EUROGRAPHICS '06 / Judy Brown and Werner Hansmann

Education Papers

A Programmable Tutor for OpenGL Transformations

Carlos Andujar and Pere-Pau Vazquez

Departament de LSI, Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract

Computer Graphics is a growing field that is becoming more and more present in Computer Science studies at
University level. This has lead to the creation of a large number of support materials, such as tutorials, white
papers, and teaching books. Geometric transforms is commonly one of the topics that all Computer Graphics
courses must deal with, and, traditionally, is one of the issues that students find difficult to master. Some of the
problems come from the difficulty of using a blackboard to represent 3D objects, and it is therefore very convenient
to have tutorial applications that are able to help through the learning process. In light of this, we have built a
geometric transformation tutor that is intended to improve student understanding of the operations that are carried
out on the OpenGL transformation matrices, and the results in terms of visualization. The application achieves
a nice balance between the flexibility provided by a script language and the easiness of use. A key benefit of
the application is the possibility of writing interactive tutorials demonstrating topics such as camera and object

animation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.4 [Computer Graphics]: Graphics Utilities K.3.1

[Computers and Education]: Computer Uses in Education

1. Introduction

Although Computer Graphics is a relatively recent field, as
compared to other classical Computer Science areas such as
programming, it is now a very active research and develop-
ment field. Computer Graphics teaching is commonly faced
with two kinds of teaching paradigms, the face to face teach-
ing using a blackboard, and lab sessions. The contents of
a classical Computer Graphics course include the explana-
tion of 3D transformations and their implementation using
the OpenGL matrix operations. For the Computer Graphics
practitioner, it is extremely important to master transforms.
Transforms are used to position, reshape, and animate ob-
jects, lights and cameras. Transforms are used also to ensure
that computations are carried out in a particular coordinate
system, and project objects onto a plane in different ways.

Commonly, students find difficult to understand how the
transformation operations are affecting the camera and why
a certain view looks as it does. Usually, students consolidate
the theoretic aspects in lab classes, but with a high amount
of effort and time devoted to this sole feature. Most of the
time, they are not able to infer where the camera is placed
and where it is looking at.

(© The Eurographics Association 2006.

In this paper we present a flexible tutorial application in-
tended to make the learning process of the geometric trans-
formations in OpenGL faster. Our context is an introductory
Computer Graphics course of one semester taught to under-
graduate students in Computer Science. Moreover, it is a
compulsory course, so the students may or may not be moti-
vated by the subject. Laboratory classes help to consolidate
the fundamental concepts that are taught at theory classes,
and they are tightly coupled, that is, the concepts seen in
lectures are practiced in laboratory classes within a couple
of weeks. In our laboratory classes, we use OpenGL as 3D
APL

Our system allows to visualize both the projected view
that a certain camera configuration will yield, together with a
representation of the actual position of the camera, the view-
ing frustum and the object, so that the user can really see
where the camera is placed with respect to the scene he or
she wants to render. The main features of our application are:

e Continuous knowledge of the operations that are applied
to define the OpenGL matrices.

e The combination of two views, one for the rendering re-
sult and another that shows the camera configuration in

delivered by

EC

www.eg.org

EUROGRAPHICS
DIGITAL LIBRARY

diglib.eg.org

http://www.eg.org
http://diglib.eg.org

Carlos Andijar and Pere-Pau Vdzquez / A Programmable Tutor for OpenGL Transformations

relation to the object, avoids the user to /ose the object or
the camera.

e Two navigation modes: free camera and user camera. The
first one allows the user to interact with the object and
see the transformations that are applied to it. The latter
permits the inverse process, the user issues OpenGL com-
mands and sees how they affect the visualization and cam-
era configuration.

e Flexible modification of the commands applied. The user
can add, remove, and modify the parameters of the
OpenGL transformations easily and interactively.

e A script language for computing the parameters of
OpenGL commands.

The rest of the paper is organized as follows. We review
previous work in Section 2. Section 3 introduces the teach-
ing goals addressed by our application. In Section 4 we de-
tail the features of our tool. Section 5 covers the experience
we have had with the tutor. Finally, Section 6 presents some
concluding remarks and some lines of future work.

2. Previous Work

Computer graphics is quite a difficult subject to teach, partic-
ularly with traditional face-to-face teaching. Consequently,
several tools have been built in order to improve students’
learning process.

UisGL is a portable set of C++ classes that provide sup-
port to the management of data structures and transforma-
tions [1]. Its main objective is to provide the students with a
core set of classes that can be used to develop algorithms in
a top-down manner.

Naiman’s teaching modules [2] were one of the first at-
tempts to develop a set of working examples as supplemental
material. They cover fundamental Computer Graphics top-
ics presented in introductory courses and consist not only of
executable code, but also descriptions of algorithms, demon-
strations of the basic concepts, and exercises.

Wernert [3] presents an environment for developing and
analyzing graphics algorithms. The system is based upon
Iris Explorer. Its main objective is to help the students to
bring into the practice the knowledge acquired during lec-
tures. Although the environment is highly flexible, the use of
networks of modules to facilitate coding sometimes results
in complex designs with a high amount of modules.

Fortunately, the technology we have now can be used to
overcome most of the problems those early projects could
suffer from, such as rendering speed, or the fact that some
software was proprietary.

As stated in Klein er al. [4], teaching Computer Graph-
ics with traditional technologies and tools makes difficult
to the student to understand real life examples. As shown,
the traditional focus is to develop sample programs that il-
lustrate concrete concepts. Unfortunately, in former times,

these programs were implemented using expensive hardware
and students did not had either the software nor the hardware
to experiment with them at home. Nowadays, things have
changed. First, most commodity PCs come with a graphics
card that is powerful enough to execute complex Computer
Graphics programs. And second, there is a relatively large
amount of freely available software that is present in a wide
range of hardware platforms and operative systems, such as
Qt system [5] or OpenGL. With this in mind, Klein and Han-
ish [4] propose a Computer Graphics course that provides an
integrated view of the theoretic concepts together with a set
of Java applets that illustrate the concepts. Similarly to other
applications, this online graphics course does not provide a
great flexibility for the user to modify the code to be exe-
cuted. A similar approach is taken by Pan et al. [6], and by
Ullrich and Fellner [7]. In this last case, emphasis is put, not
only on the features provided by the tools, but also on their
design, in order to obtain a set of components that are easily
adapted or combined with other applications. Other systems
also address similar objectives [8, 9, 10].

It is worth to mention the Nate Robins tutors [11] (see
Figure 1), which are similar to ours in spirit (they also fo-
cus on OpenGL operations and provide samples of modi-
fiable code). These are a set of OpenGL applications that
address simple problems such as texturing, light placement,
and shapes.

@ ranstormation =lmix

‘World-1pace view Scraen-pace visw

Command manipulation window

glBegin{ ...)

Click on the arguments and meo:

ouse to modify values,

Figure 1: Snapshot of the Nate Robins’ transformation tutor

As stated by Cunningham [12], nowadays technology al-
lows us to teach Computer Graphics in two different ways:
a traditional approach with higher emphasis in fundamental
algorithms and techniques, and a high-level, API-oriented
approach that can probably attract a greater audience. Our
approach is a hybrid method, such as Angel’s system [13],
probably more focused on fundamental concepts, but with a

(© The Eurographics Association 2006.

Carlos Andiijar and Pere-Pau Vdzquez / A Programmable Tutor for OpenGL Transformations

tight coordination with laboratory classes, that are held us-
ing OpenGL. The fundamental concepts explained in class
are experimented in laboratory within one or two weeks.

Sung and Shirley [14] compare the top-down and bottom-
up approaches in teaching introductory graphics courses.
They argue that a top-down approach, that is, starting from
the functional modules of applications (rather than from
foundational algorithms such as triangle rasterization) are
more suitable for mature students.

3. Teaching goals, methods and requirements

This project was undertaken to help students understand
and acquire an intuitive notion of several concepts related
with geometric transformations from a learn-by-practice ap-
proach.

The specific topics we wanted the students to practice
were those transform-related topics included in most intro-
ductory courses on Computer Graphics. In particular, the tu-
tor was conceived to address the following topics:

e Viewing transforms: camera analogy, orthographic, and
perspective camera models.

e Modeling transforms: basic affine transforms (transla-
tion, rotation, scaling, and shearing) and concatenation of
transforms.

e Matrix stacks and their use in computer animation.

e Alias and alibi interpretations [15].

e Camera and object animation.

Competences and problem-solving skills concerning the
above topics students should develop include:

e Define a suitable camera using OpenGL commands for a
given model and camera constraints.

e Describe the image on the viewplane resulting from a
given model and camera definition.

e Implement basic camera animation techniques such as ro-
tation, zooming, panning, and flythrough.

e Implement simple and hierarchical object animation.

An additional goal was to provide the students with
an easy-to-use graphical tool for debugging transformation
code, along with an interactive tool for producing, practicing
and checking practical exercises involving the above skills.

The analysis of the above goals lead us to identify the
application requirements described below. The application
should allow the user to:

e Import a 3D model and define a suitable default camera.

e View and edit the OpenGL code defining the modelview
and projection matrices.

e Change interactively the parameters of OpenGL com-
mands and view the effect on the camera and the objects.

e Write and edit small programs using a scripting language
to assign variables usable as OpenGL function parame-
ters.

(© The Eurographics Association 2006.

e View the model from the current camera’s viewpoint and
from an exocentric viewpoint showing the camera’s frus-
tum with respect to the scene objects.

e Browse a tutorial guiding the students through different
lessons/exercises.

e Export OpenGL commands and script functions into
C/C++ code.

Two key features of this application concept are the pro-
grammability (via a script language) and the possibility of
writing interactive tutorials for guiding the learning process.
These tutorials comprise both code and step-by-step instruc-
tions.

Additional requirements of the application comprise a
simple and intuitive user interface, and the use of free, mul-
tiplatform software libraries.

4. The programmable tutor

One of the main goals in the design of the application was to
achieve a suitable balance in the flexibility/simplicity trade-
off. The key idea was to provide instructors and students
with a flexible, programmable tutor while abstracting stu-
dents from distracting code. Abstracting the student from
other programming details (model import, window creation,
input management, user interface) promotes the focus on
code dealing with transforms.

Regarding the user interface design, we strongly believe
that presenting the student with simultaneous views of the
OpenGL code and the associated effects on the camera and
scene objects would increase the pedagogic value of the ap-
plication. We also argue that separating actual OpenGL func-
tions from the code computing parameters for these func-
tions promotes a better understanding of the matrix opera-
tions involved.

As a result, the application’s user interface is divided into
five areas (Figure 2):

Camera view This view shows the projection of the (pos-
sibly transformed) objects onto the viewing plane corre-
sponding to the current camera. From the user’s point of
view, this view works with two cameras. The free camera
allows the interactive exploration of the model using di-
rect manipulation and preprogrammed camera rotations,
zooming and panning. This camera is completely inde-
pendent of the user-provided OpenGL commands and it
is provided as a simple and direct way for exploring the
model. The user camera corresponds to the OpenGL com-
mands provided by the user through the OpenGL com-
mand editor (see below).

Exocentric view This view shows the model and the cur-
rent camera’s frustum from an exocentric viewpoint. The
user is able to rotate, zoom, and pan the exocentric camera
at any moment through direct manipulation.

OpenGL command editor This window shows a user-
editable collection of OpenGL functions used for defining

Carlos Andiijar and Pere-Pau Vdzquez / A

Eile Language Help

Programmable Tutor for OpenGL Transformations

Open Model Close Model | User Camera | ¥ 1 |

1!\;]‘

|@ glMatrixMode (| GL_PROJECTION | &]:‘

|@ glLoadIdentity [l:|

H gluPerspective (60 1.51039 456.856 @
%) glMatrixMode ([GL_MODELVIEW | 5 I];‘

|@ glLoadldentity n;|

%) gluLookAt (3.0 11.3075 923.602 3323e-0¢

=

|Viewing,l Modeling

[0

glRotatef ([20 |

Figure 2: Application’s user interface. Camera view (top I
right), Script editor and Tutorial view (bottom right).

both OpenGL's MODELVIEW and PROJECTION matri-
ces of the user camera. The functionality of this key com-
ponent is described in Section 4.1.

Script editor This component allows users to define their
own functions to compute values usable as OpenGL func-
tion parameters (Section 4.2).

Tutorial view Our application allows instructors to design
custom-tailored tutorials to make the students work on
a specific topic. This component basically displays an
HTML document which can include an introduction to the
topic and a series of experiments. For example, instructors
can provide a tutorial for comparing different alternatives
for implementing a zoom operation.

The user interface is completed with a toolbar showing the
list of supported OpenGL instructions (see Figure 3). Note
that this subset is enough to implement complex camera and
model animation effects.

Reset

I

*

- s

Script | Tutorial

Bl | function init()
{

«% @

Duration: seconds Animate

camera fovy = 60;

L[

10 [

Line: 1 Col: 1

Adjust Zoom Evaluate

eft), Exocentric view (bottom left), OpenGL command editor (top

4.1. The OpenGL command editor

This component represents the sequence of OpenGL calls
for defining the modelview and projection matrices of a user
camera (Figure 3). For the sake of simplicity, students do not
need to type function names; commands can be inserted, re-
moved and moved using the drag-and-drop technique. Func-
tion parameters can be either literal values or an object iden-
tifier (constant or variable). Each parameter has an associ-
ated tooltip describing its type (e.g. GLfloat) and purpose
(e.g. eyex). This tooltip is automatically displayed when the
mouse pointer moves over the parameter. Literal values can
be changed interactively. Numeric values can be adjusted ei-
ther by typing the desired value or through direct manipula-
tion. The user simply clicks over the desired parameter and
drags the mouse to increment/decrement the value. The sup-
port of object identifiers as parameters greatly enhances the
possibilities of the application, allowing the student to pro-
gram camera and object animations (see Section 4.2). Each
OpenGL command on the list can be temporarily disabled
through a checkbox. This feature helps students understand

(© The Eurographics Association 2006.

Carlos Andiijar and Pere-Pau Vdzquez / A Programmable Tutor for OpenGL Transformations

N +)
®| glMatrixMode (| GL_PROJECTION) =
glscalef
glRotatef ®/| glLoadidentity ();
SR ® gluperspective ([50 | [p.031962| [456.856 | 137
glL y
®| glMatrixMode (| GL_MODELVIEW)z
glPushMatrix
glPopMatrix ®| glLoadidentity ();
gllockht ® gluLookAt([3323e-05] [113075 | [923.602 | (3323e-0¢
glFrustum %)
glOrtho Viewing / Modeling
gluPerspective %) glRotatef ([sa0 | [o 1 [o Ir
gl ixf 3
glMultMatrixf16f (&) glScalef (1 | 1.2 j_])
glGetFloatv b
gluPickMatrix (®| glTranslatef ([o | [0])
gluPickMatrixai =
glMatrixMode ;
GLfloat[16] -l 1} - @
GLint[4] Duration: @_ seconds Animate

Figure 3: Interface components. Toolbar with supported OpenGL commands (left). OpenGL command editor (right)

the role of each transformation in the final results. For in-
stance, the student can disable a giLoadldentity() command
and check the result.

In order to distinguish viewing from modeling transfor-
mations, the user can freely move a separator labeled View-
ing/modeling on the OpenGL command view (Figure 3).
Transforms above and below the separator are considered re-
spectively camera transforms and modeling transforms. Stu-
dents can move the separator above and below and analyze
the changes on the exocentric view. Obviously the separator
placement has no effect on the camera view as the resulting
modelview matrix is the same.

Modeling transformations and hierarchical animations
often involve a long list of OpenGL commands. In this
case it can be pedagogical to visualize the effect of ap-
plying each OpenGL command incrementally. This can
also be used by the students to check their solutions of
self-tests. The application supports the incremental ap-
plication of the transforms using interpolation during a
user-defined time interval. Suppose the OpenGL com-
mands define the matrix product 7 = T1T;...Tn. At a
given instant 7, the incremental matrix is computed by
T'i(t)Tiy1 ... T, where T/() is computed as a smooth in-
terpolation from the identity matrix to 7;. For translate, ro-
tate an scale commands, a straightforward linear interpola-
tion of the associated parameters is used. For the gluLookAt
function[16], we have opted for animating its decompo-
sition into R(—h,0,1,0)R(—p,1,0,0)R(—r,0,0,1)T (—eye),
where h, p, and r are resp. the head, pitch and roll rota-
tion angles, and eye is the viewpoint location. For gll.oad-
Matrix() and glMultMatrix commands we decompose the
matrix into a sequence of basic transforms using the algo-

(© The Eurographics Association 2006.

rithm described in [17] and animate them simultaneously. A
progress bar below each animatable instruction (the blue rec-
tangles in Figure 3) shows to which extend the current com-
mand is affecting the final matrix. The animation order can
be reversed, i.e. computing T17»...T;_1 T} (t). This feature
helps students understand better the alias and alibi interpre-
tations of geometric transforms.

4.2. The script editor

Allowing the user to interactively change the sequence of
OpenGL commands and their parameters offers many teach-
ing possibilities. However, without the support of a full pro-
gramming language some exercises like implementation of
navigation modes cannot be demonstrated.

The script editor allows instructors and students to define
a collection of functions which compute values that can be
used as OpenGL command parameters. In our prototype im-
plementation the scripting toolkit adopted is QSA (Qt Script
for Applications) [18], an easy-to-learn, cross-platform in-
terpreted scripting language. Qt Script is based on the EC-
MAScript standard (like JavaScript) and its syntax is some-
what similar to C/C++.

Communication between OpenGL commands and script
functions and object persistence between different execu-
tions are two major issues. One possibility is to allow the
user to place a function call inside an OpenGL command
parameter. We discarded this option because it is not clear
when this function has to be evaluated. We have decided
to implement a simple to understand communication be-
tween OpenGL commands and script functions. Besides
user-defined functions, a few function names are reserved

Carlos Andijar and Pere-Pau Vdzquez / A Programmable Tutor for OpenGL Transformations

Script | Tutorial

B function init()

{

camera.fov = 60;

}

Bl | function mouseMove()

{
camera.fov = 30 + mouse.y / viewport.height;

}

10

Line: 10 Col: 1 ‘

Script | Tutorial 1

Zoom exercise. Lesson 1.

Tius exercise 1s ikended to practice different ways
for implementing a zoom operntion in OpenGL.

Step 1 Reduce the value of the fov parameter in function
gluPerspective and observe the zoom in etfect. Note
the change i the frustum’s shape

Step 2 Change the viewpomt position approachmng it to
the center of the object. Compare the result with

that of step 1.

Step 3 Adjust the znear distance so that the model is not

clipped.

Figure 4: Interface components. Script editor (left). Tutorial view (right)

and have a well-defined application meaning. These func-
tions are:

e init() - this function is called once every time a new model
is loaded; the user can also force its execution explicitly
through a reset option.

e paint() - this function is called every time the OpenGL
window needs to be repainted. The user can activate a
timer so that this function is called in user-defined inter-
vals.

e mousePress(), mouseMove(), mouseRelease() - these
functions are called in response to mouse events.

e keyPress(), keyRelease() - these functions are called in re-
sponse to keyboard events.

These functions in turn can include calls to user-defined
functions. The application maintains some objects whose
properties can be accessed from the script functions and used
as OpenGL command parameters. Some objects are read-
only. Some examples of read-only objects are the default
camera (with properties such as the viewpoint position and
target), the OpenGL window (size, aspect ratio), the current
model (radius, bounding box), and the mouse state. Read-
write objects include the user camera and user-defined vari-
ables.

The main benefit of the described approach is that the user
knows exactly when the script code is executed and that it
allows the implementation of interactive animations.

4.3. The tutorial view

In order to guide the students into their learning process, it
is not enough to provide a tool where they can practice the
different possibilities. It is also necessary to give them a set
of exercises that help them both to explore the possibilities
of the tool, and the solution to different Computer Graphics
problems.

One of the benefits of our approach is the possibility of
writing complete tutorials for training on specific topics.
Each tutorial consists of a collection of lessons, and each

lesson is a HTML document with step-by-step instructions
(Figure 4), a list of OpenGL commands and a script pro-
gram.

Our user studies have demonstrated the importance of
providing this guidance to the students in order to promote
the understanding of commonly misunderstood concepts.

4.4. Additional features

The application can export the OpenGL command list and
the script functions to C++ code. This feature further en-
courages the use of the tutor by the students as a test bed for
implementing camera and model animations.

5. Results, experiences and evaluation

We have implemented a prototype version of the tutor
over OpenGL and Qt. As both technologies are freely
available and portable, it can be installed into differ-
ent platforms. The source code can be downloaded from
http://www.lsi.upc.edu/ virtual/tutorGT.

The following experiment can be conducted to measure
the effect of the use of interactive tutors in student perfor-
mance. Subjects (undergraduate students) are randomly as-
signed to one of three groups. All subjects are instructed to
follow a tutorial and then complete several practical exer-
cises involving geometric transforms. Subjects in the first
group are given a sample OpenGL application that they can
modify to undertake the exercises (that is the current ap-
proach we follow). Subjects in the second group use the
Nate Robins’ transformation tutor [11], and subjects in the
third group use our application both to follow the interactive
tutorials and to perform the exercises. Analysis of variance
(ANOVA) can be used to test hypotheses about differences
between the means, considering completion times and stu-
dent marks as the dependent variables and supporting soft-
ware and exercise type as independent variables.

We plan to perform this experiment during the sixth week

(© The Eurographics Association 2006.

Carlos Andiijar and Pere-Pau Vdzquez / A Programmable Tutor for OpenGL Transformations

of the next semester course during a lab class. At this point
students will have already been taught transformations. Ob-
tained marks will only be considered for tool evaluation pur-
poses. Once the experiment is completed, all students will
have access to the developed tool.

We are also planning a long-term experiment that consists
in recording user usage of the tool including number and
duration of each session along with a log file of all actions
performed during the session. This study will be conducted
on a reduced group of volunteer students. This second exper-
iment will help teachers to identify typical errors and com-
mon difficulties of the tool usage.

Although we have not introduced yet our system into our
Computer Graphics course, we have already carried out a
preliminary user study amongst 10 undergraduate students
near the end of the semester. Our objective was to have an
initial evaluation of the user acceptance through a simple
questionnaire. Students were asked for their opinion, and if
they found some desirable feature missing. We showed them
an initial version of our tutorial which was still lacking some
functionality.

Rating (0..10)

. . .
Question 1 Question 2 Question 3

Figure 5: Answers given by the students about the tool.

All of them found the developed tool very useful to learn
and practice. Figure 5 shows the answers to the three main
questions in a 0 to 10 scale:

o Rate the usefulness of the tool.

e Does the tool help you to better understand modeling and
viewing transformations?

e Does the tool help you to develop the final project?

The final project referred to in the third question consists
in the implementation of a complete application for inspect-
ing interactively 3D models with simple animations, which
is carried out during the second half of the semester.

We are convinced that the introduction of our transforma-
tion tutorial will lead to improve the outcomes of students
and to a faster mastering of OpenGL transformation opera-
tions.

(© The Eurographics Association 2006.

6. Conclusions and future work

We have built a system for teaching and practicing geometric
transformations in OpenGL. It has several advantages over
previously proposed solutions including:

e Flexible addition and removal of OpenGL transformation
commands.

e Interactive animation of the camera configuration process:
The transformations involved into the camera configura-
tion and positioning can be executed step by step, and
transformations such as translations are animated by ren-
dering all the translation path.

e Changing parameter values with direct manipulation and
check the effects in the different views.

e A script language that allows us the definition of variables
and methods that can be used to implement navigation
modes.

Although the tutor can be freely used to experiment with
OpenGL transforms, it is important to build a set of exer-
cises to guide the student into the learning process. These
exercises should cover different kinds of camera and mod-
eling operations, such as translation, scaling, panning, rota-
tions, etc. The tutorial documentation provides, when pos-
sible, different approaches to obtain the same result. This
way, the students become familiarized with more manipula-
tion possibilities.

As a future work, we plan to add a new command draw-
Model(model) that effectively sends the geometry of a par-
ticular model to OpenGL. That would allow to have several
model transforms associated with the same model and to cre-
ate several instances of the model at different positions.

We also plan to to build a set of other tutorial applications
that cover other Computer Graphics concepts in OpenGL.
Currently, an application for teaching the management of
OpenGL stencil and accumulation buffers is almost finished.
Our objectives are to implement other tutorials for: OpenGL
primitives, texturing, ray tracing, illumination, and introduc-
tion to GPU programming. In some of the cases, this would
simply imply to extend the set of supported commands.

Finally, we would like to convert the application into a
class library so that existing applications can instantiate it in
a separate window, in order to integrate it to the program-
ming process. This can be easily done due to the features
that allow extensibility of Qt.

7. Acknowledgments

The authors would like to thank Marc Lopez for the imple-
mentation of the described application.

References

[1] S. Grissom. uisGL: A c++ library to support graphics
education. Computer Graphics, 30(3), 1996. 2

(2]

(3]

(4]

(3]
(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

Carlos Andijar and Pere-Pau Vdzquez / A Programmable Tutor for OpenGL Transformations

A. C. Naiman. Interactive teaching modules for com-
puter graphics. Computer Graphics, 30(3):33-37,
1996. 2

Wernert E. A unified environment for presenting, de-
veloping and analyzing graphics algorithms. Computer
Graphics, 31(3):26-33, 1997. 2

Klein R., Hanisch F., and Strasser W. Web-based teach-
ing of computer graphics: concepts and realization of
an interactive online course. In F. Fliickinger and
A. Ninck, editors, Computer Graphics Annual Con-
ference Series, Conference Abstracts and Applications,
pages 88-93. NDIT/FPIT Bern, 1998. 2

Trolltech. http://www.trolltech.com. 2

Z. Pan, H.P. Lun, and R. Gao. Interactive learning of
computer graphics algorithms. In S. Cunningham and
D. Martin, editors, Eurographics, pages 1-6. Blackwell
Publisher, 2003. 2

Ullrich T. and D. W. Fellner. Computer graphics
courseware. In J. J. Bourdin and H. McCabe, edi-
tors, Eurographics, pages 11-17. Blackwell Publisher,
2005. 2

Reinhard Klein and L. Miguel Encarnac¢io. An interac-
tive computer graphics theory and programming course
for distance education on the web. In 8th Int. PEG
Conf., Sozopol, Bulgaria, May/June 1997. 2

Guzdial M. Shabo, A. and J. Stasko. Addressing stu-
dent problems in learning computer graphics. Com-
puter Graphics, 29(3):38-40, 1996. 2

Dieter W. Fellner. Minimal rendering tool: A research
and teaching platform for 3d image synthesis. IEEE
Comput. Graph. Appl., 16(3), 1996. 2

N. Robins. Nate robins - opengl tutors.
http://www.xmission.com/ nate/tutors.html. 2,
6

S. Cunningham. Re-inventing the introductory com-
puter graphics course:. providing tools for a wider au-
dience. Computers and Graphics, 24(12):293-296,
2000. 2

E Angel. Interactive Computer Graphics: a Top-Down
Approach with OpenGL. Addison-Wesley, 1997. 3

Kelvin Sung and Peter Shirley. A top-down approach
to teaching introductory computer graphics. In SIG-
GRAPH ’03: Educators program from the 30th annual
conference on Computer graphics and interactive tech-
niques, pages 1-4, New York, NY, USA, 2003. ACM
Press. 3

Eric W. Weisstein. Alias transformation. alibi transfor-
mation. From MathWorld—A Wolfram Web Resource.

http://mathworld.wolfram.com/AliasTransformation.html.

3

[16] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL

programming guide, 3rd edition, 2000. Specification
document, available from http://www.opengl.org. 5

[17] Ken Shoemake. Polar matrix decomposition. pages

207-221, 1994. 5

[18] Trolltech. Qsa, qt script for applications.

http://www.trolltech.com. 5

(© The Eurographics Association 2006.

