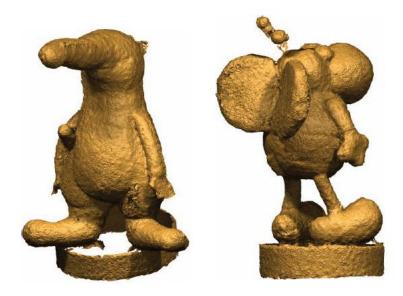


Eurographics 2012

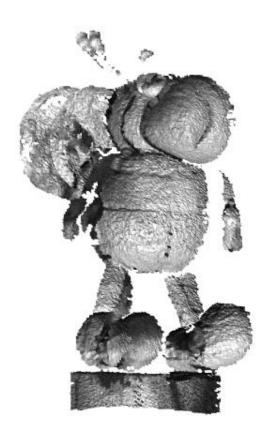
Cagliari, Italy


May 13-18

33rd ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Dynamic Geometry Processing

EG 2012 Tutorial


2.1 Dynamic Registration

Scan Registration

Scan Registration

Solve for inter-frame motion: $\alpha := (R, t)$

Scan Registration

Solve for inter-frame motion: $\alpha_j := (\mathbf{R}_j, \mathbf{t}_j)$

The Setup

Given:

A set of frames $\{P_0, P_1, \dots P_n\}$

Goal:

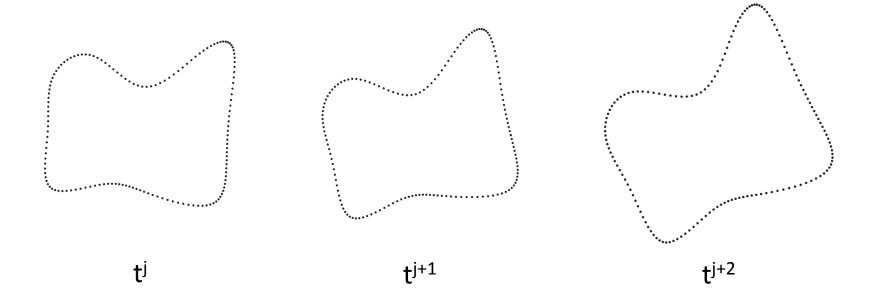
Recover rigid motion $\{\alpha_{\rm 1},\,\alpha_{\rm 2},\,...\,\,\alpha_{\rm n}\}$ between adjacent frames

The Setup

Smoothly varying object motion

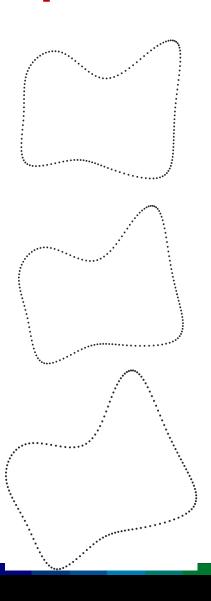
Unknown correspondence between scans

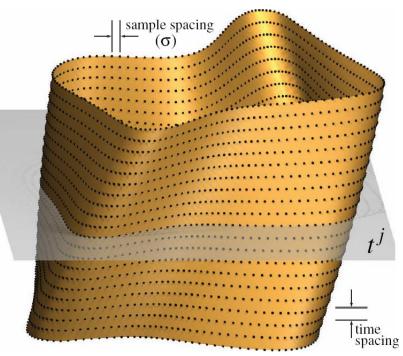
Fast acquisition → motion happens between frames

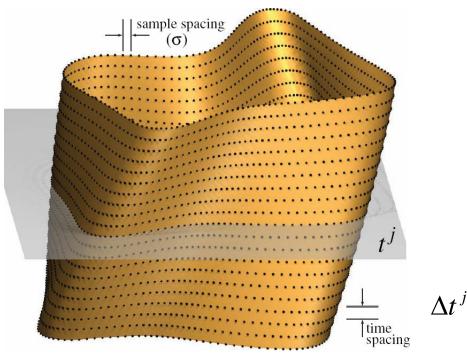

Insights

Rigid registration \rightarrow kinematic property of space-time surface (locally exact)

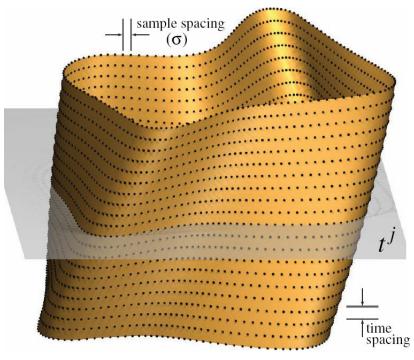
Registration →**surface normal estimation**


Extension to deformable/articulated bodies


Time Ordered Scans

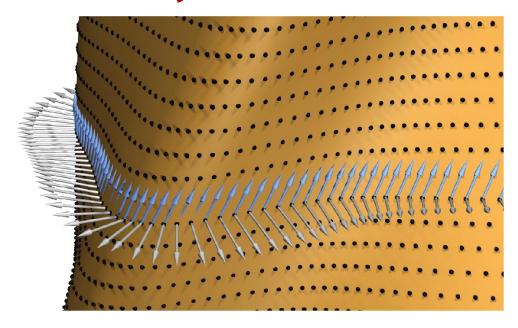

$$\widetilde{P}^{j} \equiv \{\widetilde{\mathbf{p}}_{i}^{j}\} := \{(\mathbf{p}_{i}^{j}, \mathbf{t}^{j}), \mathbf{p}_{i}^{j} \in \mathbb{R}^{d}, t^{j} \in \mathbb{R}\}$$

Space-time Surface



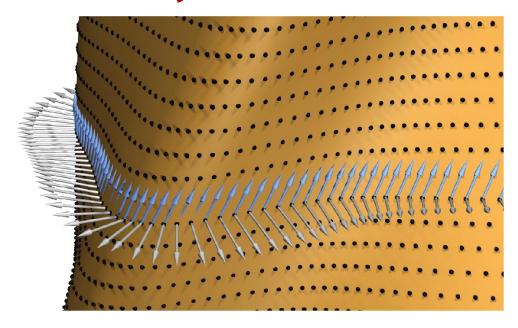
Space-time Surface

$$\widetilde{\mathbf{p}}_{i}^{j}$$
 \rightarrow $\widetilde{\alpha_{j}}(\widetilde{\mathbf{p}}_{i}^{j}) = \left(\mathbf{R}_{j}\mathbf{p}_{i}^{j} + \mathbf{t}_{j}, t^{j} + \Delta t^{j}\right)$


Space-time Surface

$$\widetilde{\mathbf{p}}_{i}^{j} \longrightarrow \widetilde{\alpha_{j}}(\widetilde{\mathbf{p}}_{i}^{j}) = \left(\mathbf{R}_{j}\mathbf{p}_{i}^{j} + \mathbf{t}_{j}, t^{j} + \Delta t^{j}\right)$$

$$\widetilde{\alpha_{j}} = \operatorname{argmin} \sum_{i=1}^{|P^{j}|} d^{2}(\widetilde{\alpha_{j}}(\widetilde{\mathbf{p}}_{i}^{j}), S)$$


Spacetime Velocity Vectors

Tangential point movement \rightarrow velocity vectors orthogonal to surface normals

$$\widetilde{\alpha_j} = \operatorname{argmin} \sum_{i=1}^{|P^j|} d^2(\widetilde{\alpha_j}(\widetilde{\mathbf{p}}_i^j), S)$$

Spacetime Velocity Vectors

Tangential point movement \rightarrow velocity vectors orthogonal to surface normals

Final Steps

(rigid) velocity vectors →

$$\widetilde{\mathbf{v}}(\widetilde{\mathbf{p}}_i^j) = (\mathbf{c}_j \times \mathbf{p}_i^j + \overline{\mathbf{c}}_j, 1)$$

$$\min_{\mathbf{c}_{j},\overline{\mathbf{c}}_{j}} \sum_{i=1}^{|P^{j}|} w_{i}^{j} \left[(\mathbf{c}_{j} \times \mathbf{p}_{i}^{j} + \overline{\mathbf{c}}_{j}, 1) \cdot \widetilde{\mathbf{n}}_{i}^{j} \right]^{2}$$

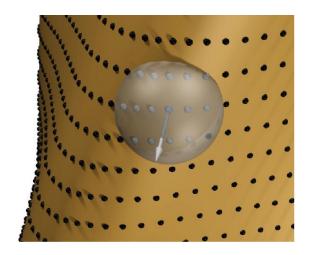
Final Steps

(rigid) velocity vectors \rightarrow

$$\widetilde{\mathbf{v}}(\widetilde{\mathbf{p}}_i^j) = (\mathbf{c}_j \times \mathbf{p}_i^j + \overline{\mathbf{c}}_j, 1)$$

$$\min_{\mathbf{c}_{j}, \overline{\mathbf{c}}_{j}} \sum_{i=1}^{|P^{j}|} w_{i}^{j} \left[(\mathbf{c}_{j} \times \mathbf{p}_{i}^{j} + \overline{\mathbf{c}}_{j}, 1) \cdot \widetilde{\mathbf{n}}_{i}^{j} \right]^{2}$$

$$A\mathbf{x} + \mathbf{b} = 0$$

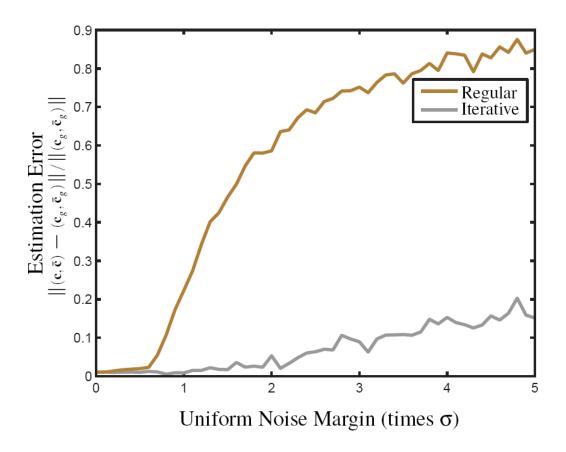

$$A = \sum_{i=1}^{|P^j|} w_i^j \begin{bmatrix} \bar{\mathbf{n}}_i^j \\ \mathbf{p}_i^j \times \bar{\mathbf{n}}_i^j \end{bmatrix} \begin{bmatrix} \bar{\mathbf{n}}_i^j & (\mathbf{p}_i^j \times \bar{\mathbf{n}}_i^j)^T \end{bmatrix}$$

$$\mathbf{b} = \sum_{i=1}^{|P^j|} w_i^j n_i^j \begin{bmatrix} \mathbf{\bar{n}}_i^j \\ \mathbf{p}_i^j \times \mathbf{\bar{n}}_i^j \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} \mathbf{\bar{c}}_j \\ \mathbf{c}_j \end{bmatrix}$$

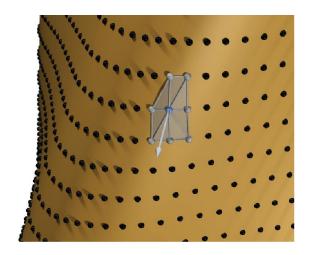
Registration Algorithm

- 1. Compute time coordinate spacing (σ), and form space-time surface.
- 2. Compute space time neighborhood using ANN, and locally estimate space-time surface normals.
- 3. Solve linear system to estimate (c_j, c_j) .
- Convert velocity vectors to rotation matrix + translation vector using Plücker coordinates and quarternions.

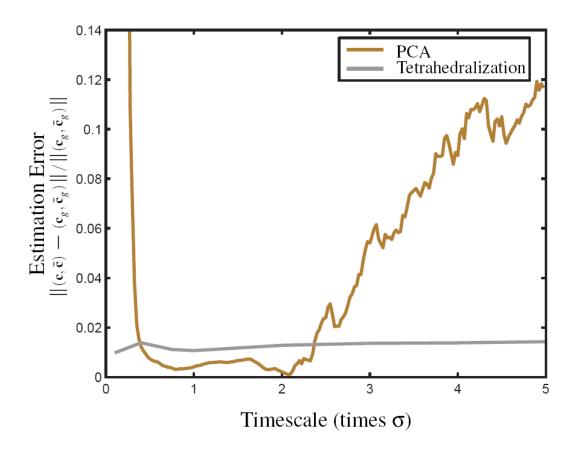
Normal Estimation: PCA Based


Plane fitting using PCA using chosen neighborhood points.

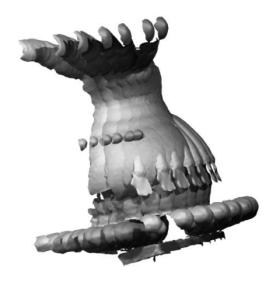
Normal Estimation: Iterative Refinement


Update neighborhood with current velocity estimate.

Normal Refinement: Effect of Noise


Stable, but more expensive.

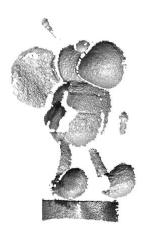
Normal Estimation: Local Triangulation

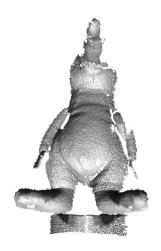

Perform local surface triangulation (tetrahedralization).

Normal Estimation

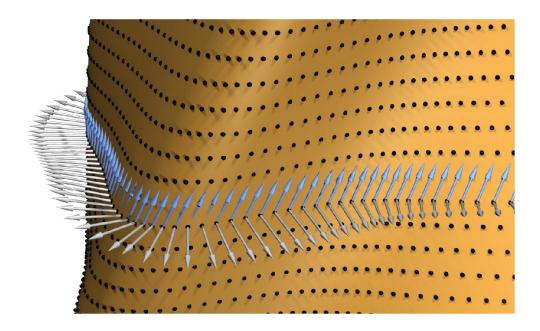
Stable, but more expensive.

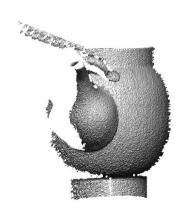
Comparison with ICP





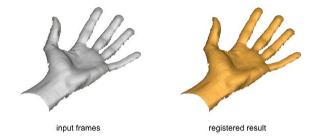
Dynamic registration


Rigid: Bee Sequence (2,200 frames)

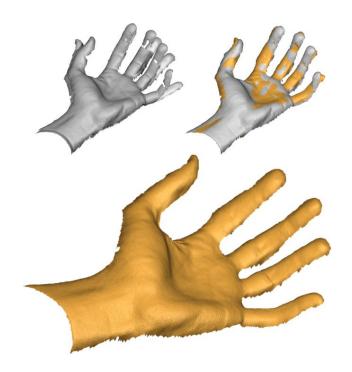

Rigid: Coati Sequence (2,200 frames)

Handling Large Number of Frames

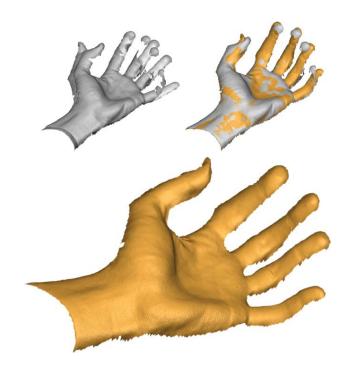
Rigid/Deformable: Teapot Sequence (2,200 frames)


Deformable Bodies

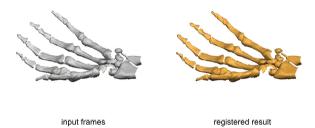
$$\min_{\mathbf{c}_{j},\overline{\mathbf{c}}_{j}} \sum_{i=1}^{|P^{j}|} w_{i}^{j} \left[(\mathbf{c}_{j} \times \mathbf{p}_{i}^{j} + \overline{\mathbf{c}}_{j}, 1) \cdot \widetilde{\mathbf{n}}_{i}^{j} \right]^{2}$$

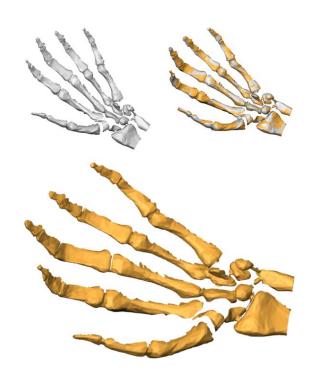

Cluster points, and solve smaller systems.

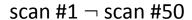
Propagate solutions with regularization.

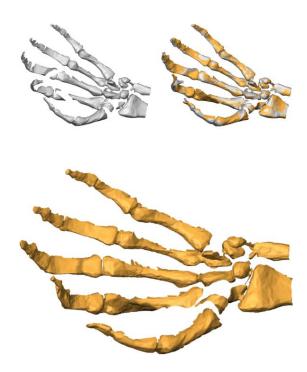

Deformable: Hand (100 frames)

Deformable: Hand (100 frames)

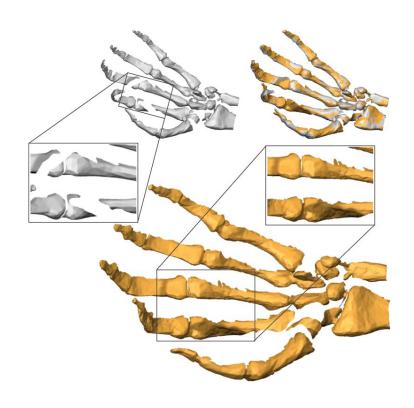


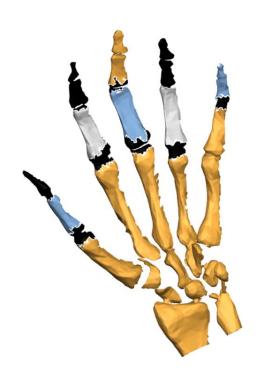



scan #1 ¬ scan #100


Deformation + scanner motion: Skeleton (100 frames)

Deformation + scanner motion: Skeleton (100 frames)





scan #1 ¬ scan #100

Deformation + scanner motion: Skeleton (100 frames)

rigid components

Performance (on 2.4GHz Athlon Dual Core, 2GB RAM)

Model	# scans	# points/scan	Time (mins)
bunny (simulated)	314	33.8	13
bee	2,200	20.7	51
coati	2,200	28.1	71
teapot (rigid)	2,200	27.2	68
skeleton (simulated)	100	55.9	11
hand	100	40.1	17

Conclusion

Simple algorithm using kinematic properties of spacetime surface.

Easy modification for deformable bodies.

Suitable for use with fast scanners.

Limitations

Need more scans, dense scans, ...

Sampling condition → time and space

thank you

