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Abstract
When fusing depth images into a 3D volumetric model, a crucial task is to mark macro-cells as empty or as intersected by the
noisy surface represented by the depth image. This paper proposes a simple marking algorithm for the GPU implementation of
hierarchical volumetric fusion. The method is based on multi-level DDA ray-casting. The GPU implementation is of scattering
type, but we also show a solution to avoid atomic writes, which improves performance.

1. Introduction

Moving a depth camera around a 3D object, geometric informa-
tion of noisy depth images can be fused together into a smooth 3D
model. Additionally, the temporary result of the fused data can be
used to track the camera, executing Simultaneous Localization And
Mapping (SLAM). A famous approach to depth image fusion is the
Curless-Levoy algorithm [CL96] that results in a Truncated Signed
Distance Field (TSDF) of the reconstructed surface. To avoid the
interference of surfaces on opposite sides, the signed distance is
truncated. If a point is outside of the truncation interval and its
TSDF is positive, it belongs to the empty region between the cam-
era and the surface. The discretized distance field is represented in
a voxel grid. As a uniform grid would either have poor resolution or
overflow the GPU memory, hierarchical representation is preferred
where higher level macro-cells are decomposed to smaller cells and
finally to voxels only if the surface intersects the cell [CBI13]. Vol-
umetric fusion repeats the following steps:

1. Fusion: Find cells that are empty or affected by the current depth
image and fuse, i.e. average their stored TSDF value with the
TSDF obtained from the current depth image.

2. Rendering: Execute ray casting to render the surface from the
current camera also computing the surface normals.

3. Get depth image: Read the new depth image from a possibly
moving camera and compute the normals of the back projected
depth image.

4. Camera tracking: Based on the rendered surface and normal
vectors and the measured distance values, compute the new
camera position and orientation with the Iterated Closest Point
(ICP) algorithm [IKH∗11].

Step 1 determines whether voxels or higher level macro-cells in
case of hierarchical representation are intersected by the surface. In
classical volumetric fusion the center of the voxel is projected on
the window plane of the depth image to locate the pixel where it is
visible from the depth camera. If the difference of the depth value
and the distance of the voxel center from the camera is less than the

truncation distance, the voxel is affected, otherwise it is assumed
not to be intersected by the currently visible surface. Clearly, this
method works only if the voxels are small and they are projected
to a single pixel, otherwise sampling artifacts may show up. Higher
level macro-cells are obviously not small enough, so a more pre-
cise test is needed. The method of Scalable KinectFusion [CBI13]
solves this problem by projecting the hexagons of each voxel onto
the window plane and conservatively rasterizing the projected poly-
gon to identify the pixels where depth comparison is needed. If ras-
terization is done in parallel, then an additional reduction is needed
to make the final conclusion for the hexagons, i.e. for the whole
cell. Although this is a gathering type algorithm, but is quite com-
plex and its thread divergence is high since different cells may be
projected to highly varying number of pixels.

2. The new macro-voxel marking method

To address the problems of the marking method of Scalable Kinect-
Fusion, we propose an input-driven, i.e. scattering type approach,
which automatically ignores invisible cells, easy to implement, and
its thread divergence is small. Due to its scattering type, different
threads can write the same memory locations, but this problem can
be handled without atomic writes in this special case. Moreover,
if a one-frame delay is acceptable, the computational cost of the
method is practically zero since it can be done together with the
ray-casting step, which is needed by the ICP anyway.

The marking method updates two flags, one indicating empti-
ness, the other intersection. Initially both flags are cleared. The
marking process assigns a GPU thread to every pixel of the depth
image. The thread takes the depth value of the camera in this pixel
and forms an interval, where the minimum is the depth value minus
the truncation distance, and the maximum is the depth value plus
the truncation distance. The thread executes a DDA based voxel
traversal method to identify those higher level cells that are inter-
sected by this ray. Until the ray parameter at the exit point of the
cell is lower than the minimum value, the visited cells are marked
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Figure 1: Macro-voxel marking: Initially all cells are set to not-
empty and not-intersected. Threads are assigned to rays and ex-
ecute multi-level DDA on the higher level macro-voxel grid. Be-
fore finding a macro-voxel overlapped by the truncation interval,
macro-voxels are marked as empty. When the truncation interval
overlaps with the cell, the macro-voxel is marked as intersected.

as empty (Figure 1). In empty cells there are no visible surfaces, so
truncated signed values are updated accordingly. Cells where the
entry-exit interval of the ray parameter overlaps with the truncation
interval are possibly intersected by the noisy surface.

Figure 2: A single macro-voxel is represented by a 32 bit word
containing the index of the block of child-voxels, the flags of inter-
section and emptiness, and also a counter showing how many times
the complete macro-cell was found empty. Note that the flags of in-
tersection and emptiness are put in different bytes, so they can be
modified independently.

As different rays may intersect the same macro-cell, different
threads may update the flags of the same cell, causing write colli-
sions and usually necessitating slower atomic writes. However, in
this special case, atomic operations can be saved. The descriptor of
a cell are shown by Figure 2, where the two flags are put into two
bytes of the descriptor word, thus each of them can be accessed
without modifying the other flag. If needed, a thread sets a flag in-
dependently of its previous value, and all other bits of the byte are
constant during the execution of this thread. So the result is inde-
pendent of the order how threads access these bytes. When threads
are complete, both flags may be still cleared, which means that this
macro-cell is not affected. If the intersected flag is set, the surface
intersects this macro-cell regardless of the state of the empty flag.
If only the empty flag is set, the macro-cell does not contain surface
and its children are either empty or not seen.

The discussed marking process is used to identify macro-cells to
be empty or intersected, while low level voxels are still processed
by projecting their center onto the image plane. Thus, our algorithm
identifies those macro-cells where low level processing is neces-
sary. Note that in Step 2 called Rendering, a ray-casting needs to
be executed anyway to track the camera by ICP, thus the identifi-

cation of affected cells can be merged with this step reducing the
additional cost of marking to almost zero. However, rendering hap-
pens with the old camera position and orientation while the fusion
should use the updated camera parameters. As our algorithm marks
only macro-cells, the one frame delay does not result in inaccura-
cies, but it can happen that voxels of a macro-cell are not updated
in a frame or are tried to be updated when it is not necessary. Such
a loss of a single frame update is tolerable and can happen due to
the noise of the depth camera as well.

3. Results

This system is implemented in CUDA. Figure 3 compares recon-
structions of a telephone from Kinect 2 depth images using the Mi-
crosoft KinectFusion and our hierarchical method when allowing
the same amount of GPU memory. Due to the hierarchical repre-
sentation, voxel edge length could be reduced from 8 mm to 1 mm.
Both algorithms run at real time on NVIDIA 690 GT GPUs.

Figure 3: Comparison of the commercial version of KinectFusion
(left) and the proposed algorithm (right) when the two methods al-
locate the same amount of GPU memory.

Figure 4: Scanned objects.
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