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Pedagogic discrete visualization of electromagnetic waves
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Abstract
A dynamic electromagnetic wave propagation visualization tool is presented in this paper. It can simulate wave
reflection and diffraction in 2D. It allows to visualize the electric field magnitude. The original approach is based
on discrete analytical geometry allowing a dynamic visualization of the wave propagation contrary to existing
models. We use it for the moment as pedagogic tool for the understanding of this complex phenomenon.

Categories and Subject Descriptors (according to ACM CCS):
I.3.3 [Computer Graphics]: Applications

1. Introduction

This paper deals with electromagnetic wave propagation
simulation and visualization. The finite difference method
in time domain is the reference model2 for computing the
wave propagation at a given time. It proposed however only
a static visualization: for every point of the scene (defined
as a grid), the electromagnetic energy is computed for each
given transmitter position at a given time. The outcome is
the electromagnetic energy loss in the scene, visualized by a
color gradation. This representation is not suited for a ped-
agogic visualization of complex phenomena such as reflec-
tion, diffraction and interference. Students have often diffi-
culty to understand the dynamics of such wave propagation
phenomena. Our purpose in this paper is not to propose a
more precise computation method. It is to offer a new visu-
alization tool that allows to dynamically observe wave prop-
agation phenomena.

In this article, we suggest a new and explicit way to rep-
resent electromagnetic wave propagation. This dynamic de-
scription constitutes an interesting pedagogic tool for the un-
derstanding of wave propagation mechanisms. What is spe-
cific in our work, is the using of discrete analytical geometry
to realize the discretization of the wave propagation mecha-
nisms. Whatever it deals with -lines, planes, circles, spheres-
discrete analytical geometry allows a control over the prop-
erties of the discretized primitives. Moreover, they can be
drawn by robust and efficient incremental algorithms.

In the following part, we mention quickly a few notions

about electromagnetic wave propagation, and we give the
basic definitions of the the discrete and analytical geome-
try that we use. Then we explain how we discretize a wave
propagation, before presenting our recent results. Finally, we
discuss about what could be at stake with such a method, and
we give our conclusions.

2. Preliminaries

Physics view an electromagnetic wave as a vectorial value,
which is periodic in the space and time domain. This wave
theory1 fully characterize a propagation with Maxwell’s
equations. Any study of a propagation problem comes down
to solve Maxwell’s equations in a given point and for a given
instant. The reference model to simulate wave propagation
by computer is based on Maxwell’s equations. It is called “fi-
nite differences in time domain” 2. This technique discretizes
the scene in regular cells and for each of them, numerically
solves Maxwell’s equations. We get for each cell the elec-
tric and magnetic field values, represented by a gradation of
colors, as mentioned in introduction. The wave theory ex-
plain interferences between waves: when at least two waves
are superposed in a point, the result is the sum of those two
signals. The outcome are a loss (due to destructive interfer-
ences) or an amplification (due to constructive interferences)
of the electric field magnitude.

These methods are physically very precise but they do not
allow an explicit visualization of all mechanisms connected
to wave propagation. It is not very easy for a student to dif-
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ferentiate multiple reflections and diffractions on such im-
ages. Our purpose is to propose a visualization tool to illus-
trate such phenomena explicitly for a pedagogic use.

We will have to use geometrical optic and its extensions,
that approximize Maxwell’s equations in high frequencies
by assimilating a wave to a ray. Descartes’ laws can then be
applied and characterize the reflection of a wave against a
plane surface, or its refraction. However if geometrical op-
tic can highlight a phenomenon such as diffraction, it can
not explain it. This phenomenon is described by the uni-
form diffraction theory 3. It appears when a wave meets with
an object whose dimensions can be compared to its wave-
length. This one behaves as a new transmitter, producing a
secondary wave with the same characteristics.

In this article, we consider a 2D outdoor propagation in an
homogeneous environment. According to these hypothesis,
the speed of the propagation is the same whatever the direc-
tion. The wave theory states that the wave shape is circular.
We will also use geometrical optic and its extensions in or-
der to define geometrically a discrete wave front, reflected or
diffracted as we do not treat refraction. For each point (of a
grid) of each wave, the value of its electric field is computed
in order to visualize interferences.

2.1. Discrete Analytical 2D straight lines and circles

The 2D scene is defined as a set of convex polygons. Their
discretization is based on the analytical discrete hyperplane
4 5 defined on �n by :

A�
n

∑
i�1

αiXi � B

with αi�A�B � �. w � B� A is the hyperplane thickness.
In particular a n dimensional hyperplane is naive if its
thickness verifies w � max��αi��. We discretize the poly-
gons edges with discrete analytical lines. The Euclidean line
d : ax�by� c � 0 corresponding to an edge of the polygon
P, is discretized by the set of �2:

�
max��a�� �b��

2
� ax�by� c �

max��a�� �b��
2

Considering the two half-planes ax� by� c � max��a���b��
2

and ax� by� c � �
max��a���b��

2 , we call d� the straight line

of equation ax�by�c��max��a���b��
2 that delimits the half-

plane that contains P.

To discretize wave fronts, we use discrete analytical hy-
perspheres 6, which are defined in n dimensions by:

A�
n

∑
i�1

�Xi� ci�
2
� B with A, B � � and c � �n

where w � B�A is the thickness of the hypersphere. In our
case, we only use circles with integer radius and thickness
equal to one, which corresponds to connex circles with min-
imal thickness. A wave front with center �cx�cy� � �

2 and

with radius R � � is thus defined analytically by the set of
points �x�y� � �2 verifying :

R2 � �x� cx�
2 ��y� cy�

2
� �R�1�2

These circles can be drawn efficiently by an incremental al-
gorithm. This definition presents two essential properties.
The first one is that it accepts arbitrary Euclidean coordi-
nate centers. The second one is that the layout of concentric
circles whose radius increase one by one, forms a paving of
the 2D plane. This is not the case with Bresenham circles.
We are thus sure not to miss any points during a wave prop-
agation simulation.

3. Discrete wave propagation

In this section, we describe the discrete objects and mecha-
nisms leading to a new type of visualization for electromag-
netic wave propagation. We will speak of real or discrete
wave front without discrimination.

d1�

d2�

CW � C

Figure 1: Unions of discrete shadows.

Let’s first start without taking into account any reflec-
tion or diffraction. We consider a wave transmitter located
in C � �cx�cy� � �

2. A discrete wave front W is a 2D an-
alytical hypersphere with unit thickness. Its center CW is
merged with C. The propagation of a discrete wave is re-
alized by drawing successive discrete wave fronts. Only �2

points visible from CW must be reached by the wave fronts.
In a continuous 2D space, the shade area induced by an edge
E is basically described by three straight lines: The line d of
the edge, and the lines defined by CW and the two vertices
of E. This is transposed in the discrete domain as follows.
We consider the line d� and the two Euclidean straight lines
passing through one of the four vertices of each vertex pixel
of the discrete edge, chosen in order to maximize the gen-
erated shadow. This insures the fusion of shadows for two
incident edges, as it can be seen on the figure 1.

The visibility area of W is the complementary to �2 for
the union of the discrete shadows generated by the edges in
the scene, in regard of CW . Only the edges whose orienta-
tions point out the half-plane including CW need to be taken
into account. These edges will generate reflective waves.

3.1. Taking into account reflection

When a discrete wave W meets an edge Er of a polygon, a
new reflected wave Wr is created. Its virtual center CWr is the
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symetric of CW in relation to the straight line d correspond-
ing to Er, in accordance with Descartes’ laws. Let us empha-
size that to use this definition, we need a discrete circle def-
inition that allows arbitrary continuous centers. Wr is set up
into the scene when the radius of W equals the integer part of
the minimal distance between CW and the edge pixels. The
initial radius of Wr equals this distance. Now we have to find
out how the visibility area of Wr can be computed. For this,
we will define the initial shadow of a reflected wave. Firstly,
let us pretend that Er is completely visible. Then the initial
shadow of Wr is defined by d�, and the two lines crossing
CWr and the edges’ vertices (figure 2).

initial shadow
CWr

d�

Figure 2: Initial shadow of a reflected wave.

Now, let us suppose that Er is not completely visible (fig-
ure 3(a)). We have to add to the initial shadow, the symmetric
in relation to d, of the shadows hiding Er, as shown on the
picture 3(b). In these two cases, the visibility area of Wr is
computed with the complementary of the initial shadow in
�

2.

CW

Er

(a)

CW

Er

CWr

(b)

Figure 3: Initial shadow of a reflection with a partially vis-
ible edge

3.2. Taking into account diffraction

The interaction of a discrete wave W with the vertex S of a
polygon P generates a diffracted wave Wd . Its center CWd is
merged with S, its initial radius is null. The diffracted wave
is set up when W strikes S, e.g when its radius equals the in-
teger part of the distance from CW to S. Wd does not interact
with P again.

Let p be the pixel containing S and the two correspond-
ing incident discrete edges obtained by discretization of d1

initial shadow

S

d1�

d2�

y � py � 0�5

Figure 4: Initial shadow of a diffracted wave.

and d2. We define the initial shadow of Wd by the area de-
limited by the straight lines: d1�, d2�, and depending on the
orientation, the straight line y � py� 0�5 or x � px � 0�5.
Figure 4 shows a configuration example. The initial shadow
completely contains the polygon on which Wd has diffracted,
and prevents any interaction with this one. Then, the visibil-
ity area of Wd is computed in the complementary to �2 of
this initial shadow.

4. Results

The implementation of the previous mechanisms allows a
discrete dynamic and explicit visualization of the wave prop-
agation. There are two types of representations: The geo-
metric visualization with only the shape of the wave fronts,
and the energetic visualization where color gradations show
the magnitude variations of the electric field for each point
reached by a wave. We use the extensions of the geometri-
cal optic to compute the electric field value and to take into
account the surface properties.

Let us now present and comment some pictures from ani-
mations obtained with our tool.

Figure 5: Wave front visualization

Figure 5 illustrates a discrete propagation where only ge-
ometric wave fronts are shown. We can see that each circle
is drawn in its visibility area as expected. This animation
presents wave fronts in motion and explicitly describes the
reflection and the diffraction. This illustrates in a very intu-
itive way these mechanisms. This constitutes an interesting
pedagogic visualization.
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Figure 6: Electric field visualization of a reflected wave on
a not perfectly reflexive surface

Each wave is independent, so it is possible to visualize
only a chosen phenomenon. It is the case for the reflection
with the figure 6. This animation shows the magnitude vari-
ations of the electric field for a reflection. We can observe
the magnitude variations due to the surface properties and
the privileged directions for the reflection of electric energy.

Figure 7: Electric field visualization of a diffracted wave

Figure 7 isolates the diffraction phenomenon. We verify
that the initial shadows of the two diffracted waves prevent
them to create new diffractions on the polygon vertices. The
alternation of dark and light circular areas is the expression
of the periodic nature of the electric fields. As for the re-
flection, color variations for each circle mean that the en-
ergy repartition is non-uniform. This example illustrates how
points invisible from the transmitter can be reached by a ra-
dio wave.

Figure 8: Interferences between wave fronts

At last, the figure 8 takes into account all mechanisms
connected to the wave propagation. It mainly shows the in-
terferences due to the different wave fronts. Moreover, this
example and the two previous ones express the paving of
the discrete plane by analytical circles. Each picture leads
to the conclusion that our analytical definitions are reliable
and allow a controlled discretization of the scene and of the
visibility areas for each waves.

5. Conclusions and perspectives

This work is based on an original idea: to mix electromag-
netic wave propagation and discrete analytical geometry. In-
teractions such as reflections and diffractions are not trivial
phenomena and our tool is able to take them into account.
Our first results show that discrete analytical geometry can
illustrate physical phenomena in a new way that is partic-
ularly well suited for pedagogic applications. The fact that
discrete analytical geometry allows a precise control on the
discretization of Euclidean objects is a major advantage of
the proposed method. Moreover, it preserves physical prop-
erties when going from the continuous to the discrete world.
For the moment, we already have a pedagogic tool that has
been successfully used in classrooms of physic in our elec-
tronic engineering department.

Now we are considering an extension to 3D wave propa-
gation simulation. All the proposed definitions can be easily
extended to 3D. However, diffraction on 3D edges do not
exist in 2D. At the authors knowledge, physics do not fore-
see exactly what the shape of the wave front is. It could be
a non-spherical shape. We’ll have the problem of generat-
ing, defining and keeping a space paving property for such a
discrete shape.

Finally, putting the pedagogic part aside, another step will
be done to get an estimation of the physical precision of our
method in regard of finite differences in time domain. This
could lead to a broader area of applications.
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