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Abstract

We present a new method for computing the shape similarity between 3D polygonal models using an information-
theoretic viewpoint selection framework. Given a 3D model, a sphere of viewpoints surrounding this model is used
to obtain its shape signature from the mutual information of each viewpoint. This signature represents the essence
of the shape from a view-based approach. Then, in order to quantify the dissimilarity between two models, their
mutual information spheres are registered by minimizing the L2 distance between them. Several experiments show
the discrimination capabilities of our approach and its potential suitability for object recognition.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Quantifying the shape similarity between 3D polygonal
models is a key problem in different fields, such as computer
graphics and computer vision. Many research has been done
in these areas, however we only mention some of the most
recent results. Funkhouser et al. [FMK∗02] present meth-
ods for automatic shape-based retrieval of 3D models and
a web-based search engine. Shilane et al. [SMKF04] de-
scribe a publicly database of polygonal models and a suite of
tools for comparing shape matching and classification algo-
rithms. Osada et al. [OFCD02] and Gal et al. [GSCO07] pro-
pose different methods for computing 3D shape signatures
and their application to object classification and database re-
trieval. See [JT04] for a survey on content-based 3D shape
retrieval.

In computer graphics, several viewpoint quality measures
have been applied in areas such as image-based model-
ing [VFSH03] and volume rendering [BS05, VFSG06]. In
object recognition, best view selection is also a fundamen-
tal task. Many works have demonstrated that the recognition
process is view-dependent [BET95,TBZB97]. In [TBZB97],
the authors found that “visual recognition may be explained
by a view-based theory in which viewpoint-specific repre-
sentations encode both quantitative and qualitative features”.

In this paper, the shape similarity problem is tackled from
an information-theoretic framework introduced in [VFSG06,
FSG07]. Given a set of viewpoints surrounding a 3D model,
we calculate its shape signature given by the viewpoint mu-
tual information sphere. Then, mutual information spheres
are registered by finding the minimum dissimilarity between
them.

2. Basics: Viewpoint Mutual Information

In this section we review the definition of mutual informa-
tion (MI) [CT91] applied to a viewpoint information chan-
nel. In [FSG07], a viewpoint selection framework has been
constructed from an information channel V → O between
the random variables V (input) and O (output), which repre-
sent, respectively, a set of viewpoints and the set of polygons
of an object. This viewpoint channel is defined by a condi-
tional probability matrix obtained from the projected areas
of polygons at each viewpoint. Viewpoints are indexed by
v and polygons by o, and capital letters V and O, used as
arguments of p(), denote probability distributions. For in-
stance, while p(v) denotes the probability of a single view-
point v, p(V ) represents the input distribution of the set of
viewpoints.

The viewpoint channel can be interpreted as an observa-
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Figure 1: Models used in our experiments. From left to right: fishes, chairs, cars and shoes.

tion channel where the conditional probabilities represent
the probability of seeing a determined polygon from a given
viewpoint. The three basic elements of this channel are:

• Conditional probability matrix p(O|V ), where each ele-
ment p(o|v) is defined by the normalized projected area of
polygon o over the sphere of directions centered at view-
point v. Conditional probabilities fulfil ∑o∈O p(o|v) = 1.

• Input distribution p(V ), which represents the probability
of selecting a viewpoint and is obtained from the normal-
ization of the projected area of the object at each view-
point.

• Output distribution p(O), defined by p(o) =
∑v∈V p(v)p(o|v), which represents the average pro-
jected area of polygon o.

The mutual information between V and O, that expresses
the degree of dependence or correlation between the set of
viewpoints and the object, is given by

I(V,O) = ∑
v∈V

p(v) ∑
o∈O

p(o|v) log
p(o|v)
p(o)

= ∑
v∈V

p(v)I(v,O),

where

I(v,O) = ∑
o∈O

p(o|v) log
p(o|v)
p(o)

(1)

has been defined as the viewpoint mutual information (VMI),
which represents the degree of dependence between the
viewpoint v and the set of polygons, and it is a measure of
the quality of viewpoint v. In this framework, the best view-
point is defined as the one that has minimum VMI. One of
the main properties of VMI is its robustness to deal with dif-
ferent discretisations of the model (see [VFSG06, FSG07]).

To compute VMI, we need to estimate the projected area
of the visible polygons of the object at each viewpoint. Be-
fore projection, a different color is assigned to each poly-
gon. The number of pixels with a given color divided by the
total number of pixels projected by the object gives us the
relative area of the polygon represented by this color (condi-
tional probability p(o|v)). In our experiments, all the objects
are centered in a sphere of 642 viewpoints built from the
recursive discretisation of an icosahedron and the camera is
looking at the center of this sphere. The VMI sphere is repre-
sented by a color map, where red and blue colors correspond
respectively to the best and worst views.

3. View-based Shape Similarity

As we have seen in the previous section, VMI measures the
degree of correlation between a viewpoint and the model.

Figure 2: The VMI sphere of the first car model shown in
Figure 1. The VMI sphere on the right-hand side has been
obtained by linear interpolation of the VMI values at view-
point positions (left image).

The VMI sphere (Figure 2) is obtained from the mutual
information at each viewpoint and is now interpreted as a
shape signature that captures the essence of the shape from
a view-based approach. Then, the VMI spheres can be reg-
istered to determine the similarity between two models.

The goal of the registration between two VMI spheres is
to find the transformation that brings one sphere (floating)
into the best possible spatial correspondence with the other
one (fixed) by minimizing a dissimilarity metric. The com-
ponents of our registration method and their interconnec-
tions are shown in Figure 3. The basic input data to the regis-
tration process are two VMI spheres. The transform compo-
nent represents the spatial mapping of points from the fixed
sphere space to points in the floating sphere space. The inter-
polator component is used to evaluate floating sphere values
at non-viewpoint positions and, finally, the metric module
provides a measure of how well the fixed sphere is matched
by the transformed floating sphere.

The steps followed by our method to achieve the best
matching between the fixed and the floating sphere are:

1. Interpolation. The discrete nature of our VMI spheres
implies the need of having an interpolator component.
The nearest neighbor interpolator has been used. This
means that when we need to evaluate values at non-
viewpoint positions on the floating sphere we will use the
VMI value of the closest viewpoint.

2. Comparison. To quantify the quality of the alignment
between the fixed and the floating sphere we need a dis-
similarity metric. In our method we have adopted the L2
distance between the VMI values of the spheres S1 and
S2 corresponding to models O1 and O2, respectively:

D(S1,S2) =
√

∑
v∈V

(I(v,O1)− I(v,O2))2. (2)

3. Transformation. We need two transformation parame-
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Figure 3: Registration of VMI spheres and its main components.

ters (degrees of freedom): R(θ) and R(ϕ), defined re-
spectively as the rotation around Z and Y axis. These
two parameters take values in the range [0◦,360◦] and
[0◦,180◦], respectively.

When all the possible registration positions (dependent
on the transformation parameters) have been analyzed, the
correct matching is given by the minimum dissimilarity. In
our current implementation, running on a Pentium IV 3GHz
machine with 2GB RAM and an NVidia GeForce 8800
GTX, a single registration takes approximately two minutes
when the transformation parameters are increased in steps
of five degrees. The cost of this registration process could be
considerably improved by using numerical optimizers. The
memory space consumption required can be considered neg-
ligible.

4. Results

The view-based shape matching described in the pre-
vious section has been incorporated into our view-
point software using the Ogre3D rendering engine
(http://www.ogre3d.org). In our experiments, the
viewpoint sphere is built from the smallest bounding sphere
of the model. The radius of the viewpoint sphere is three
times the radius of the bounding one.

In order to demonstrate the performance of our approach
we have used four families of models (fishes, chairs, cars and
shoes) where each one is composed by four different sam-
ples (Figure 1). Our registration method has been applied to
all pairs of models obtaining the dissimilarity (2) between
the VMI spheres. The transformation parameters R(θ) and
R(ϕ) take values in intervals of five degrees.

From the dissimilarity values obtained with the spherical
registration, we have built the dissimilarity map shown in
Figure 4. Each row and column of the map represents an
object and the color given to the intersection between them
is the resulting dissimilarity (not intersected regions between
models have been linearly interpolated). Red and blue colors
represent dissimilar and similar objects, respectively. Note
the blue regions along the diagonal as well as the predom-
inance of warm colors while moving away. Let us note the

Figure 4: Dissimilarity map. Blue and red values corre-
spond to the most similar and dissimilar models respectively.

large blue and green area surrounding the car family region
and the dissimilarity of fishes with respect to the rest of the
models.

In Figure 5 we show the shape similarity between the first
model of each family and the rest of models. The list of mod-
els has been ordered according to the dissimilarity obtained
with the spherical registration. Observe the perfect matching
in the fish and car families. We also want to stand out the
good behavior of the chairs and shoes.

5. Conclusions and Future Work

This paper is a first step in exploring the possibilities of
an information-theoretic viewpoint selection framework to
quantify the shape dissimilarity between 3D polygonal mod-
els. The presented approach is based on two phases. First, the
viewpoint mutual information sphere is calculated for each
model. This sphere is considered as a shape descriptor. Sec-
ond, the registration between the mutual information spheres
is performed by minimizing the dissimilarity between them.
Several experiments show the potential suitability of our ap-
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(i.a) (i.b)

(ii.a) (ii.b)

(iii.a) (iii.b)

(iv.a) (iv.b)

Figure 5: In column (a) we show the first model of each family and in column (b) the list of the first twelve objects sorted by its
similarity with respect to the target model (a).

proach to pre-classify 3D polygonal models for object recog-
nition. The initial results encourage us to explore the use of
(1) stability and saliency spheres (see [FSG07]) as shape sig-
natures in combination with VMI-spheres, (2) other metrics
for spherical registration and dissimilarity quantification, (3)
numerical optimizers to speed up the registration process,
(4) several interpolators and (5) different resolutions of both
the viewpoint sphere and the model mesh.
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