
EUROGRAPHICS 2023/ A. Magana and J. Zara Education Paper

Game-based Transformations: A playful approach to learning
transformations in computer graphics

Martin Eisemann1

1TU Braunschweig, Germany

Abstract
In this paper, we present a playful and game-based learning approach to teaching transformations in a second-year under-
graduate computer graphics course. While the theoretical concepts were taught in class, the exercise consists of two web-based
tools that help the students to get a playful grasp on the complex topic, which is the foundation for many of the later concepts
typically taught in computer graphics, such as the rendering pipeline, animation, camera motion, shadow mapping and many
more. The final students’ projects and feedback indicate that the game-based introduction was well-received by the students.

CCS Concepts
• Computing methodologies → Computer graphics; • Applied computing → Interactive learning environments;

1. Introduction

Transformations are an essential part of every computer graphics
course that builds the foundation for most of the advanced topics
in this area. Therefore, understanding transformations is essential
for students. Unfortunately, many factors discourage students, es-
pecially undergraduates, from learning this topic properly. Firstly,
understanding and applying the concepts require a solid mathemat-
ical foundation, and especially the matrix transformations can be
overwhelming. Secondly, the provided coding frameworks can be
intimidating and distracting for students, who then often struggle
to focus on the task at hand. Thirdly, in most frameworks, there is
hardly any feedback, and the impact of code changes is sometimes
hard to comprehend. Especially in graphics, errors often result in
a disappearance of the rendered content with few possibilities for
proper debugging.

To counter these negative effects a game-based and playful ap-
proach was proposed to 2nd year undergraduate computer science
students in a computer graphics and animation course at a German
university of applied science. While the theoretical background
was taught in a 90-minute class, the respective practical labs con-
sisted of two parts: A web-based scene graph tool for an interactive
playful introduction to transformations and a physics-based matrix
browser game with coding functionality that focuses on applying
the transformations. In a final optional project at the end of the
course the students could show that they know how to apply the
learned concepts by building a self-made rendering engine from
scratch.

The overall goal of our approach is to improve how the tasks are
perceived emotionally by the students, diminishing frustration and

increasing positive emotions, as these are crucial components for
successful learning [PLM∗17, GH13].

In particular we wanted to address the following goals:

1. Students should be enabled to conduct the practical lab without
the hassle of setting up and compiling a complex framework;

2. The focus should lie on the concepts and no coding framework
should distract the students;

3. The students should be able to interactively investigate the dif-
ferent concepts. In this case the basic transformations including
translation, rotation around the coordinate axes, scaling, scene
graphs, and multiplication of transformation matrices to grasp
the concept of dependent transformations;

4. The students should get immediate feedback on their actions;
5. The students should get both a high- and low-level understand-

ing of the concepts of transformations;
6. A gentle increase in the difficulty level going from an interac-

tive playful exploration to a game-based coding environment to
a full-code rendering engine should keep frustration to a mini-
mum;

7. The intrinsic motivation of the students should be improved by
providing a game-based learning environment.

Feedback by the students was entirely positive, and especially
students with lower mathematics and programming skills appreci-
ated the slower transition from an interactive tool to actual coding.
The topic of transformations was a 1-week part of a 15-weeks, 5
ECTS credit course on computer graphics with focus on rasteriza-
tion and real-time rendering.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/eged.20231018 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8673-4405
https://doi.org/10.2312/eged.20231018


M. Eisemann / Game-based Transformations

2. Overview

In the following, we will describe our approach to teaching trans-
formations to students in a playful and non-frustrating way, which
increases their intrinsic motivation to learn the concepts and math-
ematical backgrounds required to understand the topic.

We will start by reviewing related work (Sec. 3) and giving an
overview of the course (Sec. 4). Next, we will discuss the origi-
nality of our approach (Sec. 5). After that we will describe our as-
signments and tools in detail (Sec. 6). Finally, we will discuss our
approach (Sec. 7) and draw a conclusion (Sec. 8).

3. Related Work

Teaching computer graphics has always been and still is a chal-
lenging task. It requires applying mathematical concepts in a dif-
ficult programming environment (including application program-
ming and shader programming) which is often tough to debug.
Some approaches start from scratch to give the student full control
over their render engine [CXR18], while others build on existing
gaming platforms [Los22, AG16] or adapt WebGL and high-level
frameworks like ThreeJS for an easier start [AG16]. All of these
have in common that students start with a basic framework that
they extend throughout the course. However, few consider special-
ized or gaming-based assignments to help the students to playfully
engage with a certain topic. Gaming-based assignments have been
successfully used in other areas as well, such as teaching program-
ming [AM07, MTVJ10].

In addition, it has been shown, that though students are often re-
luctant to employ math, they show interest in computer graphics
[She15]. We want to make use of this fact by minimizing the frus-
tration level of students. We exemplify this by describing our ap-
proach to teaching transformations, one of the key topics in graph-
ics [BWF17]. We were inspired by Nate Robins’ classic OpenGL
tutorials [Rob00], which provide a variety of small programs to in-
teractively explore different aspects of the rendering pipeline. An-
other inspiration comes from the I3T tool [FMF∗18], which allows
you to a series of transformation matrices, change their entries and
apply the result to a simple 3D object. Our approach extends this
to a more playful setting with increasing complexity. In our Scene
Graph Tool, students have a more realistic scenario with a visual
representation of the graph to see the dependencies. They can in-
teractively change the values in the matrices using sliders. The tool
has a consistent color coding to see how all the values are related.
The Matrix Game extends this to a game-based learning scenario,
which includes real programming tasks for a gentler transition to
the final code project.

4. Course Overview

Our approach to teaching transformations was tested in a 5 ECTS
compulsory course for computer graphics and animation in the
second year of a bachelor’s degree in computer science at TH
Köln - University of Applied Sciences. The students had no pre-
vious knowledge of computer graphics and only limited mathe-
matical skills. Some had never even heard of matrices before tak-
ing the course because they began their studies during the summer

semester and therefore missed the linear algebra course before tak-
ing part in the computer graphics course. 22 students, aged between
19 and 27, took part in this course, which had the following learn-
ing objectives:

• Understand the typical algorithms used in real-time computer
graphics and know how to implement them;

• Implement highly parallel algorithms on the GPU using OpenGL
and GLSL;

• Apply the gained knowledge of the rendering pipeline, transfor-
mations, light, materials, and textures to produce a small real-
time rendering engine or game.

As the students were taught Java during their first two semesters,
we used it as well, and used GLSL for shader programming.

The overall course syllabus was as follows:

1. History of computer graphics
2. Math basics
3. Raster- and Vectorgraphics
4. Scene representation and scene primitives
5. Introduction to OpenGL and the rendering pipeline
6. Introduction to GLSL and the programmable graphics pipeline
7. Basic Transformations, including rotation, translation, scal-

ing, projective representations, and matrix representations
8. Scene Graph
9. Textures

10. Camera models (view transformation, normalized device space,
orthographic and perspective projection)

11. Material and lighting
12. Advanced texturing
13. Ray Tracing
14. Deferred shading and shadows

Afterward, an optional rendering competition took place where
students could show how they apply their knowledge to write a
small render engine/game within three weeks, similar in spirit to
[PBB19].

The course content was provided in classic 90-minute lec-
tures, which were also provided as videos on the course website
[ADLR17]. Weekly programming assignments had to be conducted
in small teams of 3-4 people. The course finished with an exam
and an optional rendering competition that was not graded. That
is, the course followed a classic teaching approach, and only the
transformations were taught using the tools described in this paper
and following the goals stated in Sec. 1. The web-based tools also
helped to switch from on-site to online teaching during the COVID-
19 pandemic, where the course was taught using a video conference
tool (Zoom) to hold the lectures and conduct labs.

5. Originality and Teaching Approach

To fulfill our objectives from Sec. 1, we evaluated our approach
to teaching transformations in an undergraduate computer graphics
and animation course. We taught the theory in a 90-minute lecture
to explain ideas and basic concepts of transformations and how to
apply them to place and animate rigid objects. A special focus was
on the typical transformations: rotation, translation, and scaling,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

26



M. Eisemann / Game-based Transformations

Figure 1: Main screen of the scene graph tool. (a) Scene graph, (b) 3D view, (c) interactive sliders to change the selected transformation
node, (d) transformation matrix of the selected node.

and their representations as 4×4 matrices, as well as how to com-
bine them into more complex transformations and scene graphs.

The originality stems from the way the concepts were examined
by the students in the practical labs. Instead of letting the students
extend the typical graphics framework right up front, we chose a
gentle and more motivating approach. In the first task, the students
had to playfully investigate transformations by examining our web-
based scene graph tool (Sec. 6.1). In the second task, the students
could apply the gained knowledge in a physics-based browser game
(Sec. 6.2), where the task was to write small code snippets to create
transformation matrices to place wooden blocks in a 3D environ-
ment such that a marble is guided towards a certain goal. Finally,
the students had to write their own graphics application in small
teams at the end of the course, which was optional and not graded
but a certificate was handed out to the best team (Sec. 6.3).

6. Assignment and Tools

The assignment for the lecture on transformations was two-fold.
Firstly, the students had to load our Scene Graph Tool in their
browser. The task was to build a scene graph to correctly animate a
lamp. Optionally, the more difficult task of animating a robot hand
could be conducted. Secondly, the students had to load the website
of our matrix game and solve the first three puzzles, which increase
in complexity. The last three were optional.

6.1. Scene Graph Tool

Figure 1 shows an overview of the provided scene graph tool. The
GUI consists of (a) the scene graph including the transformation
nodes (red and orange), geometry nodes (icons depicting the 3D
geometry) and a root node (showing a world with coordinate axes

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

27



M. Eisemann / Game-based Transformations

Figure 2: Potential solution to the two provided scenes.

to highlight that the goal is to transform a geometry node from ob-
ject space into world space). The left panel provides functionalities
to add new nodes, move nodes, change connections in the scene
graph, delete nodes and connections and to import and export the
solution (needed for the grading of the assignment and to save in-
termediate results). The scene graph gets rendered by collecting the
transformation matrices from a geometry node to the root node and
applying the resulting matrix to the geometry as model matrix.

A 3D visualization of the current scene (b) is updated after every
change to the scene graph. The user can freely navigate around the
object and inspect the impact of changes to the scene graph.

The lower half of the GUI consists of two parts. In (c), we have
interactive sliders to change the values for the current transforma-
tion node. If a translation node is selected, the sliders can move the
object along the three coordinate axes. If a scaling node is selected,
these are for scaling the object along the coordinate axes, and if a
rotation node is selected, the sliders can be used to rotate the af-
fected object around the x, y, or z-axis. If the sliders are moved,
the students can immediately see the effect on the 3D visualization.
As the camera is initialy focusing on the center of the coordinate
system and all matrices are initialized to the identity matrix, there
is no danger of creating objects outside the view frustum. If the ge-
ometry nodes are not connected properly to the root node they are
rendered in their respective object coordinate system. All objects
have been designed to have their midpoint at the origin and scaled
so that they fit in the view frustum.

Underneath the sliders (d), the corresponding matrices are dis-
played. This helps the students get used to the matrix representa-
tions and how they are applied to transform the objects. Each trans-
formation from the sliders is represented as a single matrix that gets
multiplied to reveal the final transformation matrix of the node on
the bottom right.

We make strong use of color coding to highlight the semantic
connection between the different components. The three sliders are
marked in red, green, and blue, corresponding to the color of the
coordinate axes, which are displayed in the 3D viewer, and also
corresponding to the respective entries in the matrices. The ren-
dered view and matrices get updated in real-time whenever the user
makes changes to the sliders or scene graph. This way, the student
gets immediate feedback on their changes and a playful environ-

Figure 3: Main screen of the Matrix Game. Top: The freely mov-
able 3D view, bottom: The code window to place the wooden bricks.

ment is created. Within this they can experiment without the fear of
breaking the system, which gives them a gentle introduction to the
matrix representation.

The task is now to build a scene graph that correctly animates the
3D object when the values of the different nodes are changed. For
example, in Fig. 1, the joints are moved with the ground plate as
their respective nodes in the scene graph are linked with the trans-
formation node of the ground plate. In our tool, we offer two mod-
els to play with: A lamp consisting of eight objects, and a robot
hand consisting of 29 objects, though we do not expect the students
to build the full hand. Fig. 2 shows a potential solution for both
scenes.

The tool is implemented using HTML, JavaScript, and Three.js,
a high-level JavaScript framework for WebGL applications.

6.2. The Matrix Game

Once the students get used to the Scene Graph Tool, they can con-
tinue with the next task, the Matrix Game, Fig. 3. The Matrix Game
is a physics-based simulation game. The goal is to guide a marble
towards a marked goal and have it stay there for three seconds.
The user’s task is to write Java code to create matrices to transform
wooden boxes so that the marble can reach its goal. The user is

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

28



M. Eisemann / Game-based Transformations

Figure 4: Example code to transform one box in the Matrix Game.
The code needs to be written by the students.

provided with several convenience functions that are in alignment
with the framework used throughout the rest of the course. An ex-
ample of such code is given in Fig. 4. In particular, the user can
create a box of a certain size, centered around the origin of the co-
ordinate system using new Box(width, height, depth).
Additionally, they can create a matrix (new Matrix4f()) and
apply transformations to them. Finally, the user can set the model
matrix of a box to a certain matrix which is then applied during
rendering. Underneath the code editor, the students have a short
manual that describes the interaction with the tool and a command
reference. That way, the students can practice their coding skills
in a safe and playful environment. The game consists of six lev-
els with increasing difficulty. Fig. 3 shows the introductory level
which is used as a playground to explain the concept. Fig. 5 shows
the third level, where the marble is blocked by a concrete block
and level 6, which is only for real experts as the marble has to go
through a maze. If a student can solve this, one can safely assume
that they are proficient in dealing with model matrix transforma-
tions. Level 2 is simply an empty level, in level 4, the marble has to
go around a wall, and in level 5, the goal is placed diagonally of the
starting position blocked by two concrete walls. In the assignment,
we asked the students to solve the first three levels, but many chose
to continue and solve the others as well.

The tool is implemented using HTML, JavaScript, PHP, and
Three.js. The PHP parser converts the written code in the editor into
executable JavaScript code using regular expressions. Transforma-
tions are internally saved in text format before converting them to
Three.js matrices when calling the setModelMatrix-function. The
physics are implemented using Physijs.

6.3. Final project

At the end of the course, the students were asked to implement a
small 3D scene or game using the course framework. This frame-
work was extended during the course but provides only basic
OpenGL functionalities, like setting up a window, loading 3D ob-
jects and textures, or setting up shaders and uploading matrices.
The programming language was Java, as this was taught during the
students’ first year, in conjunction with the LWJGL library for the
OpenGL functionality.

About 50% of the students took part in this optional project,
even though they did not receive any credits for it. Some results
are shown in Fig. 6. We were positively surprised to see that some
of the projects were real games that could be played and involved
complex topics such as character animation. Videos are shown in
the supplemental material. All projects showed that the transforma-
tion concepts taught could be applied in real-world scenarios by the
students, which was the main goal of the assignment.

7. Discussion

All students who successfully finished the assignments and took
part in the final project completed the course successfully. The stu-
dents were highly motivated, and even though some complained
that the final project was too much work, they still took part in the
contest.

The provided Scene Graph tool and Matrix Game were well re-
ceived, and we got much positive feedback that it helped to learn
the concepts without frustration. The teaching evaluation revealed
that the students especially loved the didactic structure and the
feedback for self-assessment provided by the tools (grading both
with 1.2 where 1 is the best and 5 the worst grade). The amount
of work that had to be conducted was perceived as average, so the
workload was en par with other courses.

Additionally, the proposed structure to teach transformations fol-
lows the Four I’s Recipe for designing computer graphics exercises
[PA14]. The tools are independent of other assignments; incremen-
tal in the sense that the tasks get more and more complex (inter-
active scene graph to coding transformations in the matrix game
to the final project); the activities are iterative (different levels in
the matrix game and the concepts are used throughout the remain-
ing assignments of the course); and integrative by offering the final
project where all learned concepts are to be applied. Therefore, we
conclude that using our teaching approach, we could achieve the
goals stated in Sec. 1.

8. Conclusion

This work proposed an experimental new way to teach computer
graphics. While we focused on teaching transformations in this
paper, we see strong evidence that the chosen approach of gen-
tly and playfully introducing students to a topic can help to di-
minish frustration and foster intrinsic motivation instead. Other
topics like camera transformation, texture mapping, shader pro-
gramming, and others which would all benefit from such an ap-
proach. The results indicate that the course was well perceived and
helped the students to gain insight into the complex topic of com-
puter graphics. The tools will be available from this paper’s web-
site at https://graphics.tu-bs.de/publications/
eisemann2023game-based.

9. Acknowledgment

Special thanks goes to Jarek Sarbiewski and to Andreas Pahlen and
Stefan Förster for doing such a wonderful job on implementing the
Scene Graph Tool and Matrix Game, respectively.

References

[ADLR17] ANDERSON E., DUCHOWSKI A., LIAROKAPIS F., RED-
FORD A.: The new CGEMS - preparing the computer graphics educa-
tional materials source to meet the needs of educators. In Eurographics
2017 - Education Papers (2017), Eurographics Association. 2

[AG16] AMADOR G., GOMES A.: A video games technologies course:
Teaching, learning, and research. In Eurographics 2016 - Education Pa-
pers (2016), Eurographics Association. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

29

https://graphics.tu-bs.de/publications/eisemann2023game-based
https://graphics.tu-bs.de/publications/eisemann2023game-based


M. Eisemann / Game-based Transformations

Figure 5: Third level with intermediate difficulty and sixth level for experts.

Figure 6: Examples of the final students’ projects.

[AM07] ANDERSON E. F., MCLOUGHLIN L.: Critters in the class-
room: A 3d computer-game-like tool for teaching programming to com-
puter animation students. In ACM SIGGRAPH 2007 Educators Program
(2007). 2

[BWF17] BALREIRA D., WALTER M., FELLNER D.: What we are teach-
ing in introduction to computer graphics. In Eurographics 2017 - Edu-
cation Papers (2017), Eurographics Association, p. 1–7. 2

[CXR18] CHEN M., XU Z., RIPPIN W.: On the pedagogy of teaching
introductory computer graphics without rendering apis. In Eurographics
2018 - Education Papers (2018), Eurographics Association. 2

[FMF∗18] FELKEL P., MAGANA A. J., FOLTA M., SEARS A. G.,
BENES B.: I3T: Using Interactive Computer Graphics to Teach Ge-
ometric Transformations. In Eurographics 2018 - Education Papers
(2018), Post F., Žára J., (Eds.), The Eurographics Association. doi:
10.2312/eged.20181000. 2

[GH13] GOETZ T., HALL N.: Emotion and achievement in the class-
room. In International guide to student achievement (2013), p. 192–195.
1

[Los22] LOSCOS C.: Introduction to computer graphics: a visual interac-
tive approach. In Eurographics 2022 - Education Papers (2022), Euro-
graphics Association. 2

[MTVJ10] MURATET M., TORGUET P., VIALLET F., JESSEL J.-P.: Ex-
perimental Feedback on Prog and Play, a Serious Game for Program-
ming Practice. In Eurographics 2010 - Education Papers (2010), The
Eurographics Association. 2

[PA14] PETERS C. E., ANDERSON E. F.: The Four I’s Recipe for Cook-
ing Up Computer Graphics Exercises and Assessments. In Eurographics
2014 - Education Papers (2014), The Eurographics Association. 5

[PBB19] PALUS J.-P., BELHADJ F., BOURDIN J.-J.: Do contests im-
prove students skills in Computer Graphics? The case of API8. In Eu-
rographics 2019 - Education Papers (2019), Tarini M., Galin E., (Eds.),
The Eurographics Association. 2

[PLM∗17] PEKRUN R., LICHTENFELD S., MARSH H., MURAYAMA
K., GOETZ T.: Achievement emotions and academic performance: Lon-
gitudinal models of reciprocal effects. Child Development 88, 5 (2017).
1

[Rob00] ROBINS N.: Nate robins’ opengl tutorials, 2000.
http://user.xmission.com/ nate/tutors.html. 2

[She15] SHESH A.: Teaching graphics to students struggling in math:
An experience. In Eurographics 2015 - Education Papers (2015), Euro-
graphics Association, p. 23–29. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

30

https://doi.org/10.2312/eged.20181000
https://doi.org/10.2312/eged.20181000

