
EUROGRAPHICS 2010/ A. Hast and I. Viola Poster

Undoing Subpixel Rendering for Better Screenshots

J. Loviscach

Fachhochschule Bielefeld (University of Applied Sciences), Bielefeld, Germany

Abstract
Subpixel rendering employs the spatial layout of the red, green, and blue slices of a single square pixel on a
screen to enhance the horizontal resolution. This method has become the de-facto standard for displaying text.
Printed screenshots and screen magnifier software, however, reveal color seams. This is particularly vexing when
screenshots are to be printed in color at a larger-than-normal scale, for instance in a tutorial article in a computing
magazine. Hence, this work introduces a method for automatic correction.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]:
Enhancement—Filtering

1. Introduction

These days, most of the texts on color computer displays
are rendered addressing not each pixel as a whole but lever-
aging the geometric distribution of the red, green, and blue
subpixels to enhance the horizontal resolution, see Figure 1.
This idea forms the basis of Microsoft ClearType [BBD∗00,
GTAE04] and Adobe CoolType and has also been imple-
mented in Apple’s graphics library Quartz. A regular screen-
shot, however, does not capture the geometric arrangement
of the subpixels. Rather, it is thought to be composed of
square pixels that are fully covered by each of the red, green,
and blue components. This mismatch leads to color seams
when magnifying a screenshot—for instance by using screen
magnifier software—or when printing it, whereas the correct
image should be grayscale, see Figure 1.

Redoing screenshots with subpixel rendering switched off
is hardly an option in a busy editorial office. Here, an auto-
mated correction would be appreciated. This is an ill-posed
problem as there is not enough information in the screenshot
to recover the “real” image: A color seam may stem from
subpixel rendering, but it may, for instance, also be an orig-
inal part of an icon or a photo. Classically rendered items—
including text in legacy software—and subpixel renderings
appear side by side on the screen. A final twist is that text
may be colored (which this work ignores) and/or be placed
on a colored background (which this work handles).

Figure 1: RGB subpixel rendering makes use of the layout
of the light-emitting areas on a computer screen (top). This
leads to artificial color seams in regular screenshots (bottom
left), in contrast to a correct representation (bottom right).

2. Method

Given the ill-posedness of the problem, the proposed method
resorts to machine learning, even though in a basic form. It
builds a model for what constitutes text rendered via subpix-
els and then classifies each pixel in a screenshot in a binary
fashion: Is it a potential color seam of text or is it not? This
step is related to text detection methods such as [YJHY07].
If a pixel is classified as belonging to text, its color is cor-
rected.

The basis for deciding which pixels constitute text is a
screenshot of about 600× 700 pixels showing about 6,000
characters in different fonts, styles, and sizes rendered with
ClearType. To achieve a compact data model, all horizontal
sequences of three pixels are extracted as nine-dimensional
data vectors (R1G1B1R2G2B2R3G3B3). This initial list re-

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org


J. Loviscach / Undoing Subpixel Rendering

duced to a shorter list that only contains data vectors that are
not almost grayscale and that have a pairwise Euclidean dis-
tance of more than 0.1. (This can be raised to 0.3 with only
little detrimental effect.) This yields a collection of about
2000 nine-dimensional data vectors, to be used as a model
of text. The processing up to here can be done once for all
and be reused for all screenshots to be processed.

Every horizontal group of three pixels in the screenshot to
be processed is compared to the collection of data vectors in
the model. Upfront, to cater for a potentially non-white back-
ground, the three RGB values of the screenshot are scaled up
by 1.1

0.1+max , where max is the maximum value in the R, G,
or B channel, respectively, in a 5× 5 neighborhood. If the
Euclidean distance of this nine-dimensional data vector to
some element of the data model is less than 0.2, its position
is marked in a map. (A value of 0.3 instead of 0.2 increases
the number of false positives dramatically.)

As there may be isolated spurious detections, these marks
are filtered in a final step: Every pixel whose 5×5 neighbor-
hood contains six or more marks is considered text. These
are the pixels whose color is corrected toward grayscale.
To take into account that the background color may not be
white, this grayscale value is tinted by multiplying its R
component with the maximum R value in a 5 × 5 neigh-
borhood; similarly for the G and B component. The 5× 5
neighborhoods mentioned in this paragraph and the one be-
fore cannot reliably be replaced by 3×3 neighborhoods.

3. Results and Conclusion

This method has been implemented in MATLAB R© and has
been tested successfully on a variety of screenshots. Figure 2
shows that text on colored backgrounds is detected—as par-
tially also is light text, even though it is not covered explic-
itly by the method. Figure 3 shows a case that is particu-
larly tricky, due to complex hard-edged icons. In addition
to some minor spots in other icons, the yellow halo of the
magic wand tool is misclassified as text. As the color cor-
rection tints the pixels with the background color, such false
positives do not lead to noticeable errors, which suggests a
certain resilience of the method. False negatives, on the other
hand, tend to only occur with colored or light gray text.

This work introduced an unsupervised method to correct
for the color seams generated by printing and/or magnifying
text rendered into RGB subpixels. The method is based on a
codebook gained from examples. It does not yet incorporate
examples of what does not constitute pixels to be corrected.
The next step is an implementation of the method as a plug-
in to a standard image manipulation software. To allow the
user to correct errors introduced in complex situations, there
may be two plug-ins: one to create the mask (see right part
of Figure 2), and one plug-in to correct the colors of the se-
lected parts of an image toward a multiple of the local back-
ground color.

Figure 2: Processing a screenshot of the Microsoft Windows
character table (left: original; right: mask).

Figure 3: Processing a screenshot of the Gimp toolbox (left:
original; middle: mask; right: processed; bottom: magnified
portions).

References
[BBD∗00] BETRISEY C., BLINN J. F., DRESEVIC B., HILL B.,

HITCHCOCK G., KEELY B., MITCHELL D. P., PLATT J. C.,
WHITTED T.: Displaced filtering for patterned displays. In SID
Digest. 2000, pp. 296–299. 1

[GTAE04] GUGERTY L., TYRRELL R. A., ATEN T. R., ED-
MONDS K. A.: The effects of subpixel addressing on users’
performance and preferences during reading-related tasks. ACM
Transactions on Applied Perception 1, 2 (2004), 81–101. 1

[YJHY07] YE Q., JIAO J., HUANG J., YU H.: Text detection
and restoration in natural scene images. J. Vis. Comun. Image
Represent. 18, 6 (2007), 504–513. 1

c© The Eurographics Association 2010.


