
EUROGRAPHICS 2003 / J. Flores and P.Cano Interactive Demos & Posters

Pen and Ink Pictures from Gray-Scale Photographs

G. Arroyo, D. Martín

Dpto. de Lenguajes y Sistemas Informáticos, University of Granada, Spain
arroyo|dmartin@ugr.es

Abstract

A new method for producing pen and ink pictures from gray-scale photographs is introduced in this article. It is
based on path-finding and reconstruction of strokes. First we apply filters to extract contours from photographs
which are converted to strokes, then we show how to modify these strokes in the same way an artist could do it. The
strokes are not pixel-based but bspline curves, which are rendered simuling different kinds of brushes and papers.

Categories and Subject Descriptors(according to ACM CCS): 1.3.3 [Computer Graphics]: Non-Photorealistic Ren-
dering

1. Introduction

In many books, the illustration are hand made, which is
costly and complex. There is an increasingly interest in do-
ing that in an automatic way from 3D models. In many cases,
the construction of 3D models is a complex and lengthly pro-
cess. Otherwise, photographs are very easy to obtain. So, we
are interested in producing a completely automatic process,
based on photographs, to obtain pictures that look like hand-
made ones.

As stroke simulation is almost done with deformable
models of 3D brushes1, and ink brush simulation for 3D
models is just surprising2, 3, we could think that the big prob-
lem is recognizing contours from a bidimensional image,
and its transformation to strokes, like a human being could
do.

2. Overview

The method applies 3 steps to obtain the final results:

1. Contours detection
2. Strokes creation
3. Strokes stylization

The main contributions of these paper are in the creation
and stylization of strokes, because the contours detection is
based in very common techniques.

Now, these steps are better explained.

2.1. Contour detection: Canny’s Algorithm

The process to obtain the images is as follows. First of all,
we smooth the original image, discretizing it with a Gaussian
function given by expression:

S(x,y,σ) = ke
−(x2+y2)

2σ2

Whereσ is the standard deviation of the Gaussian func-
tion. Value given byk is useful to make all area of the func-
tion equal to 1, in this way we have all function values nor-
malized (and we don’t loose information), and its value is:

k = 1
2πσ2

Next, a convolution mask with discretized values is ap-
plied to the original image. Then we get the smooth image
I .

We apply Canny’s algorithm. LetGx(I) andGy(I) be the
gradients inx andy from imageI . We do a convolution for
computing these gradients with discretized and normalized
values of partial difference inx andy in the Gaussian func-
tion:

∂S(x,y,σ)
∂x = −x

2πσ4 e−
x2+y2

2σ2 , ∂S(x,y,σ)
∂y = −y

2πσ4 e−
x2+y2

2σ2

If we apply both masks to imageI we get two news im-
ages:Ix = Gx(I) andIy = Gy(I) which are used to calculate
angles and directions of contours.

Let M = Gx(I)2+Gy(I)2 be applied to every pixel, where

M is the magnitude image, and letD = atan(Gy(I)
Gx(I)

) be ap-

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

G. Arroyo, D. Martín / Pen and Ink Pictures from Gray-Scale Photographs

plied to every pixel, whereD is the direction image. Finally,
we can suppress from imageM non-maximums values. For
that, two threshold values given bytl y th are defined. In this
case,∀px,y ∈ M a new gradient image(calledA) is obtained,
with pixels that comply withtl < px,y < th.

The less significant borders are suppressed in a process
called hysteresis. The algorithm used is as follows:

For each pointP1 given by(x,y):

if A(x,y) haven’t visited yet:

– if A(x,y) < tl then:

◦ F(x,y) = non−border
◦ markP1 as visited

– if A(x,y) > th then:

◦ F(x,y) = border
◦ markP1 as visited
◦ follow the direction given byD(x,y) from P1 to

both sides, whileA(i, j) > tl :

� mark pointP2 given by(i, j)
� markP2 as visited

The main problem is that contours with Y shape are usu-
ally splitted. But this is not a big problem because they can
be recovered with the following step.

2.2. Stroke creation

The main problem is that Canny’s algorithm only produces
one pixel borders, while we are interested in obtain wider
strokes.

Our algorithm for stroke creation is based on obtaining a
list of points, which depend on the obtained contours.

The list is created introducing pixels that comply with a
condition. The pixelPi will be include if it is surrounded by
less pixels than others, given a window with a size oftv. The
next pixel is chosen in the same way with an exception: it
will be included in the list only if it is not in the list previ-
ously; and so on.

The algorithm is as follows:

1. P0 = Window(P, tv)
2. If P0 doesn’t exists end
3. Otherwise:
4. Get the nearest pixelPi+1 that is not processed
5. If Pi+1 doesn’t exists go to 1 (we have a new stroke), else

take it.

Windowis a function that chooses a pixel not chosen be-
fore and that is surrounded by less pixels than others into a
window with a size given bytv, which is the maximum dis-
tance allowed between this pixel and another one to make an
unique stroke.

The main problem in this algorithm is based in random-
ness in the pointP0 for every stroke, producing that only very
short strokes are obtained when they are only one actually.
To avoid this, the algorithm does not stop in step 2, but the
list is inverted where there are stocking pixels, and the pro-
cess starts again from step 2 withP0 as the first point to put
into the path.

Then path is ordered in the same way that Canny’s algo-
rithm. From this point, we make a list with angles and an-
other one with distances from one pixel to the following. In
this way, every pixel depends on the previous one.

Figure 1: Stroke path parameters and his representation. P0
is the initial point of the stroke, whileαi and di are angles
and distances between two consecutive points

2.3. Stroke stylization

Once strokes are created, a process is applied based on
knowledge of how artists draw, splitting very long strokes,
and simuling brush drawing process. An artist almost never
draws straight strokes, or strokes with perfect angles, but
he/she usually draws with curve paths, opens or closes them,
etc5.

As a previous step, some characteristics of how an artist
draws with pen and ink are commented:

1. He/she changes angles and size in strokes
2. He/she uses different sizes of brush
3. He/she uses different kinds of paper
4. He/she uses more or less number of stroke to do some

picture

Changing the angles of strokes is trivial using our struc-
ture. It is easy to change angles given byαi (see Fig. 1).
These changes open or close the stroke from the origin. Also,
some added noise in angles can change straight lines to curve
strokes.

In the same way, changing size of strokes is easy too.
When we decrease distances given bydi (see Fig. 1), we
will have got shorter stroke. Also, we can use noise to make
strokes with different lengths, shorter or larger, in an arbi-
trary way.

Other changes are easy to obtain because every stroke be-
long to a list, which is made by points. We can split this list
according to criteria like angle or stroke size. Also, angles

c© The Eurographics Association 2003.

G. Arroyo, D. Martín / Pen and Ink Pictures from Gray-Scale Photographs

and position of every stroke can be modified, in a way it ap-
pears to be two differents strokes.

To obtain different sizes of brush we need define a new
functionw that takes the stroke as a parameter. This function
mainly depends on stroke size, and it can be any, but the
next one produce good results:w(φ) = φ

2kmax i f φ < 1
2

andw(φ) = (φ
2 + φ2)kmax i f φ ≥ 1

2 , whereφ is between
0 and 1, andkmax is maximal stroke width. This function
defines how stroke begins and ends, and the width for every
position in it.

We have provided another level of flexibility including the
simulation of the paper absorption. For different kinds of pa-
per absorption we use the functiont, whose values will be
used as inputs to control the alpha channel when we draw
different strokes. In the same way,t can be take any value,
although the next one produce good results:

t(φ) = acos(φ)
π kmax, wherekmax∈ [0,1]

Let gi be the output of the width function and letti be
the output of the transparency function in a point given byi.
Then, to draw a stroke two points translated topi and pi+1
respectively are generated, and rotatedπ

2 radians in relation
to αi (calledp j andp j+1 respectively), generating a polygon
formed by following points:pi , pi+1, p j+1 andp j .

Only those strokes which are longer than a threshold
value, given byl , are evaluated.

But even after correcting angles and distances, it is dif-
ficult to obtain a good simulation of a hand-made drawing,
because most angles are right angles or corners. To avoid that
the strokes are obtained from Bèzier curves, whose control
points are determined by lists of angles and distances with
an origin point (see Fig. 1).

Output are polygons which are blended in the way of sev-
eral strokes with changes in angles and distances and Bèzier
curves, which are applied with any width function, we have
tested many of them and the following produces good re-
sults:

w(φ) = acos(φ)
π k)

Finally, a smooth correction is done (simuling paper ab-
sorption), drawing a half-transparent picture with soft rota-
tion angles (from−β to β).

Several colours have been tested and the best results are
obtained with the following RGBA vector: (0.2, 0.2, 0.3,
kr ti), wherekr = 0.6 orkr = 0.8, andti is the output of eval-
uatingt at pointi.

3. Results and Conclusions

Although it is no very usual to see pen and ink pictures of
humans and life beings, we have tried our algorithm with
organic models (see Fig. 3), getting pretty good results.

Figure 2: From left to right and from top to bottom, com-
parison to original image with output images from: Canny’s
algorithm, Sobel’s filter, Robberts’s filter, Canny’s algorithm
with path-finding algorithm, and finally, our algorithm with
followings parameters:σ = 1, tl = 0, th = 0.1, tv = 4, l = 3,

kr = 0.6 and as width function fw(x) = acos(x)
πkmax

, and as trans-

parency function ft(x) = acos(x)
πkmax

in a kind of stroke and
ft(x) = xkmax in the other.

Parametersσ, tl andth affect basic sketch from the picture,
a hight value ofσ will smooth image in the beginning of the
algorithm. A lower value ofth or higher oftl will soil picture
with more details. But, mainly parameters in basic lines are
tv y l , because this values affect to decision of what lines are
valid and what are only points.

In the process of testing, we have seen that some values
produce better results than others. These values are shown in
the examples.

We have used two kinds of strokes for all images, one use
a Bèzier curve and other do minimal changes in angles to the
original path (see Fig. 4).

References

1. B. Baxter, V. Scheib, M.C. Lin, D. Manocha “DAB:
Interactive Haptic Painting with 3D Virtual Brushes”,
Proceedings of SIGGRAPH 01, Computer Graphics
Proceedings, Annual Conference Series, pp. 461-468,
2001 1

c© The Eurographics Association 2003.

G. Arroyo, D. Martín / Pen and Ink Pictures from Gray-Scale Photographs

Figure 3: Our algorithm applied to an organic model with
the following parameters:σ = 1, tl = 0, th = 0.2, tv = 4,

l = 6, kr = 0.6 and as width function fw(x) = acos(x)
πkmax

, and

for transparency function ft(x) = acos(x)
πkmax

in a kind of stroke
and ft(x) = xkmax in the other.

Figure 4: We have changed parameters in Bèzier control
points and some angles. Result is similar to change shad-
ows in a picture. Parameters used in both images are:σ = 1,
tl = 0, th = 0.1, tv = 4, l = 3, kr = 0.8

2. M. Salisbury, C. Anderson, D. Lischinsky, D.H.
Salesin, “Scale-dependent reproduction of pen-and-ink
illustrations”, Proceedings of SIGGRAPH 96, Com-
puter Graphics Proceedings, Annual Conferences Se-
ries, pp. 461-468, 19961

3. M.P. Salisbury, M.Wong, J.F. Hughes, D.H. Salesin,
“Orientable textures for image-based pen-and-ink illus-
tration”, Proceedings of SIGGRAPH 97, Annual Con-
ferences Series, pp. 401-406, 19971

4. D. Martín, J.D. Fekete, J.C. Torres “Flattening 3D ob-
jects using silhouettes”,Eurographics 02, pp. 239-248,
Saarbrucken, Germany, 2002

5. A. l. Guptill, “Rendering pen and ink”,Watson-Guptil
Pub., 1997 2

6. D. Marr, “Vision - A Computational Investigation into

the Human Represent”,W. H. Freeman & Co., Septem-
ber 1983

7. J.A. Aznar, M. Moreno, “Simulación Computacional
del Procesamiento Visual Biológico de Bajo Nivel”,
http://www.ub.es/pbasic/Vision_Binocular.PDF, Valen-
cia, 2001

8. J. Canny, “A Computational Approach to Edge Detec-
tion”, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol 8, No. 6, Nov 1986.

9. E. Davies, “Machine Vision: Theory”,Algorithms and
Practicalities Academic Press, 1990, Chap 5.

Figure 5: For elements with too much details it is useful use
th between 0.2 and 0.4, for this photograph we have used:
σ = 1, tl = 0, th = 0.2, tv = 4, l = 3, kr = 0.2

Figure 6: Photograph with too much noise are smoothed be-
cause parameterσ, but details aren’t supressed (thanks to
parameter th), parameter used are:σ = 1, tl = 0, th = 0.1,
tv = 4, l = 3, kr = 0.2 width and transparency functions are
same as before.

c© The Eurographics Association 2003.

	p105: 105
	p107: 107
	p106: 106
	p108: 108

