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Abstract
We present a method to compute post-processing depth of field (DOF) that produces more accurate results than previous
approaches. Our method is based on existing approaches, namely DOF rendering by splatting and fast, tile-based particle
accumulation. Using tile-based accumulation allows us to correctly sort out of focus pixels and apply proper alpha-blending to
avoid artifacts commonly encountered with filter-based depth of field methods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Image Generation—Display algorithms

1. Introduction

Depth of field is an important effect to achieve more plausible re-
sults in photography, movies and games, and a commonly used
artistic element in itself. Physically based simulation of this ef-
fect is, however, computationally demanding as it requires an ad-
ditional integration over the lens. Therefore, real-time applications
such as games usually rely on lower fidelity algorithms that gen-
erate plausible, albeit not physically correct results. Similarly to
other, fast DOF implementations, our method is a post-processing
filter-chain, but we strive to provide higher quality results while
not compromising much on render times. This is achieved by com-
bining two existing ideas. Firstly, that high quality depth of field
can be computed by splatting [PC81, KZB03], and secondly that
those splats can be blended using fast, tile-based particle accumu-
lation [HMY12,Tho14] instead of a costly global sorting step. This
combination has, to the best of our knowledge, not been evaluated
before.

2. Related Work

Depth of Field Rendering. The most common techniques for
computing depth of field in interactive applications are gathering
approaches, as they map well to hardware rendering. These ap-
proaches accumulate data from nearby fragments from a sharp in-
put image to produce a blurred representation. To this end the circle
of confusion is computed for each fragment and the area around
that fragment is averaged by an image-space filter. To remove ar-
tifacts from averaging in-focus and out-of-focus fragments, a bi-
lateral filter can be used to check for problematic cases [RTI03].
Splatting based approaches [PC81,KZB03], on the other hand, can
be characterized as scattering as they distribute the contribution of
a fragment over its circle of confusion in screen space. With prop-
erly sorted splats scattering algorithms avoid artifacts produced by
gathering methods, however at the cost of having to globally sort
the splats.

Efficient Particle Rendering. Harada et al. [HMY12] present a
method that allows efficient rendering with many lights in a for-
ward rendering context. This is usually a very expensive setup as
for each fragment the contribution of all light sources has to be ac-
cumulated, even if many do not contribute to any given fragment.
Harada et al. propose to first collect the set of relevant lights for
each pixel by splatting their bounding geometry and accumulating
their indices in tiles. During scene rendering it is then possible to
traverse only the lights registered in a pixel’s tile. Based on this
work, Thomas [Tho14] shows how the same approach can be ap-
plied to render particles using a GPU-only particle system: Particles
are binned into tiles, sorted to provide for correct blending and fi-
nally traversed and the result blended on top of the rendered image.

3. Tiled Depth of Field Rendering

Limitations of Gathering Approaches. When computing depth
of field via gathering care has to be taken during filtering to pre-
vent sharp features to be filtered into blurred background ob-
jects [RTI03], as otherwise the filter will produce halos around
sharp objects in front of a blurred background. This can be avoided
by using a bilateral filter that, for out-of-focus positions, only col-
lects the contribution of fragments that are also out of focus, or
behind the target fragment’s depth. To avoid popping artifacts due
to this condition the transition can further be smoothed. Filtering
approaches also exhibit a more subtle artifact: The nature of an
image-space filter is that it computes a weighted average of the
contribution of the fragments in the filter radius. Therefore the rela-
tive z-order of the participating fragments is not taken into account.
Note that correct ordering can be established and used for alpha-
blending with gathering approaches, however for larger filter sizes
per-pixel sorting will be prohibitively expensive.

Algorithm Overview. Based on the work of Thomas [Tho14] we
propose to remove the bottleneck of global sorting from splatting
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Merge — 2×2 4×4
Avgerage list length 1160 entr. 384 entr. 199 entr.
Build lists 1.35 ms 1.07 ms 1.08 ms
Sort lists 7.28 ms 4.71 ms 4.04 ms
Apply blur 14.36 ms 5.85 ms 2.95 ms
Sum 22.99 ms 11.63 ms 8.07 ms

Table 1: Detailed frame times of our method. Standard filter-based
post processing [RTI03] for this setup can be applied in 8.15 ms on
a Geforce GTX Titan.

based DOF approaches by applying efficient particle accumulation.
The algorithm, starting from an image ready for post-processing, is
as follows: We first compute the circle of confusion for each pixel
and determine which tiles it overlaps. The pixel’s color, depth and
circle of confusion are recorded for each of those tiles in a per-tile
linked-list. We then sort the per-tile lists in parallel. This sort re-
places the global operation usually associated with DOF splatting.
With the sorted lists we use front-to-back alpha-blending for fast
accumulation. In the following we describe implementation details
that enable us to apply this scheme to the vast number of splats
generated for DOF.

Implementation Details. This scheme maps particularly well to
hardware: Firstly, the atomic operations required to construct per-
tile lists have become very cheap. Secondly, sorting the elements
in a tile can be mapped to tile-parallel radix sort with CUDA
where each thread block sorts a single tile in shared memory. Sort-
ing is further sped up by using packed data to allow fast 16-byte
load/store operations (2 bytes for each HDR color channel and the
screen space positions, 4 bytes for blur size). Finally, accumulation
from within a single tile can be parallelized such that all threads in
a warp read the same tile and thus list data can be loaded efficiently
to shared memory, leading to very fast traversal.

In our implementation we employ a tile size of 16×16 pixels to
prevent the lists from becoming too long. We also limit the blur size
to overlap at most four tiles (i.e. 32× 32). This provides locality
for store operations while also keeping lists short. Since sorting
and traversal time both directly depend on the length of the lists
we provide a simple means to trade minor reduction in quality for
significantly increased rendering performance: Similarly to Selgrad
et al. [SRP∗15] it is possible to merge neighboring fragments with
very close depth values. We show results for merging 2 × 2 and
4×4 pixels of out-of-focus regions with similar depth.

Results. In the following we show metrics obtained for the image
shown in Figure 1 when rendered on a Geforce GTX Titan. Figure 1
shows standard filtered depth of field (left) [RTI03] and results from
splatting using our method. Most noteworthy is the difference at the
railing where the bilateral filter does not distinguish between out
of focus objects of different (but nearby) depth values. Our result
using alpha blending on sorted tile lists is much more accurate.

Table 1 shows the influence of list length on the render time of
the different stages of our algorithm. It is visible that even mini-
mal merging (that does not introduce noticeable difference) already
provides a considerable performance gain. With more aggressive

Figure 1: Standard filtered DOF (top) and our method (bottom).
Note how with our method the railing is more clearly in front of the
windows.

merging our method arrives at the performance of filter-based ap-
proaches while still maintaining higher quality.

Conclusion. We have shown how two established approaches
combine to yield a higher quality depth of field algorithm while not
compromising on render times. The two approaches combine in a
straightforward fashion, but an evaluation of this use case and the
required extensions to gain competing performance has not been
presented earlier.
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