
EUROGRAPHICS 2017/ P. Benard and D. Sykora Poster

High quality and efficient direct rendering of massive real-world
point clouds

H. Bouchiba1, R. Groscot1, J-E. Deschaud1 and F. Goulette1

1 MINES ParisTech, PSL Research University, CAOR - Centre de robotique, 60 Bd St Michel 75006 Paris, France

Figure 1: (a) Rendering with one pixel per point. (b) Rendering with [PGA11] algorithm. (c) Our new rendering pipeline

Abstract
We present a novel real-time screen-space rendering algorithm for real-world 3D scanned datasets. Our method takes
advantage of the pull phase of a pull-push pyramidal filling algorithm in order to feed a hidden point removal operator. The
push phase is then used to fill the final framebuffer. We demonstrate on a real-world complex dataset that our method produces
better visual results and is more efficient comparing to state of the art algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Bitmap
and framebuffer operations

1. Introduction

Today’s 3D scanners produce massive and detailed 3D point cloud
datasets. However as points do not embed any topological informa-
tion they produce rendering artifacts. Figure 1(a) shows that some
parts of the model that are supposed to be hidden can be seen by
transparency over it, and that the feeling of a surface vanishes near
the camera due to perspective. We tackle in this article the problem
of getting rid of these artifacts.

[BHZK05] proposed a well-known splatting method to render
points with normals and radii information. [MKC08] extended this
work using screen-space pyramidal algorithm in order to reduce the
complexity of the original algorithm. However normals and radii
are not directly generated by 3D scanners and computing them for
large point clouds is expensive and highly dependent to real-world
point cloud artifacts: noise, holes, misalignment and outliers.

[PGA11] use a screen-space pipeline to render unprocessed
point clouds based on a visibility operator to remove the non-

visible parts of the model. The space between points is then filled
by an anisotropic filter. [PJW12] use screen-space nearest neighbor
queries in order to compute normals and radii to feed [BHZK05]
splatting algorithm in real-time. Screen space rendering methods
are only based on raw point clouds, but they do not handle well
scenes with high depth differences, and scenes containing linear
patches as cables or traffic signs, as it can be seen in Figure 1(b).

We propose in this paper a new real-time screen-space raw point
cloud rendering pipeline that overcomes the limitations of above-
cited methods, and that is also more efficient.

2. Our method

The first phase of our four-step rendering approach is an optional
preprocessing segmentation step. We then perform a pyramidal pull
phase which is used to feed an adaptive screen-space visibility algo-
rithm. Finally a filled framebuffer is reconstructed with a pyramidal
push phase.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

DOI: 10.2312/egp.20171035

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egp.20171035


H. Bouchiba, R. Groscot, J-E. Deschaud & F. Goulette / High quality and efficient direct rendering of massive real-world point clouds

Figure 2: (a) Segmented dataset rendered with false colors. (b) Vis-
ibility kernel size.

Step 1 - Linear patches segmentation The only preprocessing
step required by our algorithm is a segmentation in order to separate
linear patches from the rest of the point cloud. We used [RDG16]
method, the results are depicted in Figure 2(a). Only the non-linear
parts are processed by the rest of the pipeline. The cables and other
linear patches (in red in Figure 2(a)) are rendered with one pixel
per point.

Note that this step is not necessary if the amount of linear patches
in the dataset is small. It does not add any topological information
to the points and is very fast to compute. For our dataset it took
143.5s to segment the linear patches and 612.5s to segment all the
classes depicted in Figure 2(a) (not used in this work).

Step 2 - Pyramidal down-sampling: pull phase We perform a
pyramidal down-sampling phase on the valid pixels of the frame-
buffer. Differently from [MKC08] for each 4x4 pixels patch we
only keep the nearest from the camera (as if we were rendering to a
smaller framebuffer). The coarser level of the pyramid depth buffer
is then used for the next phase of the pipeline.

Step 3 - Adaptive visibility operator A visibility operator is used
to remove the supposed hidden parts of the point cloud seen by
transparency over it. The operator is applied to the whole image
(even on the background pixels) in order to detect the holes to be
filled by the next stage of the pipeline. We use an adaptive ver-
sion of [PGA11] visibility operator to better handle large scenes
and to reduce in the same time its computational cost. The size of
the kernel is no longer constant over the whole image and is taken
proportional to inverse of the depth computed on the coarse depth
buffer previously obtained, as it can be seen in Figure 2(b).

This way, far from the camera the hidden-point detection is still
coherent as it is less dependent to the decreasing of resolution due
to perspective. The reduction of kernel size reduces in the same
time the mean computational cost of the algorithm.

Step 4 - Pyramidal filling: push phase Pyramidal filling method
is then used to reconstruct a filled surface as in [MKC08].

3. Results

We illustrate our work on a 35 million points Mobile Laser Scan-
ning (MLS) dataset of 600 meter long railway. This environment
has been chosen as it contains many linear patches. Each point con-
tains only position and color attributes.

We implemented our method in C++ with OpenGL. In order to

Figure 3: (a) [PGA11] visibility with push-pull filling. (b) our
adaptive filling. (Linear parts have been removed on both)

visibility kernel size (px) [PGA11] (FPS) our method (FPS)
9×9 17.4 27.4

15×15 9.1 25.6
25×25 4.2 24.4

Table 1: Mean frame rate of our rendering pipeline comparing with
state of the art algorithm.

deal with massive point clouds, we simply divide our dataset in
uniformly sized cubes stored in a hash map. In each cube the points
are ordered in LODs laid sequentially in memory. All the images
have been rendered at 1248 x 768 on a 3.4 Ghz Intel Core i7 with
an Nvidia GT 640.

Figure 3 shows the robustness of our adaptive visibility oper-
ator on the scene without linear elements. The gap between the
ground and the bridge at the back of the scene is labeled as a hole
with [PGA11] method whereas it is not with ours. The performance
gain of our algorithm is illustrated in Table 1. The frame rates are
obtained by taking the mean of 3 points of view: far from the scene,
at medium altitude and close to the ground.

Acknowledgement The MLS colored railway dataset have been
gratefully provided by RIEGL Laser Measurement Systems, www.
riegl.com.

References
[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M., KOBBELT L.:

High-quality surface splatting on today’s gpus. In Proceedings of the
Second Eurographics / IEEE VGTC Conference on Point-Based Graph-
ics (Aire-la-Ville, Switzerland, Switzerland, 2005), SPBG’05, Euro-
graphics Association, pp. 17–24. 1

[MKC08] MARROQUIM R., KRAUS M., CAVALCANTI P. R.: Special
section: Point-based graphics: Efficient image reconstruction for point-
based and line-based rendering. Comput. Graph. 32, 2 (Apr. 2008), 189–
203. 1, 2

[PGA11] PINTUS R., GOBBETTI E., AGUS M.: Real-time rendering
of massive unstructured raw point clouds using screen-space operators.
In Proceedings of the 12th International Conference on Virtual Reality,
Archaeology and Cultural Heritage (Aire-la-Ville, Switzerland, Switzer-
land, 2011), VAST’11, Eurographics Association, pp. 105–112. 1, 2

[PJW12] PREINER R., JESCHKE S., WIMMER M.: Auto splats: Dy-
namic point cloud visualization on the gpu. In Proceedings of Eu-
rographics Symposium on Parallel Graphics and Visualization (May
2012), Childs H., Kuhlen T., (Eds.), Eurographics Association 2012,
pp. 139–148. 1

[RDG16] ROYNARD X., DESCHAUD J. E., GOULETTE F.: Fast and
Robust Segmentation and Classification for Change Detection in Urban
Point Clouds. In ISPRS 2016-XXIII ISPRS Congress (2016). 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

2

www.riegl.com
www.riegl.com

