

Symmetry in Shapes – Theory and Practice

Representations & Applications

Michael Wand

Saarland University / MPI Informatik

Representations

& Applications

Toy Example

How many building blocks are these?

Toy Example

How many building blocks are these?

What is Symmetry?

Set of operations *f* that leave object *X* intact

•
$$f(X) = X$$

Operations $G = \{f | f(X) = X\}$ form a group

G encodes absent information

Derived Properties

Pairwise Correspondences

Pairwise matches

Derived Properties

Pairwise Correspondences

Pairwise matches

Permutation Groups

Exchangeable building blocks

Derived Properties

Pairwise Correspondences

Pairwise matches

Permutation Groups

Exchangeable building blocks

Transformation Groups

Regular transformations $\{\mathbf{T}^i | i \in \mathbb{Z}\}$

Pairwise Matches

Input Data (Point Cloud)

Feature Representation

Result

Symmetry Detection

Partial Symmetry Detection

- Yields pairwise partial correspondences
- No symmetry groups (yet)

Applications

Pairwise correspondences

- Non-local denoising
- Symmetrization
- Constrained editing

Techniques

- Correspondences transport information
- Simplification of pairwise relations
- Pairwise constraints as invariants

Non-Local Denoising

non-local

[Gal et al. 2007]

Non-Local Denoising

[data set: C. Brenner, University Hannover]

Non-Local Denoising

data

non-local denoising

[Zheng et al. 2010]

Symmetrization

Symmetry Preserving Editing

iWires

[Gal et al. 2009]

Symmetry-based propagation of edits: additional references [Wang et al. 2011], [Zheng et al. 2011]

Permutation & Building Blocks

Example Scene

Pairwise Correspondences

Cutting at the Boundaries

Microtiles

3D Result

Properties

General framework

• Need point-wise equivalent relations

Canonical, unique decomposition

Every point of every piece is unique

• Microtiles cannot have partial correspondences

Microtiles reveal permutation groups

Symmetry Factored Embedding

[Lipman et al. 2010]

Related Concept

- Points that map together in once piece
- Consistent orbits
- Ignores transformation, point-wise orbits

Inverse Procedural Modeling

r-Similarity

• Local neighborhoods match exemplar

Inverse Procedural Modeling

Theoretical Results

All *r*-similar objects are made out of $(r - \epsilon)$ -microtiles

- Unique construction
- Connectivity same as in the example

Implications

- Canonical representation
- Synthesis
 - = solving jigsaw puzzles

Shape Grammar

Practice: Context Free Grammar

[data sets: G. Wolf, Dosch 3E

Practical Results

Fast Pairwise Matches

Quadratic Complexity?

Cliques / Equivalence Classes

Scalable Symmetry Detection

Regular Transformations

Applications

Symmetry: regularity (transformations)

- Inverse procedural modeling
- Regularity preserving editing
- Shape recognition
- Shape understanding

- Transformation groups characterize shapes
- Transformation group structure as invariants

Inverse Procedural Modeling

[Pauly et al. 2008]

Regularity Aware Deformation

[Bokeloh et al. 2011]

Algebraic Shape Editing

Shape Recognition

[Kazhdan et al. 2004]

[Podolak et al. 2006]

[Thrun et al. 2005]

Shape Understanding

[Mehra et al. 2009]

Conclusions

Symmetry

Principle

- Absence of information
- Invariance under operations

Structure

- Global symmetries form transformation groups
- Permutations of building blocks form groups

Detection

- Pairwise matching (efficient pruning, segmentation)
- Regular transformations: estimate generators
- Intrinsic formulations

Applications

Different structural insights

- Correspondence
 - Equivalence
 - Pairwise relations
- Permutations
 - Building blocks
 - Shape grammar
 - Hierarchical encoding
- Regularity
 - Structural invariant
 - Regularity relations

⇒ Different Applications