
Tonal Art Maps with Image Space StrokesTonal Art Maps with Image Space StrokesTonal Art Maps with Image Space StrokesTonal Art Maps with Image Space Strokes
L. Szécsi, M. Szirányi, Á. Kacsó

Budapest University of Technology and Economics

[TAM2001] PRAUN E., HOPPE H., WEBB M., FINKELSTEIN A.: 
Real-time hatching.
In Proceedings of the 28th annual conference on Computer 

graphics and interactive techniques (2001), ACM, pp. 581–581.
[RPTAM2014] SZÉCSI L., SZIRÁNYI M.:
Recursive procedural tonal art maps.
In WSCG 2014 Full Papers Proceedings (2014), Union Agency, 
pp. 57–66.
Knight model courtesy of Autodesk

texture space hatching + texture space hatching + texture space hatching + texture space hatching + fitting image fitting image fitting image fitting image space strokespace strokespace strokespace strokessss

• robust visibility testing
• real-time performance

• hard silhouettes
• clipped strokes
• UV distortion

• strokes running over outlines
• strokes stopping short of 

occluders
• unique strokes
• full strokes

Recursive Procedural
Tonal Art Map shader

CurveCurveCurveCurve fittingfittingfittingfitting
We are looking for a cubic curve that fits the
fragments of a stroke as:

Finding the coefficients is a linear regression
problem. Given n samples, using Ordinary
Least Squares, we get the following linear
system:

and similarly for y. The elements of the known
vector and matrix have to be found by
summing values computed for fragments. This
is robustly and efficiently solved by the
Conjugate Gradient Method. The useful
parameter range is [min ti, max ti].

ID 
x1

y1

t1

ID ID ID ID ID

ID ID ID ID ID

Σ1
⋮

Σti
6

Σxi

⋮

Σti
3xi

Σyi

⋮

Σti
3yi

minti

maxti

Σ1
⋮

Σti
6

Σxi

⋮

Σti
3xi

Σyi

⋮

Σti
3yi

minti

maxti

Σ1
⋮

Σti
6

Σxi

⋮

Σti
3xi

Σyi

⋮

Σti
3yi

minti

maxti

Σ1
⋮

Σti
6

Σxi

⋮

Σti
3xi

Σyi

⋮

Σti
3yi

minti

maxti

Algorithm OutlineAlgorithm OutlineAlgorithm OutlineAlgorithm Outline

1. Tonal Art Map shader renders scene. Every stroke, on 
any surface, appearing at any detail level, has a 
globally unique ID. 32 bits are sufficient in practice.

2. No target buffer, but pixel shader appends an item 
to a fragment buffer for every overlapping stroke.

3. Fragments are routed by ID into an accumulator 
texture. Double hashing with a static map is used.

4. Hash map entries looked up are written to a new 
version of the hash map, to be used in the next 
frame. Thus, strokes no longer visible vacate their 
slots. New strokes may race for empty slots. The 
loser tries again next frame.

5. Fragment values needed for regression are 
computed. Values are accumulated into the texture 
with additive/maximum blending.

6. The regression equation is solved for every stroke. 
Then, triangle strips are extruded along the fitted 
curve, and displayed with per-stroke stylization and 
texturing.

ID 
x3

y3

t3

ID 
x2

y2

t2

ID 
x3

y3

t3

ID 
x4

y4

t4

ID 
x0

y0

t0

ID 
x1

y1

t1

ID 
x5

y5

t5

ID 
x0

y0

t0

ID 
x1

y1

t1

ID 
x0

y0

t0

ID 
x2

y2

t2

Fitting and extrusion

1.

2.

3.

4.

5.

6.

RPTAM reference

http://cg.iit.bme.hu/~szecsi/tamiss

unique strokes


