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Abstract
Surface creases, ridges and ravines, provide us with important information about the shapes of 3D objects and can
be intuitively defined as curves on a surface along which the surface bends sharply. Exploring similarity between
edges of 2D grey-scale images and curvature extrema of 3D shapes and generalizing a basic edge detection
approach to triangular meshes, we develop a method for detection of ridges and ravines on a smooth surface
approximated by a triangular mesh. We also sketch three potential applications of our approach: mesh fairness
evaluation, improving mesh decimation techniques, and simulating artistic pen-and-ink drawings of 3D objects.

1. Introduction

Studying shapes of 3D objects we are interested in shape fea-
tures which are invariant under rotations, translations, and
scalings. Surface creases, ridges and ravines, curves on a
surface along which the surface bends sharply, are among
the most important such shape features.

Modern data-acquisition hardware is capable of produc-
ing high quality triangular meshes approximating accurately
the surface geometry of physical objects. Surface features
based on high-order surface derivatives can be extracted with
reasonable accuracy. This opens up many new avenues for
shape interrogation methods and, in particular, allows stable
detection of surface creases defined via extrema of the prin-
cipal curvatures along their curvature lines. Such extrema, as
it is shown in the paper, are good for shape description and
segmentation purposes, can be used for mesh fairness evalu-
ation, have potential applications related to mesh decimation
methods and simulating artistic pen-and-ink drawings of 3D
objects.

Contributions. In this paper, we develop a method for de-
tection of ridges and ravines defined via curvature extrema
on a smooth surface approximated by a triangular mesh.

The method explores similarity between edges of 2D
grey-scale images and curvature extrema of 3D shapes and
generalizes a basic edge detection technique for triangle
meshes.

We also sketch three potential applications of our ap-
proach: mesh fairness evaluation, improving mesh decima-
tion techniques, and simulating artistic pen-and-ink draw-
ings of 3D objects.

We discover new relationships between extrema of the
principal curvatures along their curvature lines, extrema of
the principal curvatures along their associated normal sec-
tion curves, and curvature extrema of those normal section
curves (see the last section of the paper appendix). It allows
us to develop a numerical scheme for estimation of max/min
of the principal curvatures along their curvature lines on a
triangulated surface.

Related work. Our mathematical description of surface
creases is based on study of extrema of the principal curva-
tures along their curvature lines. Besides the mathematical
elegance of these surface features 11, 20, 29, 13 (a Nobel Prize
laureate and a Fields medalist are among the authors of these
works), some of them have been studied in connection with
research on the accommodation of the eye lens 11, structural
geology 30, segmentation of range images 31, 4, image and
data analysis 39, 7, face recognition 10, 13, quality control of
free-form surfaces 16, analysis of satellite data and medical
images 24, and human perception 15. The so-called crest lines
25, 37, the loci of the maxima of the maximal absolute prin-
cipal curvature (maximal in absolute value) along its curva-
ture line, turned out to be anatomically meaningful and have
been intensively studied in connection with research on the
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anatomy of the human skull and brain 28, 18 (see also refer-
ences therein). Surface line features defined via second or-
der derivatives of the surface normal also have been used for
shape segmentation purposes in 17.

Practical extraction of the curvature extrema and their
subsets involves estimation of high-order surface derivatives
and, therefore, is not a simple task. Various numerical meth-
ods were proposed for surfaces given parametrically 16, 14, 7,
in implicit form 26, 36, 37, or as the graph of a function defined
on a rectangular grid (i.e., the grey-level intensity surface of
a 2D image) 31, 10, 24, 4.

Surprisingly, detection of curvature extrema on surfaces
approximated by triangular meshes has received much less
attention. In 22 a method to detect the extrema of the prin-
cipal curvatures along their curvature lines on a triangulated
surface was proposed. The method is based on a compari-
son of the areas of surface triangles and their corresponding
triangles on the caustic (evolute, focal surface) generated by
the curvature centers. The method has several drawbacks: it
does not locate curvature extrema well, it requires a special
attention near parabolic lines, and, the most important, it is
unable to separate the curvature extrema along the curva-
ture lines into the maxima and minima. A method to detect
feature lines defined via second order derivatives of the sur-
face normal on a triangulated surface was developed in 17.
However the geometry behind the method is not clear and,
therefore, some doubts that the method is robust enough re-
main.

Image processing methods for extraction of curvature fea-
tures on polygonal surfaces were used in 17 and 23.

A good definition for ridges and ravines and its motiva-
tion. Let us define the ridges as the locus of points where
the maximal principal curvature attains a positive maximum
along its curvature line and the ravines as the locus of points
where the minimal principal curvature attains a negative
minimum along its curvature line.

This definition was originally introduced in 1 in an attempt
to describe surface features corresponding to end points of
the skeletons formed by the distance function singularities 2.
A equivalent definition was used in 8 (see also 7).

Note that the term “ridges” is used in 20, 29, 13 to denote
the extrema of the principal curvatures along their princi-
pal directions. However “ridge” sounds strange for the loci
of points on a surface where the maximal (minimal) princi-
pal curvature takes a positive minimum (negative maximum)
along its curvature line and the surface flattens.

The above definition of the ridges and ravines resembles
a widely used definition for edges in image processing: the
edges consists of pixels where the magnitude of the gradient
of the image intensity has a local maximum in the direction
of the gradient (see, for example, 9).

Below we list several interesting properties of the ridges
and ravines in order to motivate our definition.

The ridges and ravines are dual according to our defini-
tion: changing the surface orientation turns the ridges into
the ravines and vice versa.

The crest lines are a subset of the union of the ridges and
ravines.

The ridges and ravines are perceptually salient 15. For
a surface separating the space into two parts, ridge and
ravine points correspond to the end points (the skeletal edge
points according to the terminology used in 38) of the medial
axes (skeletons) of the parts. This beautiful relation between
global (skeletons) and local (curvature extrema) surface fea-
tures was probably first discovered in 40 and used for skele-
ton extraction in 38. See also 33.

An equivalent description of the ridges and ravines on a
smooth generic surface can be given via cuspidal edges of
the caustic generated by the surface normals. In 3 it was
shown that the cuspidal edges of the caustic sheet associated
with the maximal (minimal) principal curvature and pointing
towards the surface correspond to the ridges (ravines).

The ridges and ravines can be also characterized via the
contact between the surface and its spheres of curvature: the
corresponding spheres of curvature have inner contacts with
the surface at the ridge and ravine points.

Elementary proofs of these remarkable properties of the
ridges and ravines are sketched in the appendix of the paper.
Fig. 1 exposes some of these properties.

Figure 1: The elliptic paraboloid z = 3x2
+ y2 (green), its

ridge (black), the caustic sheet (yellow) and the sphere of
curvature (brown) associated with the maximal principal
curvature at a ridge point, the skeleton (white).

In the rest of this paper we deal with triangular meshes ap-
proximating piecewise smooth surfaces accurately. In gen-
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eral, a polygonal surface may have many pathological prop-
erties to compare with a piecewise smooth surface. Such
pathological polygonal surfaces are not consideblack in this
paper.

2. An image processing toolbox for extraction of ridges
and ravines

Our algorithm to detect the ridges and ravines on a trian-
gular mesh is simple and easy to implement. It resembles a
standard edge detection procedure in image processing.

Since the ridges and ravines turn into each other as the
surface orientation is changed, without loss of generality we
can consider only the ridges.

Curvature tensor estimation. First we estimate the unit
normal vector and the principal curvatures kmax and kmin to-
gether with their principal directions tmax and tmin at all the
vertices. We use the method proposed in 34.

Nonmaximum suppression. To decide whether kmax at-
tains a maximum along the normal section curve associated
with tmax at a given vertex P we perform the following steps,
see the left image of Fig. 2.
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Figure 2:

1. Find the intersection between the normal section plane
generated by tmax and n and the polygon formed by the 1-
ring neighbors Q1; : : :;Qm of P. Let the intersection con-
sist of two points, say A and B (this is true for polygonal
surfaces approximating piecewise smooth surfaces accu-
rately). Let A, for example, belong to QiQi+1.

2. Interpolate the curvature values at A and B. For example,
the curvature at A can be estimated by linear interpolating
between the curvature values at Qi and Qi+1.

3. The maximal principal curvature attains a maximum at
P along the normal section curve if kmax(P), the curva-
ture at P, is greater than both kmax(A) and kmax(B), the
curvatures at A and B, respectively.

It turns out that estimation whether kmax attains a maximum
along its curvature line can be reduced to the above proce-

dure if we compare kmax(P) with

kmax(A)+
1

2(kmax(P)� kmin(P))

�
∂kmax

∂tmin
(P)

�2

jPAj2 (1)

and

kmax(B)+
1

2(kmax(P)� kmin(P))

�
∂kmax

∂tmin
(P)

�2

jPBj2 (2)

instead of kmax(A) and kmax(B), respectively. See the last
section of the appendix for a proof. To estimate ∂kmax=∂tmin
at P we find the intersection between the normal section
plane generated by tmin and n and the polygon Q1; : : :;Qm.
Let the intersection consists of two points, C and D, see the
right image of Fig. 2. The curvature values at C and D are
also estimated by the linear interpolation. Now the curvature
values kmax(C), kmax(P), and kmax(D) allow us to estimate
∂kmax=∂tmin at P.

We mark P as a ridge vertex if kmax(P) is positive and
greater than (1) and (2) simultaneously.

It turns out that extraction of curvature extrema along
curvature lines (comparing kmax(P) with (1) and (2)) is
more stable numerically than extraction of curvature ex-
trema along normal section curves (comparing kmax(P) with
kmax(A) and kmax(B)) near umbilical points, see Fig. 3 be-
low.

Figure 3: Positive maxima of the maximal principal curva-
ture along its normal section curve (left) and curvature line
(right) on a polygonal model of a rounded octahedron ori-
ented by its inward normal.

Let us call the value of kmax at a ridge vertex the strength
of that ridge vertex. The above procedure produces many in-
significant ridge vertices because of invisible defects of the
triangulated surface. To reduce the number of those undesir-
able ridge vertices we add a thresholding operation. The idea
is to keep only those ridge vertices whose strength is above
some positive threshold: kmax > T > 0.

Hysteresis thresholding. Following the analogy with the
edge detection procedure, we use a thresholding idea intro-
duced in 5. We choose two thresholds Tlo and Thi at the 30th
and 60th percentiles of the ridge-strength data for the entire
surface, i.e., the 30th percentile value is chosen so that for
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30 percent of the surface vertices P, kmax(P) is below that
value. We keep a chain of connected ridge vertices whose
strength is above Tlo if the chain contains a ridge vertex with
strength above Thi.

Of course, the same hysteresis thresholding procedure can
be applied separately to mesh parts with different geometry
and the threshold can be selected according to local statisti-
cal properties of the surface.

Visualization. The ridge and ravine vertices can be visu-
alized by attaching to them small segments directed along
the tangents of the loci of curvature extrema along their
curvature lines. However, computation of those tangents in-
volves fourth-order surface derivatives (see the appendix)
and, therefore, is very sensitive to noise. A better visualiza-
tion effect is achieved by attaching small strokes directed
along the principal directions. We use black strokes directed
along tmin to mark the ridge vertices and white strokes di-
rected along tmax to mark the ravine vertices. Some of our
results are shown in Fig. 4.

Figure 4: Left: the Teeth Casting model (courtesy Cyber-
ware). Right: ridges (black) and ravines (white) obtained af-
ter nonmaximum suppression and filtering according to the
30=60% hysteresis thresholding rule. Top-right: the strokes
are directed along the ridge and ravine directions. Bottom-
right: the strokes are directed along the principal directions.

Subtriangle-precision ridge detection. To locate the ridge
points more accurately we can enhance the nonmaximum
suppression algorithm by the parabolic interpolation of kmax

along the polygonal line APB. If, for example, the parabola
maximum is located over PA we consider the mesh triangle
containing PA as a ridge triangle, see Fig. 5.
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Figure 5:

Morphology operations. Even after hysteresis threshold
filtering, the ridge and ravine mesh triangles form fragmen-
tary patterns. We use simple dilation and erosion operations
in order to reduce the fragmentation. First we add several
layers of surrounding triangles. Then a simple thinning pro-
cedure is applied. Finally we remove the connected com-
ponents of ridge triangles whose lengths are smaller than a
given threshold. Fig. 6 demonstrates how our simple mor-
phological scheme works.

Figure 6: Top-left: the Venus model (courtesy Cyberware).
Top-right: ridges and ravines are marked by the black and
white strokes, respectively. Bottom: ridge and ravine trian-
gles detected on the Venus model (left), after adding sev-
eral layers of surrounding triangles (middle), after thinning
(right).

Smoothing. Another way to remove insignificant ridge ver-
tices is smoothing.

It seems natural to choose a smoothing procedure mini-
mizing vertices drift over the surface. Among such smooth-
ing schemes we mention those proposed in 12 and 6. How-
ever, due to shrinkage, these smoothing schemes increase
the mesh irregularity and, therefore, worsen curvature esti-
mation. A method for smoothing without shrinkage was de-
veloped in 35. It was reported in 19 that smoothing by the
bilaplacian flow also produces satisfactory results.
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Our smoothing scheme 27 described below combines to-
gether the discrete mean curvature flow proposed in 6 and
the Laplacian flow.

Consider a discrete diffusion process acting on a surface
mesh M

∂M
∂t

= D(M); (3)

A discrete mean curvature flow acting on M is obtained from
(3) by choosing D=Hn where H is a discrete approximation
of the mean curvature and n is the unit normal consistent
with the surface orientation.

The discrete mean curvature flow proposed in 6 increases
mesh irregularity. To demonstrate this, let us consider the
two-dimensional analog of the flow. Let r(s) be a plane
curve parameterized by arclength parameter s. Consider
three points on the curve

A = r(s�α); O = r(s); B = r(s+β)

with distances a = jOAj and b = jOBj between them. Let
r0 = t and n = t? compose the Frenet frame at O, see Fig. 7.
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The curvature vector kn is approximated by
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Simple manipulations with Taylor series expansions and
Frenet formulas show that (4) has the following expansion

n
�

k+
b�a

3
k0+O(a;b)2

�
+ t
�

a�b
4

k2
+O(a;b)2

�
;

where k0 is the derivative of the curvature with respect to the
arclength s.

If, for example, point O is located closer to A than to
B, i.e., b > a, then, due to the tangent components in the
above expansion, one step of the discrete mean curvature
flow shifts O closer to A.

Our idea is to compensate this undesirable effect by
adding a tangent speed component to the mean curvature
flow

∂M
∂t

= Hn+S t; (5)

where t is a tangent vector to M and S is a function on M.
Note that for a smooth surface adding a tangent speed com-
ponent does not affect the geometry of the evolving surface.

Our implementation of (5) is as follows. Let us move ev-
ery inner mesh vertex in the median direction (the direction
defined by the simplest discrete Laplacian, the umbrella op-
erator) such that the normal speed component is equal to the
mean curvature at that vertex. More precisely, with a given
vertex P let us associate the so-called umbrella operator 19

U(P) =
1
n ∑

i
Qi�P;

where vertices Q1; : : :;Qn form the first ring of neighbors
of P. Let us define the median direction at P by m = U=kUk
and and let θ be the angle between the mean curvature vector
Hn and m, cosθ = m �Hn=jHj. Since the median direction
vector m and the mean curvature vector Hn may have oppo-
site normal components (i.e., θ> π=2) at saddle vertices, see
Fig. 8b, we use the smoothing flow defined by the following
vertex update rule

Pnew  � Pold + τ bD(Pold ); (6)

where τ is a small time step-size parameter, the diffusion
operator bD is given by

bD =

8>>><>>>:
jHjm
cosθ

if cosθ > ε

2H n�
jHjm
cosθ

if cosθ <�ε
0 if jcosθj � ε

and the geometric idea behind it is presented in Fig. 8.
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Figure 8: (a) The median and normal vectors lie on the same
side from the tangent plane: moving in the median direction
with normal speed component equal to the mean curvature.
(b) The median and normal vectors lie on the opposite sides
from the tangent plane may happen for saddle vertices. (c)
Computation of the speed vector in (b).
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Figure 9: Top-left: a polygonal two-holed torus consist-
ing of parts with different sampling rates. Top-right: Lapla-
cian smoothing improves the mesh sampling rate but sub-
stantially deforms the initial shape. Bottom-left: the mean
curvature flow 6 increases mesh irregularity. Bottom-right:
smoothing according to (6) produces a regular meshing sur-
face whose shape is close to the shape produced by the mean
curvature flow.

Here ε is a small positive number. According to our experi-
ence, choosing ε = 0:1 produces good results in smoothing
polygonal objects of various complexity.

See Fig. 9 where our smoothing scheme is tested on a two-
holed torus.

Our modification of the mean curvature flow equalizes
the mesh sampling rate quickly and, therefore, allows us to
achieve stable estimates of the principal curvatures and di-
rections on the smoothed mesh.

Gathering all together. Our complete scheme for ridge and
ravine detection on a triangulated surface combines together
the previous steps in the following order:

� smooth the surface;
� estimate the principal curvatures and principal directions

at every vertex of the smoothed surface;
� detect the ridge and ravine vertices on the smoothed

surface using nonmaximum suppression and hysteresis
thresholding;
� detect the ridge and ravine mesh triangles using the

subtriangle-precision operation;
� apply morphology operations to reduce the fragmentation

of the ridges and ravines;
� place the ridges and ravines on the original surface.

The top row of Fig. 10 demonstrates various stages of our
algorithm applied to the Stanford bunny model. The first im-
age of the bottom row shows the final result obtained while
using (6) for smoothing. Other images of the bottom row
demonstrate ridge and ravine extraction results after employ-
ing various smoothing methods.

The choice of a smoothing method is crucial. Different
smoothing schemes may produce different ridge and ravine
patterns. What smoothing procedure is the best one is not
clear and we leave it as a theme for future research.

3. Potential applications

We believe that potential applications of our technique for
extraction of surface creases are various and many. Below
we sketch only three of them, mesh fairness evaluation, mesh
decimation, and simulating artistic pen-and-ink drawings of
3D objects.

Mesh fairness evaluation. In various engineering applica-
tions, surfaces with a high degree of “fairness” are required.
The concept of fairness is typically associated with curva-
ture characteristics of a surface. A fair surface has smoothly
varying curvatures. Thus the pattern of ridges and ravines on
a smooth surface is very useful for evaluation of the surface
fairness. As we see, the ridges and ravines are very sensi-
tive to even small shape irregularities and can be used for
fairness evaluation.

Simulating artistic pen-and-ink drawings of 3D objects.
Simulating pen-and-ink drawings is an area of intensive re-
search (see, for example, 32 and references therein). Our
technique to visualize the ridge and ravine vertices by attach-
ing at them small strokes directed along the principal direc-
tions turns out to be useful for simulating artistic sketching
of 3D objects, see Fig. 11.

Of course, using curved strokes with varying lengths and
widths will provide with better simulating artistic pen-and-
ink drawings.

An incomplete mathematical explanation of why the
ridges and ravines are good for simulating artistic drawings
of 3D objects can be found in 39. Consider a grey-scale im-
age of an illuminated 3D object. Under general illumination
and reflection conditions, the zero-crossings of the second
directional derivative of the image intensity along the direc-
tion of the image intensity gradient occur near the extrema
of the principal curvature along their principal directions. It
remains to recall that the edges of a grey scale image are
usually defined as sets of pixels where the magnitude of the
gradient of the image intensity has a local maximum in the
direction of the gradient.

Mesh decimation. The goal of the decimation of a polygo-
nal mesh is to reduce the total number of the polygons (mesh
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(a) (b) (c) (d) (e)

(A) (B) (C) (D) (E)

Figure 10: (a) The Stanford bunny. (b) The ridges and ravines detected on the bunny are marked by the black and white strokes,
respectively; the 30=60% hysteresis thresholding rule was applied. (c) The same as (b) on the bunny smoothed according to our
scheme (6). (d) The ridge and ravine triangles are marked on the smoothed bunny. (e) Several layers of the surrounding triangles
are added to every ridge and ravine triangle. (A) Final result after thinning. (B) Smoothing by the bilapalacian flow was used.
(C) Smoothing by the Taubin method 35 was used. (D) Smoothing by the mean curvature flow 6 was used. (E) Smoothing by the
Guskov method 12 was used.

Figure 11:

faces) while providing a good approximation of the original
geometry. A useful idea is to keep certain feature edges and
vertices representing important geometric properties of the
mesh fixed during a decimation procedure. This idea was
implemented in 21 where the feature edges and vertices were
detected automatically as the edges whose dihedral angle is

below a certain threshold and as the vertices whose curvature
is above a certain threshold.

Instead of keeping the feature edges and vertices fixed,
let us keep the ridge and ravine vertices fixed during a
decimation procedure. However the straightforward imple-
mentation of this idea produces acute triangles near ridge
and ravine vertices. To avoid acute triangles, we increase
the number of fixed vertices with every decimation itera-
tion such that the front of fixed vertices propagates from the
ridges and ravines.

In Fig. 12 we present our decimation experiments with
two surfaces having different geometry. The models exposed
in Fig. 12 c consist of much less triangles than the original
models shown in Fig. 12 a but look very close to them.

4. Conclusions and future work

We have shown how basic image processing tools used for
detection of edges in 2D grey-scale images can be extended
to detection of ridges and ravines on a surface given by a
triangular mesh. We have also outlined three potential ap-
plications of our approach: mesh quality evaluating, improv-
ing mesh decimation techniques, and simulating artistic pen-
and-ink drawings of 3D objects.
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(a) (b) (c) (d) (e)

Figure 12: Top row: (a) the Teeth Casting model; (b) its wireframe image; (c) a magnified view of a part of the mesh before
(top) and after (bottom) decimation; (d) a wireframe image of the model after decimation; (e) the decimated model. Bottom
row: (a) a Noh mask model; (b) its wireframe image; (c) ridges and ravines detected on the model; (d) a wireframe image of
the Noh mask model after decimation; (e) the decimated model. The models are flat-shaded to enhance the faceting effect.

Many directions for future work remain. It concerns every
step of our algorithm for ridge and ravine detection. Another
hysteresis thresholding scheme can be developed if, addi-
tionally, we take into account hierarchal relations between
curvature extrema along the curvature lines, curvature ex-
trema along the normal section curves associated with the
principal directions, and the curvature extrema of the nor-
mal section curves (see the last section of the appendix). Our
implementation of morphological operations is very primi-
tive and can be substantially improved. As we already noted
in the main part of the paper, choosing a proper smoothing
scheme requires a further study.

Finally, we have only sketched three possible applications
of our approach. Deeper treatments of them are also themes
for future research.
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Appendix

The purpose of this appendix is to sketch elementary proofs of the
properties of the curvature extrema that we have mentioned and used
in the main part of the paper. The mathematics which we employ
here consists of Taylor series manipulations. Most of the material
presented below can be found in 3 and 13. The last section contains
new results.

Consider a smooth generic surface. Denote by kmax and kmin the
largest and the smallest principal curvatures, respectively, kmax �
kmin. For a given non-umbilic point P on the surface let us choose
coordinates in the space so that P is at the origin, the (x;y)-plane
is the tangent plane to the surface at P, the principal directions tmax

and tmin coincide with x and y axes, respectively, and the normal n
coincides with z-axis. Then the surface is expressible in the Monge
form as the graph of a generic smooth function z = F(x;y), where

F(x;y) =
1

2

�
λx2 + µy2

�
+

1

6

�
ax3 + 3bx2y+
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+ 3cxy2 + dy3
�
+

1
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�
ex4 + 4 f x3y+ : : :

�
+O(x;y)5

with λ = kmax(0;0), µ = kmin(0;0), λ > µ.

The Taylor series expansion of kmax at P has the form

kmax(x;y) = λ+ ax+ by+O(x;y)2
:

Since the vectors (1;0) and (0;1) represent tmax and tmin at P, re-
spectively, then

∂kmax

∂tmax
(0;0) = a

∂kmax

∂tmin
(0;0) = b (7)

Below we will use frequently the function emax = ∂kmax=∂tmax.
The extrema of the maximal principal curvature along its curvature
line are given in the implicit form by the zero-crossings of emax.

We call the intersection between the surface and the normal plane
generated by the normal n and a tangent t by the normal section
curve associated with t.

Let the surface orientation be chosen so that the maximal princi-
pal curvature is strictly positive at P

kmax(0;0) > 0:

Ridges. The curvature line associated with kmax is locally de-
scribed by the problem

dy

dx
=

bx+ cy

λ� µ
+O(x;y)2

; y(0) = 0:

Therefore, y0(0) = 0, y00(0) = b=(λ� µ) and in a neighborhood of
the origin the curvature line is approximated by the parabola

y =
bx2

2(λ� µ)
:

It allows to compute the Taylor series expansion of kmax at the origin
along the associated curvature line

λ+ ax+

�
�3λ3 + e+

3b2

λ� µ

�
x2

2
+O(x3) (8)

Analyzing asymptotic expansion (8) we obtain that P is a generic
ridge point (the maximal principal curvature has a positive maxi-
mum along its curvature line) iff

λ > 0; a = 0; A =�3λ3 + e+
3b2

λ� µ
< 0: (9)

Note that

A =
∂emax

∂tmax
(0;0) =

d2kmax

ds2
max

(0;0);

where smax is the arclength of the curvature line associated with
kmax.

If P is a ridge point, the tangent direction to the ridge at P is given
by fAx+By = 0; z = 0g, where

A =
∂emax

∂tmax
(0;0) and B =

∂emax

∂tmin
(0;0) = f +

3bc

λ� µ
:

Contact with osculating spheres. Let us consider the loci of
points where the curvature of the intersection curve between the sur-
face and the plane fy = αzg, where α is a parameter. The intersec-
tion curve between the surface and the plane is locally described by

the equation y = αλx2
=2+ : : :. The Taylor expansion of the curva-

ture of the curve is the product of
p

1+α2 and

λ+ ax+
�
�3λ3(1+α)2)+ 3λ2µα2 + 6bλα2 + e

� x2

2
+O(x3)

(10)
Thus, if the origin is a ridge point (a = 0), the type of the extremum
of the curvature at the origin is defined by the sign of

�3λ3(1+α)2)+ 3λ2µα2 + 6bλα2 + e:

This expression is a quadratic polynomial in α. The discriminant is
given by

D = 3λ2(λ� µ)A:

Now from (8) it follows that the osculating spheres (spheres of cur-
vature) associated with kmax have inner contacts with the surface at
the ridge points.

Ridges and caustic ribs. The intersection between the caustic
sheet associated with kmax and the plane fy = 0g gives a curve de-
scribed locally by

x =� A

3λ
t3 +O(t4); z =

1

λ
� A

2λ2
t2 +O(t3):

At a neighborhood of the point (0;0;1=λ) the intersection curve is
locally a semicubical parabola. Thus the cuspidal edges (ribs) of the
caustic sheet associated with kmax and pointing towards the surface
correspond to the ridges.

Ridges via normal sections. Let us consider the function

K(x;y) = kmax(x;y)+
C

2

�
x2 + y2 +F(x;y)2

�

obtained from the maximal principal curvature by adding a function
proportional to the squared distance from the origin. The Taylor se-
ries expansion of the restriction of K(x;y) onto the normal section
associated with tmax has the form

λ+ ax+

�
�3λ3 + e+

2b2

λ� µ
+C

�
x2

2
+O(x3) (11)

Choosing C = b2
=(λ�µ) one can detect the ridge points as positive

maxima of K(x;y) along the normal section associated with tmax.
Similarly, choosing C = �2b2

=(λ� µ) one can detect the loci of
points where the curvature of the normal section associated with
tmax has a local positive maximum (see (10) with α = 0).

From (8) and (11) with C = 0 it follows that the ridges are a
subset of the loci of points where kmax has a positive maximum
along the normal section associated with tmax. Both these families
of curves do not pass through the generic umbilics since the term
b2
=(λ�µ) dominates in (8) and (11) near a generic umbilic. There-

fore, the curves do not have branch points on a generic smooth sur-
face. Moreover, both the families are a subset of the loci of points
where the curvature of the normal section associated with tmax has a
local positive maximum.
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