EUROGRAPHICS 2021/ B. Sousa Santos and G. Domik

Education Paper

Marching Cubes for Teaching GLSL Programming

Ivaylo Ilinkin'

I Gettysburg College, USA

Abstract

This paper shares ideas for illustrating GLSL programming based on the classic Marching Cubes algorithm. The algorithm
has a number of appealing aspects: it is feasible to implement as one of the components in a computer graphics course, it
motivates naturally a number of GLSL concepts and constructs, and leaves the students with a sense of accomplishment having
reproduced original research. The paper suggest possible variations and extensions that could form the basis for final group

projects.
CCS Concepts

e Computing methodologies — Computer graphics; Shape modeling;

1. Introduction

Teaching computer graphics has always faced a challenge in terms
of finding the right scaffolding that lets the students discover and
experiment with the main concepts while abstracting away details
about GUI frameworks and rendering. Unfortunately, the flexibil-
ity offered by the modern shader-based pipeline introduces further
layers of complexity that require new teaching approaches, assign-
ments, and tools and frameworks. General discussion about transi-
tioning to the modern approach can be found in [FWW12,RME14,
AB15]; frameworks that aim to provide the right scaffolding are
described in [PPGT14,BSP17, TRK17, ACFV18]; creative assign-
ment for introducing the modern pipeline is presented in [FP18].

The goal of this paper is to share ideas for using the Marching
Cubes (MC) [LC87] algorithm to illustrate shader programming.
The appeal of MC is that it is feasible to implement within the time
frame of a regular assignment and offers an opportunity to intro-
duce geometry shaders. In fact, our use of MC was motivated by
the need to find a non-trivial example that could illustrate the util-
ity of geometry shaders in a realistic and natural context. An added
benefit to this approach is that it exposes students to published re-
search that is accessible at the undergraduate level—Section 4 in
the original paper [LC87] presents clearly the main ideas and can
serve on its own as the foundation for basic implementation. The al-
gorithm offers a number of possibilities for variations or extensions
that instructors could consider for final group projects.

In the rest of the paper we provide context for the proposed ideas,
describe the setup and implementation details, and conclude with a
discussion of possible variations and extensions.

(© 2021 The Author(s)
Eurographics Proceedings (© 2021 The Eurographics Association.

DOI: 10.2312/eged.20211008

2. Context and Objectives

Our computer graphics course is an upper-level elective for com-
puter science majors at a liberal arts college. It is typically taken
by juniors and seniors (3rd and 4th year students) and the for-
mal prerequisites are three core courses: Introduction to Program-
ming, Object-Oriented Programming, and Data Structures and Al-
gorithms. The language of instruction in the core courses is Java,
while the computer graphics course is taught in C++ to offer ex-
posure to a new language. There is no formal linear algebra and
advanced calculus requirement—both C++ and the required math-
ematical background are introduced as needed during the course.

Previous iterations of the course were based on the OpenGL fixed-
function pipeline while the latest version also included the mod-
ern shader-based approach replacing raster graphics algorithms for
2D primitives (scan converting lines and circles, filling and clip-
ping polygons, etc.). The Marching Cubes algorithm was used at a
point when the students had already learned the concepts of vertex
shader and fragment shader, uniform variables, and how to prepare
geometry and attribute buffers for the shader pipeline. The students
were also familiar with 2D and 3D geometric transformations and
projections, although in order to reduce complexity these were not
used in the MC implementation. The data was set up for an im-
plicit orthographic projection and the only transformation applied
to the data was a simple rotation around the y-axis (one could, how-
ever, appreciate the results without this rotation). This already hints
at a possible variation—instructors could progressively add differ-
ent projections and transformations/interactions; we did not see the
need, since these were already covered in a different context.

As mentioned earlier the motivation for MC was to find a natu-
ral and realistic context to introduce geometry shaders. This also

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-0723-637X
https://doi.org/10.2312/eged.20211008

58 Ilinkin / Marching Cubes for GLSL

(a) () ()

(d) () 6)

Figure 1: Representative configurations for the 3D (left) and 2D (right) case.

offered further illustration of vertex and fragment shaders through
the integration of the three different stages.

3. Description and Implementation Details

Here we sketch the main ideas of MC and refer the reader to Sec-
tion 4 in [LC87] for the complete details. The algorithm extracts
an isosurface from volume data for a user-supplied intensity value
(isovalue) using a sliding cube over the data. For each placement of
the sliding cube the algorithm thresholds to 0/1 the voxel intensities
at the cube vertices against the given isovalue and infers a surface
configuration by emitting a collection of triangles. For example, if
all four vertices of a single face of the cube are thresholded to 1
(Figure la), then we can infer that we have a transition from inside
the volume to the outside and that the face represents the volume
boundary. Thus, we can emit triangles that represent the face for
rendering. Similarly, if the two vertices of a single edge of a face
are thresholded to 1 (Figure 10) we can infer a transition point and
emit triangles that separate the edge (inside) from the other six ver-
tices (outside). In the extreme either all vertices of the cube are
thresholded to 1 (or to 0), in which case no triangles are emitted
since we are entirely inside (or outside) the volume. Altogether 15
canonical cases (up to symmetry) are identified in [LC87] of which
we have reproduced three representative cases in Figure 1a-c.

We can now see the natural application of geometry shaders in the
algorithm implementation. The geometry shader receives as input
the 8 vertices of the cube and emits a variable number of triangles
depending on the 0/1 state of the vertices. This is also a place where
the instructor can introduce (or reintroduce) triangle strips, since
many of the configurations have this natural representation.

The correspondence between cube configuration and triangle prim-
itives is achieved via a lookup table. Each configuration can be
identified by a bit sequence representing the state of the cube ver-
tices. The integer value of the bit sequence is used as an index
in the lookup table to retrieve an encoding that allows for con-
structing the triangle primitives. In our implementation the encod-
ing was a sequence of pairs of integers, each pair indicating which
of the 8 vertices received by the shader represent 0—1 edge; the
value -2 was used to separate triangle strips within a configura-
tion; and -1 was used to terminate the encoding (the lookup table
has fixed dimensions, but the encodings have different lengths).
For example, using a top-to-bottom, back-to-front labelling of
the vertices, the bit sequence, the index, and the encoding for
the configuration shown in Figure 1c¢ are 10110100, 180, and
{2,0,2,3,2,6,-2,5,1,4,0,7,3,4,6,7,6,-1,..0s...}, respectively. The ver-
tices of the emitted triangles represent the constant isovalue, i.e.

the intersection of the isosurface with the cube edges, so the ver-
tex positions should be interpolated along the edges based on the
endpoint intensities. Our implementation assigned the average in-
tensity to add variation and avoid the flat appearance due to the
absence of lighting or other cues.

There are 256 possible configurations (8 vertices in two possible
states) and the longest encoding for our scheme is 28, so the lookup
table was represented as int [256] [28]. This can be reduced to
int[256] [16] if the encoding is based on labelling the mid-
points of the edges, with a bit of extra work (e.g. additional lookup
in int [12] [2] table) to identify the vertices of the midpoint’s
edge. Other encoding are possible as well, so this could be an op-
portunity for instructors to discuss the issue of representation in
computer graphics and space-time trade-off.

One implementation consideration is how to communicate the
lookup table to the geometry shader. This presents an opportunity
to introduce uniform buffer objects (UBO) or shader storage buffer
objects (SSBO) to communicate a large block of GLSL uniform
data. UBO might be a bit more natural given prior familiarity with
uniform variables, but for this application there is essentially no
difference in the setup and use of either structure. The only prac-
tical consideration is that UBO have a guaranteed limit of 16KB
(which is exceeded by the int [256] [28] representation), but
the hardware is likely to allow larger sizes.

Finally, we mention the data format although instructors are likely
to have different means of loading image and volume data. The
data was read from PGM image files (grayscale raw PPM variant)
and each volume data was stored in a separate directory with in-
dividual images for each volume slice. Internally, the slices were
stored consecutively in row-major form in a 1D array (C++ vec-
tor) as a 4-tuple that assigned to each pixel/voxel its coordinates
and grayscale intensity. During loading the coordinates were set to
be in [—1, +1]3 at equal intervals along each axis to eliminate the
need for transformations. In the shader pipeline the thresholded 0/1
intensity values were used to identify each configuration. Finally,
the positions and intensity values for the emitted triangle primitives
were computed as mentioned earlier.

4. Setup

The students received the following handouts—only geome-—
tryShader.glsl was new, since the rest had been used in prior
assignments on GLSL:

e shaderutils. (h|cpp) — simple utilities for loading a
shader or creating a shader program

(© 2021 The Author(s)
Eurographics Proceedings (©) 2021 The Eurographics Association.

Ilinkin / Marching Cubes for GLSL 59

5 = Dems opencisi. I Dems opensist —a] [

Figure 2: Marching Squares results showing the original image and the extracted contours.

e main.cpp — OpenGL/GLUT setup for rendering a square

e vertexShader.glsl and fragmentShader.glsl —
basic pass-through shaders

e geometryShader.glsl — simple example that receives a
vertex and emits a diamond shape centered at the vertex; when
enabled it changes the rendering of the square in main. cpp to
a rendering of four diamonds at the square vertices

The assignment was completed over the course of two weeks and
the major components are described in the following sections. Re-
sults are shown in Figures 2 and 3, respectively.

4.1. Marching Squares

The first task was to implement a variation called Marching Squares
(MS) for extracting a contour from 2D image data, instead of a
surface from 3D volume data. The algorithm works exactly as de-
scribed in Section 3, but slides a square over the data emitting line
segments depending on the 0/1 state of the vertices (Figure 1d-f).
The number of possible configurations is reduced significantly (256
to 16) which shrinks the lookup table from int [256] [28] to
int [16][28]. This 2D variation has the same conceptual and
implementation structure as the original, but its 2D nature aids sig-
nificantly in grasping and visualizing the details of the algorithm.

For the MS component the students completed the following tasks:

e pixel/voxel representation: Each pixel was a 4-tuple that stored
the pixel coordinates (at this stage z was 0) and intensity. In the
shader the intensity was retrieved via the . w component, which
simplified the data and attribute setup, but instructors could
consider different representations.

e image implementation:

o constructor — read the data from PGM file
o setup () — create data buffers and describe attributes
o draw () — activate the buffers and draw the data

The main focus here was on method setup () which had the
task of initializing the data and attribute buffers, and computing
correctly the strides and offsets to ensure that the geometry
shader received data for 4 adjacent pixels in a square configura-
tion within the image.

e [ookup table generation: The lookup table was generated by
hand based on careful examination of the 16 possible config-
uration producing the pair encoding described in Section 3.

(© 2021 The Author(s)
Eurographics Proceedings (©) 2021 The Eurographics Association.

The work is made even more manageable, since there is only
rotational symmetry and therefore symmetric cases can be
obtained successively via +1 increment.

Since the lookup table was quite small, at this stage it was
included directly in the geometry shader bypassing the need for
UBO/SSBO.

e geometry shader modification: The geometry shader form the
handout was modified to receive the 4 vertices of the sliding
square and emit the /ine strips for the current 0/1 configuration:

1. threshold the intensity value stored in . w against the isovalue

2. form the configuration index using simple bit operations to
combine the thresholded values into a binary sequence

3. use the index to retrieve the encoding from the lookup table

4. traverse the encoding emitting a vertex for each edge pair;
complete the primitive at -2; stop at -1

To aid testing and debugging the students were advised to use ini-
tially a hardcoded 2x2 grid and assign O/1 intensity values to test
each of the 16 configurations. Once all configurations were tested
thoroughly any dataset was likely to work correctly.

4.2. Marching Cubes

The MC stage was only a short step away from MS. Essentially,
no extra code had to be written, but instead it was only neces-
sary to make simple adjustments to process 8 elements instead
of 4. Importantly, note that steps 3 and 4 in Section 4.1 require
no modification—switching the geometry shader to emit triangle
strips completes the transformation:

e extend method setup () to compute the correct strides and
offsets to ensure that the geometry shader receives data for 8
adjacent voxels in a cube configuration within the volume

e extend the geometry shader to compute a bit sequence (index)
from 8 thresholded intensities; each encoding is processed as be-
fore since there is no change in the description of vertices to emit

e send to geometry shader the lookup table via UBO or SSBO;
here it is not practical to generate the lookup table by hand, so
we suggest that instructors provide it

Students were again advised to use a hardcoded dataset—2x2x2

60 Ilinkin / Marching Cubes for GLSL

Figure 3: Marching Cubes results showing the extracted surface. The images in the middle represent different levels of intensity thresholding.

single cube/volume—and check a few representative configura-
tions. At this stage it is not practical to check all configurations,
but assuming the lookup table is provided and the previous stage is
implemented correctly, the main issues are likely to be confined to
the code repetition and adjustment steps above.

For our implementation the students were required to write a sepa-
rate program to generate the lookup table suggested in [LC87]. The
details are beyond the scope of this short paper and it is not clear
whether much is gained by requiring this component. It is perhaps
better to include it as an optional exercise or as a final project on
the challenges in creating a lookup table that correctly handles the
ambiguities that are present in the original table.

5. Discussion

This paper presented ideas for illustrating the modern shader
pipeline using Marching Cubes which has a number of appealing
aspects: it is feasible to implement as a single unit within a com-
puter graphics course; offers a natural context that motivates geom-
etry shaders and advanced data communication via UBO/SSBO;
and reinforces ideas such as data and attribute buffer use and initial-
ization, vertex and fragment shaders, and triangle/line strip primi-
tives.

Instructors could consider only the Marching Squares implementa-
tion which can be completed as a one-week assignment and has all
the elements of the main algorithm, including the practical applica-
tion of computing a dataset boundary. Alternatively, the full algo-
rithm can be completed over the course of two weeks by adding
additional features including projections and geometric transfor-
mations for interacting with the dataset, or varying the threshold
to reveal different regions in the data set (the last extension was
included in our implementation). An interesting follow-up would
be to investigate whether this could be incorporated in the Shader-
LabFramework [TRK17], which supports geometry shaders and al-
lows for interactive editing of shader code in an IDE-like interface.

Other possible ideas include adding lighting and normals computa-
tion. This was not included in out implementation, but will be con-
sidered in the future. In the setup presented here computing smooth
normals is not possible, since connectivity is lost during the geom-
etry shader stage. However, it is trivial to compute per-triangle nor-
mals, so that could be a simple extension. A feasible adjustment for
computing smooth normals within the given framework is to send
more data to the geometry shader.

Finally, instructors could use this as a starting point for final

projects. The presentation here was based on the original pa-
per [LC87], but there has been a significant amount of follow-up
work that can form the basis for further exploration.

6. Acknowledgments

We thank Dr. Sunghee Kim at Gettysburg College for suggesting
Marching Cubes. The results shown in this paper are from the work
of Yidan (Tracy) Tang.

References

[AB15] ACKERMANN P., BACH T.: Redesign of an Introductory Com-
puter Graphics Course. In EG 2015 - Education Papers (2015),
Bronstein M., Teschner M., (Eds.), The Eurographics Association.
doi:10.2312/eged.20151021. 1

[ACFV18] ANDUIJAR C., CHICA A., FAIREN M., VINACUA A.: GL-
Socket: A CG Plugin-based Framework for Teaching and Assessment.
In EG 2018 - Education Papers (2018), Post F., Zéra J., (Eds.), The Eu-
rographics Association. doi:10.2312/eged.20181003. 1

[BSP17] BURGISSER B., STEINER D., PAJAROLA R.: bRenderer: A
Flexible Basis for a Modern Computer Graphics Curriculum. In EG
2017 - Education Papers (2017), Bourdin J.-J., Shesh A., (Eds.), The
Eurographics Association. doi:10.2312/eged.20171023. 1

[FP18] FOURQUET E., PENTECOST L.: A Creative First Assign-
ment in the Modern Graphics Pipeline. In EG 2018 - Education Pa-
pers (2018), Post F., Zara J., (Eds.), The Eurographics Association.
doi:10.2312/eged.20181006. 1

[FWW12] FINK H., WEBER T., WIMMER M.: Teaching a
Modern Graphics Pipeline Using a Shader-based Software
Renderer. In Eurographics 2012 - Education Papers (2012),
Gallo G., Santos B. S., (Eds.), The Eurographics Association.
doi:10.2312/conf/EG2012/education/073-080. 1

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes:

A high resolution 3d surface construction algorithm. SIG-
GRAPH Comput. Graph. 21, 4 (Aug. 1987), 163-169.
URL: https://doi.org/10.1145/37402.37422,

doi:10.1145/37402.37422.1,2,4

[PPGT14] PAPAGIANNAKIS G., PAPANIKOLAOU P., GREASSIDOU
E., TRAHANIAS P.: gIGA: an OpenGL Geometric Application
Framework for a Modern, Shader-based Computer Graphics Curricu-
lum. In Eurographics 2014 - Education Papers (2014), Bourdin
J.-J., Jorge J., Anderson E., (Eds.), The Eurographics Association.
doi:10.2312/eged.20141026. 1

[RME14] REINA G., MULLER T., ERTL T.: Incorporating modern
opengl into computer graphics education. IEEE Computer Graphics and
Applications 34,4 (2014), 16-21. doi1:10.1109/MCG.2014.69. 1

[TRK17] ToisouL A., RUECKERT D., KAINZ B.: Accessible
GLSL Shader Programming. In EG 2017 - Education Papers
(2017), Bourdin J.-J., Shesh A., (Eds.), The Eurographics Association.
doi:10.2312/eged.20171024. 1,4

(© 2021 The Author(s)
Eurographics Proceedings (©) 2021 The Eurographics Association.

https://doi.org/10.2312/eged.20151021
https://doi.org/10.2312/eged.20181003
https://doi.org/10.2312/eged.20171023
https://doi.org/10.2312/eged.20181006
https://doi.org/10.2312/conf/EG2012/education/073-080
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.2312/eged.20141026
https://doi.org/10.1109/MCG.2014.69
https://doi.org/10.2312/eged.20171024

