closest point is returned
as the closest point to the leftmost region in the queue.

Fig. 3-A illustrates what bounding regions must be split
during a closest point query. We consider a sphere/circle cen-
tered at the query point p with a radius equal to the distance
from p to the shape S. All of the bounding regions intersect-
ing that circle must be split. (A point of S closer to p could
potentially be located inside such a bounding region.)

3.3. Constant Time Queries

If at the end of the process the first and second intervals
[d1��1;d1+�1] and [d2��2;d2+�2] have an empty inter-
section (d1+�1 < d2��2), we can define a sphere centered
at the query point, with a radius equal to d2��2�d1��1

2
. Any

query point inside that sphere will be closer to the first region
than to any other region. We can thus resolve these queries
in constant time. This situation is illustrated in Fig. 3-B.

4. In Three Dimensions: Mesh Sweeping Process

4.1. Bounding-Volume Hierarchies Obtained from
Mesh Simplification

To generalize the method of Section 3 to polygonal sur-
faces, we turn ourselves to error-bounding hierarchies ob-
tained from mesh simplification. Existing methods for error-
bounding mesh simplification differ in the type of bound-
ing volumes that are used: axis-aligned boxes in 24, oriented
prisms in 25 and triangles swept by a sphere in 26. (Other ef-
fective mesh simplification methods may also be used 27; 28,
after adding the capability of building bounding volumes.)

We have opted for triangles swept by a sphere as in 26, pro-
viding a direct 3-D generalization of the bounding elements

c The Eurographics Association 2000.

Gueziec / “Meshsweeper”: From Closest Point to Hausdorff Distances Between Meshes

d1-�1,d1+�1

d2-�2,d2+�2

d3-�3,d3+�3

q

d3

d1

d2

t1

d4

c

triangles removed

triangles added

error changed

split one
corner c of t1

Figure 4: Vertex split for mesh refinement, in relation to
the priority structure. Each operation splits a corner of the
highest-priority triangle t1. Errors attached to vertices and
defining the bounding volumes are updated. Some triangles
must be removed from the queue, and others inserted as
marked.

that we used for polygonal curves (Section 3): the same pri-
ority structures may be re-used with very few changes. Our
choice was independently validated in 15, who report bet-
ter results for distance queries when using volumes swept
by a sphere instead of when using oriented and axis-aligned
boxes.

4.2. Data Structures for Selective Refinement

Fig. 4 shows a mesh refinement operation (vertex split) in
relation to our priority structure. The priority structure is ex-
tended from polygons to polyhedra by indexing triangles as
opposed to segments. The � value (Section 3) is chosen as
the maximum of the sphere radii (or errors) at the triangle
vertices. Nothing else is changed in the priority structure.

Referring to Section 2, recent work has shown that a hi-
erarchy of vertices specifying valid edge contractions com-
bined with a graph (specifically, DAG) representing depen-
dencies between the edge contractions, may be used for se-
lective mesh refinement 17; 18; 19; 21. To specify which con-
tractions must be performed before a given edge contraction
is done, we query for vertices incident on the contracting
edge in the simplified mesh, and determine whether such
vertices were affected by a previous edge contraction.

To simplify the adaptive mesh refinement process and
avoid memory fragmentation, we have developed methods
for refining the mesh selectively, but not for coarsening
it selectively. Periodically (after a number of closest-point
queries) the mesh is substituted with the base mesh (coars-
ened all at once).

We found that this solution, departing significantly from

vertex error: 2 arrays

split vertex before (fixed
lists or hash table)

triangles affected by split
(fixed lists or hash table)

triangles added by split:
(fixed lists or hash table)

vertex splits with: arrays

priority queue of mesh
triangles

vertex parent: array

Determine triangle
corners to be split and

vertices that must be split
before

compute distance to
triangle and error

Retrieve triangle with
highest priority

Is error less than
threshold?

Split vertices while respecting "split
before" partial ordering.

update errors and parents

update priority queue with triangles
added or affected by splits

Output
distance and
closest point

stop

yes

no

Is triangle
"dirty"?

no yes

Figure 5: Data Structures (three changing, four fixed) and
algorithm used for mesh refinement. “Dirty” triangles are
discussed in the next section.

the previous work listed above, works well in combination
with the dynamic querying process. With this assumption,
our data structure can consist exclusively of arrays, and ta-
bles or lists with a fixed content. (A priority queue may be
implemented as a binary heap using arrays 29.)

Fig. 5 shows our data structures. Four fixed lists or hash
tables record the contractions and dependencies, and are not
modified by the process: “vertex splits with” lists the splits
available for a vertex, “triangles added by split” lists the tri-
angles that should be added (Fig. 4 when splitting, “triangles
affected by split” lists the triangles whose bounding volumes
change when splitting, and “split before” lists the vertices
that must be split before a given vertex.

There is a one-to-one correspondence between an edge
contraction and a vertex that is being removed. This observa-
tion is used for encoding the current mesh using three chang-
ing structures, represented using arrays: “vertex error” stores
two copies of the error defining bounding volumes (error as-
sociated with the vertex, error associated with the parent be-
fore contracting the vertex with the parent); “vertex parent”,
indicates the status of being contracted or not with the par-
ent; and “priority queue of triangles” was described previ-
ously in full detail.

The memory usage of the method should in fact be mea-
sured by the three changing structures, since the four fixed
structures may be shared by several objects or threads. We
note that the size of these structures is proportional to the
size of the original mesh; however, the coefficients of pro-
portionality are small: two floating point values (per vertex)
for the error, one integer for the parent, two integer and one
floating point value (per triangle) for the priority queue.

c The Eurographics Association 2000.

Gueziec / “Meshsweeper”: From Closest Point to Hausdorff Distances Between Meshes

Figure 6: Mesh Sweeping process: As a spherical particle
falls towards a torus, the torus mesh is refined in the vicinity
of the closest point to the particle, which is indicated by a
small sphere, and is connected to the particle by a line. Note
that we do not use a bounding sphere hierarchy. Instead, the
bounding elements are triangles swept by spheres. We see
here a snapshot of an interactive animation where we only
represent the spheres at the vertices.

4.3. “Mesh Sweeping” Process

The flow chart in Fig. 5 shows our algorithm. The highest-
priority triangle is removed from the queue. The dynamic
process (Section 5) may have marked it as “dirty”, in case its
distance to the query point is incorrect (but its error bound
conservative). If so, the distance must be re-computed. (To
compute the distance from a point to a triangle, we use the
method of 30.) If not, we decide to split one of the triangle’s
vertices. Our fixed data structures encode which choices are
available for splitting. The “split before” structure is used to
determine additional vertices that should be split. In order to
restore the “vertex errors” in the proper order, we convert the
partial order defined by “split before” to a total order of the
vertices split at this iteration. This is achieved using Topo-
logical Sort 29. As vertices are split in order, triangles are
removed and inserted in the queue as specified in the “tri-
angles added” and triangles “affected” lists. (The removed
triangles are a subset of the added triangles, when vertices
are substituted using “vertex parent”.)

As the mesh refines, improving closest point estimates
“sweep” the mesh until the true closest point is determined.
When this process finishes, the refined mesh may look as
shown in Fig. 6.

d1-�1,d1+�1

d2-�2,d2+�2

d3-�3,d3+�3

q

P

P'

�
+�

+�

+�

-�

-�

-�

Figure 7: Update of the priority structure when the query
point is translated: the priorities are unchanged, but the in-
tervals are expanded. The triangles are marked as “dirty”.

4.4. “n Closest Triangles” and “All Triangles Within a
Distance d” Queries

Once the closest triangle to a query point is determined, the
priority process may be used to keep querying for the next
closest triangle, and the next, etc. As the mesh has already
been refined by the query process in the vicinity of the clos-
est point, the additional cost for obtaining the next closest
triangle is very small.

5. Dynamic Algorithm

The coherence between successive queries in not expressed
in the location of the closest point, but in the priority struc-
ture defined above. A small motion of the query point or
mesh is accommodated by changing the sizes of the intervals
stored in the queue, preferably without changing the priori-
ties, and by marking mesh triangles as “dirty” as the distance
to the query point becomes incorrect.

For a translation of the query point or rigid motion of
the mesh, the sizes of the intervals are affected, but the
bounding-volume hierarchy is not. For a non-rigid motion of
the mesh, the bounding-volume hierarchy must be updated
as well.

5.1. Small Motion of the Query Point

If the query point is translated, each interval is expanded on
both sides by an amount equal to the magnitude Æ of the
translation (Fig. 7). In this way we have a correct bound
on the distance, however conservative. The priorities are
not affected, because each interval is expanded by the same
amount. The intervals are expanded all at once, by-passing
the priority queue mechanism, and the logarithmic costs in-
volved.

5.2. Small Rigid Motion of the Mesh

Our preferred solution is to determine the maximum dis-
placement among the mesh vertices, and to apply the same
method as we did for a moving query point, substituting Æ

with the magnitude of the maximum displacement. In this
way, the priorities are not affected.

c The Eurographics Association 2000.

Gueziec / “Meshsweeper”: From Closest Point to Hausdorff Distances Between Meshes

5.3. Non-Rigid Motion of the Mesh

When comparing previous bounding volume hierar-
chies 9; 13; 14; 15 with an error-bounding mesh simplifica-
tion 25; 24, mesh simplification computes bounding volumes
locally, in a bottom-up fashion, instead of a top-down
fashion.

For a smooth deformation, the motion of the mesh can be
well approximated locally by a rigid motion. A rigid motion
does not affect the width of our bounding volumes and they
can thus be represented by the same epsilon values.

We need to maintain conservative bounds all the time; oth-
erwise, the closest point could be missed. We introduce two
methods for changing the bounds accordingly. (It may be
that the changes are so small that we could safely ignore
them, at least for some applications. We leave this investiga-
tion for future work.)

Both methods use the edge contraction specifications
available as part of the data structures of Section 4, and ap-
ply them in the same sequence that was used to compute the
bounding volumes originally.

The first and simpler method assumes that each vertex
is linearly interpolated between key-frames. Before the de-
formation starts, the sphere radii defining the bounding vol-
umes corresponding to each key frame are recorded, each in
a separate array. (This is done by applying the edge contrac-
tion sequence for all frames and computing error bounds,
as done in the mesh-simplification process, except that the
sequence of edge contractions is known.) During the defor-
mation, radii are linearly interpolated between key-frames.
The bounding volumes are thus correct.

The second method makes no assumption about the mo-
tion. It requires a list of displacement magnitudes for each
vertex. The magnitudes should be exaggerated, so as to pro-
duce conservative volumes for a few steps of the deforma-
tion. Edge contractions are applied in sequence. For each
contraction, the maximum displacement magnitude is mea-
sured for incident vertices. The bounding volumes are in-
flated accordingly. Note that this operation does not require
the expensive geometric computations involved in building
the volumes in the first place 25; 24. One alternative for de-
forming meshes is to specify time-varying bounding vol-
umes, as in 31.

6. Hausdorff Distance Between Meshes

With the recent progress in automated mesh simplification
algorithms, multi-resolution mesh editing, or filtering, it is
becoming increasingly useful to measure the deviation be-
tween complex meshes, and to determine the locations of
maximum discrepancy.

The Hausdorff distance is a very useful measure of sim-
ilarity between two shapes. However, it can be extremely

Figure 8: Spiral traversal of a mesh to minimize the distance
between successive samples and use the dynamic distance
algorithm.

v1v0

C0

C2

C1

S

v1v0

C0 C1

t

B0,1

Case III

Case II

v2

v2

v1

v0

v2

Case I

S
S

C0

t

t

Figure 9: Case by case analysis on how to bound the dis-
tance between a triangle t and a mesh S, knowing the closest
point for each triangle vertex.

expensive to compute for arbitrarily-complex shapes. For in-
stance, referring to Fig. 10, we would like to compute as ac-
curately as possible how a mesh of 29,000 triangles deviates
from a simplified mesh containing 4,450 triangles. Sophis-
ticated polygon reduction tools (e.g., 25; 24) can bound the
Hausdorff distance when producing the simplified mesh, but
cannot compute it accurately.

To compute the Hausdorff distance, one must determine
for each point (not only for each vertex) of the first shape,
the distance to the closest point on the other shape, and re-
port the largest distance measure. One must then do the same
operation for the second shape. The Hausdorff distance is
the larger of the two reported distances. The formal defini-

c The Eurographics Association 2000.

Gueziec / “Meshsweeper”: From Closest Point to Hausdorff Distances Between Meshes

tion is as follows, where S;T designate two meshes, v;w
points of the meshes, H(S;T) the Hausdorff distance, and
d(v;S) the distance from a point to a mesh: H(S;T) =

max(max
v2T

d(v;S);max
w2S

d(w;T)).

Using our technique, this computation can be done with
an arbitrary precision by sampling the surfaces and creat-
ing continuous paths visiting the samples. Such continuous
paths are related to generalized triangle strips that have been
used for geometric compression. We use essentially the same
process as 32; 33 to create “peels” of a mesh by spiraling
about a vertex or a boundary: triangles sharing an edge, and
a vertex chosen as a pivot are traversed in order, creating a
path of visited vertices. The pivot vertex is regularly changed
as previously-visited vertices and traversed triangles are en-
countered. For details, see 32. The topological distance sepa-
rating vertices from the first pivot may be used to color faces
and illustrate the peeling process, as shown in Fig. 8.

A first operation considers existing mesh vertices as sam-
ples for distance computations, after which the closest point
to each vertex is known, but nothing is known for samples
inside triangles. However, as illustrated in the three cases of
Fig. 9 the up-to-three closest points c0; c1; c2 at the vertices
v0; v1; v2 can be used to determine an upper bound for the
distance at any sample inside the triangle t. Depending on
how many vertices among c0; c1 and c2 are different, zero,
one, or two bisector planes of the ci should be computed.
An upper bound to the distance between a point of t and the
closest vertex among c0; c1 and c2 is obtained for one of the
following: intersections of the bisector planes with edges of
the triangle t (see Bisector B0;1 in Fig. 9), or the intersec-
tion of the two bisector planes and the triangle t. This upper
bound is most accurate as the distance increases, which is
exactly what we need for the Hausdorff distance. We only
need to refine the triangles where the distance is the highest,
and the bound most accurate.

According to our experience, in most cases we can
determine early in the refinement process which of the
maximum distances maxv2T d(v;S) and maxw2S d(w;T)

dominates. Thereafter, the method refines only the appropri-
ate mesh. For instance, in the case of Fig. 10, the distance
from the simplified mesh to the original mesh dominates,
meaning that the Hausdorff distance is reached for one par-
ticular sample of the simplified mesh.

Using this method, after collecting about 211,000 samples
of the simplified mesh of Fig. 10-B (and after 4 minutes, 24
seconds of computation) we can be as accurate as 0.04%
of the diameter of the original shape in the Hausdorff dis-
tance computation. In Fig. 10-C we represent the distances
at mesh samples using colors: blue for low values, red for
high values (grayscale for the black-and-white paper copy
of this article). Our best estimate for the Hausdorff distance
is obtained for one of these samples. In comparison, a naive
implementation takes 2 hours, 24 minutes for the same com-
putation.

A B C

Figure 10: Hausdorff Distance Between Meshes. A: Orig-
inal mesh of 29,200 triangles. B: Simplified mesh of 4,450
triangles. C: Distance plot in pseudo colors (grayscale for
the black-and-white copy of this article) between samples of
B and A. Our best estimate of H(A;B) is obtained for one
of these samples.

7. Summary and Future Work

We have introduced the new Meshsweeper method for com-
puting the closest point to a query point on an arbitrary
polygonal mesh undergoing non-rigid motion. We illustrated
this method with an application to computing the Hausdorff
distance between meshes with an arbitrary precision.

A detailed computational complexity analysis is left for
future work. In the best case, the closest point is computed
in constant time (Section 3). In the worst case the closest
point is computed in linear time: when observing Fig. 3-A,
a pathological case may be easily built; if the shape S is a
polygonal approximation of a circle and if p is located at
the center of S then all the bounding regions will be split.
This case is very contrived: our experimental data (which
will be reported in a forthcoming archival article) supports
the constant time hypothesis better.

8. Acknowledgments

Thanks to Elizabeth Fox for proofreading the manuscript.
My discussions with Stephan Gumhold were also helpful.

References

1. E. Gilbert, D. Johnson, and S. Keerthi. A fast procedure
for computing the distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and Automation,
4:193–203, April 1988.

c The Eurographics Association 2000.

Gueziec / “Meshsweeper”: From Closest Point to Hausdorff Distances Between Meshes

2. Ming Lin. Efficient Collision Detection for Animation and
Robotics. PhD thesis, University of California, Berkeley,
1993.

3. F. Aurenhammer. Voronoi diagrams: A survey of a fundamen-
tal geometric data structure. ACM Computing Survey, 23:345–
405, 1991.

4. K.E. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast
computation of generalized voronoi diagrams using graphics
hardware. In SIGGRAPH’99 Proceedings, pages 277–285,
Los Angeles, August 1999.

5. H. Samet. Applications of Spatial Data Structures. Addison
Wesley, 1989.

6. O. Guenther. Efficient Structures for Geometric Data Manage-
ment. PhD thesis, University of California at Berkeley, 1987.

7. H. Samet. The Design and Analysis of Spatial Data Structures.
Addison Wesley, Reading, MA, 1990.

8. H. Hoppe. Progressive meshes. In SIGGRAPH’96 Proceed-
ings, pages 99–108, New Orleans, August 1996. ACM.

9. S. Quinlan. Efficient distance computation between non-
convex objects. In Conference on Robotics and Automation,
pages 3324–3329. IEEE, 1994.

10. D. Johnson and E. Cohen. Bound coherence for minimum dis-
tance computations. In Conference on Robotics and Automa-
tion, pages 1843–1848. IEEE, 1999.

11. Paul Besl and Neil McKay. A method for registration of 3�D
shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, February 1992.

12. D.A. Simon. Fast and Accurate Shape-Based Registration.
PhD thesis, Carnegie Mellon University, December 1996.
CMU-RI-TR-96-45.

13. S. Gottschalk, M.C. Lin, and D. Manocha. Obbtree: A hi-
erarchical structure for rapid interference detection. In SIG-
GRAPH’96 Proceedings, pages 171–180, New Orleans, Au-
gust 1996. ACM.

14. D. Johnson and E. Cohen. A framework for efficient mini-
mum distance computation. In Conference on Robotics and
Automation, pages 3678–3683. IEEE, 1998.

15. E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast
proximity queries with swept sphere volumes. Technical Re-
port TR99-018, UNC Chapel Hill, 1999.

16. J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and
K. Zikan. Efficient collision detection using bounding volume
hierarchies of k-dops. IEEE Transactions on Visualization,
4(1):21–36, January-March 1998.

17. J.C. Xia and A. Varshney. Dynamic view-dependent simpli-
fication for polygonal models. In Yagel and Nielson, editors,
Visualization 96, pages 327–334. IEEE, October 1996.

18. H. Hoppe. View dependent refinement of progressive meshes.
In SIGGRAPH, pages 189–198, Los Angeles, August 1997.

19. L. De Floriani, P. Magillo, and E. Puppo. Building and travers-
ing a surface at variable resolution. In Visualization 97, pages
103–110. IEEE, 1997.

20. A. Maheshwahri, P. Morin, and J-R. Sack. Progressive TINs:
Algorithms and applications. In 5th international workshop
on advances in geographic information systems, pages 24–29,
1997.

21. A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. A framework
for streaming geometry in vrml. IEEE Computer Graphics and
Applications, 19(2):68–78, March-April 1999.

22. L. De Floriani and P. Magillo. Horizon computation on a hi-
erarchical triangulated terrain model. The Visual Computer,
11:134–149, 1995.

23. U. Ramer. An iterative procedure for the polygonal approxi-
mation of plane curves. Computer Graphics and Image Pro-
cessing, 1:244–256, 1972.

24. J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. In SIGGRAPH, pages 115–122, Orlando, July
1998. ACM.

25. C. Bajaj and D. Schikore. Error-bounded reduction of triangle
meshes with multivariate data. In Visual Data Exploration and
Analysis III, volume 2656, pages 34–45. SPIE, March 1996.

26. A. Guéziec. Locally toleranced polygonal surface simplifi-
cation. IEEE Transactions on Visualization and Computer
Graphics, 5(2):178–199, April-June 1999.

27. M. Garland and P. Heckbert. Surface simplification using
quadric error metrics. In SIGGRAPH’97 Proceedings, pages
209–216, Los Angeles, August 1997. ACM.

28. H. Hoppe. New quadric metric for simplifying meshes with
appearance attributes. In Visualization’99, pages 59–66, San
Francisco, CA, oct 1999. IEEE.

29. Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. Mac Graw Hill, 1989.

30. D. Eberly. Magic software. http://www.magic-software.com/.

31. P.M. Hubbard. Interactive collision detection. In Proceedings
of the IEEE Symposium on Research Frontiers in Virtual Re-
ality, pages 24–31, October 1993.

32. M. Chow. Optimized geometry compression for real-time ren-
dering. In Visualization 97, pages 415–421, Phoenix, AZ., Oc-
tober 1997. IEEE.

33. G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometry
coding and VRML. Proceedings of the IEEE, 86(6):1228–
1243, Jun 1998.

c The Eurographics Association 2000.

