
EUROGRAPHICS 2012 / C. Andujar, E. Puppo Short Paper

Growing Cell Structures Learning a Progressive Mesh
During Surface Reconstruction – A Top-Down Approach

Tom Vierjahn1,2, Guido Lorenz1, Sina Mostafawy1,3, and Klaus Hinrichs2

1[rmh] new media GmbH, Cologne, Germany
2Visualization and Computer Graphics Research Group, University of Muenster, Germany

3Department of Media, FH Duesseldorf University of Applied Sciences, Germany

Figure 1: Reconstruction of Stanford Bunny with 20,000 triangles (far left) and the automatically learned level of detail. For
each step the number of triangles was halved until reaching 312 triangles (far right).

Abstract
Growing Cell Structures (GCS) have been proven to be suitable for surface reconstruction from unstructured point
clouds. The reconstructed triangle mesh can be represented compactly as a progressive mesh with integrated level
of detail by storing only vertex split operations. However, half-edge collapse operations are used for GCS.
In this paper, we present an improvement to a GCS-based surface reconstruction technique by converting a half-
edge collapse to a more general vertex removal to create a progressive mesh. We have evaluated the new technique
with respect to running time overhead and mesh quality. Results indicate that this technique can be used for
efficient surface reconstruction. We will use the presented findings as basis for future research.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling — Curve, surface, solid, and object representations; Geometric algorithms, languages, and
systems—

1. Introduction

Urban models reconstructed from aerial images play an es-
sential role in different areas, e. g., map creation, surveying
or disaster management. In the AVIGLE project [RGW∗10]
we are developing an automated reconstruction process us-
ing images taken by a swarm of miniature unmanned aerial
vehicles [SFS∗11]. A 3D point cloud, obtained by 3D recon-
struction from the aerial images [RSH11], forms the input
to the subsequent surface reconstruction process. A database
server is used as a central storage for all processes.

Since we are expecting very large, dynamic point clouds,
growing incrementally due to the acquisition and processing
of additional images, we employ a reconstruction algorithm

based on an artificial neural network capable of unsuper-
vised learning. Since transfer of the mesh has been identified
as a bottleneck, we improved the reconstruction process in
such a way that the resulting mesh is represented compactly
as a progressive mesh – without any post processing.

2. Related Work

First experiments in the AVIGLE project proved an artifi-
cial neural network to be generally usable for surface recon-
struction [SFS∗11]. Since our point clouds are dynamic, we
have based our algorithm on Growing Cell Structures [Fri93]
that iteratively adapt the size of the triangle mesh. [IkJpS03]
and [AB10] presented improvements to this algorithm.

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/short/029-032

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/short/029-032

T. Vierjahn et al. / Growing Cell Structures Learning a Progressive Mesh During Surface Reconstruction

while εc < εt do
p = randomSample (P)
vw = argmin (‖p− v‖)
v′w = vw +αw (p− vw)
for all vg ∈ 1-ring (vw) do

v′g = vg +αgLt (vg)

if vertex removal is necessary then
remove Vx = {vx ∈ V | activity (vx)≤ εl}

if vertex split is necessary then
split va = argmax (activity (v))

end

Figure 2: Learning algorithm

A progressive mesh representation [Hop96] of a triangle
mesh allows for compact storage and transfer, level of de-
tail and incremental refinement in the visualization process.
However, until now, a progressive mesh representation could
only be created by post processing.

3. Technique

In the AVIGLE project an unstructured set of points P rep-
resenting visible geometry is extracted from aerial images
[RSH11]. A 2-manifold triangle mesh M = (V,T) consisting
of a set of vertices V and a set of triangles T can be recon-
structed from P using a technique based on improved Grow-
ing Cell Structures (GCS) [IkJpS03]. Finally M is stored in a
database for subsequent visualisation.

3.1. Growing Cell Structures

In GCS V can be used as the set of neurons of the artificial
neural network learning the shape of M. Vertex and neuron
are used synonymously throughout this paper. For simplicity
let P,V ⊂ R3. Nevertheless, this can be extended to P,V ⊂
Rn by including color, texture coordinates etc. A tetrahedron
is used as the initial topology M0 of the network.

Learning (cf. fig. 2) terminates if a certain quality criterion
εc reaches a predefined threshold εt , e. g., the number of ver-
tices or the average distance of all v∈V to all p∈ P. In each
learning step for a randomly chosen signal p ∈ P the neuron
vw ∈ V closest to p with respect to the Euclidean distance
‖p− vw‖ is determined and moved towards p according to
a learning rate αw. To prevent fold-overs and convergence
towards local minima Laplacian smoothing Lt weighted by
αg is applied to the neighbors vg of vw.

After a certain number of iterations a set of inactive neu-
rons Vx can be determined that have to be removed from the
network by a half-edge collapse. Furthermore, the most ac-
tive neuron va can be determined representing a region with
too few neurons. Thus, an additional neuron has to be added
by a vertex split. For the mesh to grow vertex addition has to
be triggered more often than vertex removal.

va

vl

vr

vb
vertex split: s (va , vl , vr , vn)

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

half-edge collapse: c (vn , va)

Mm Mm+1

va

vn

vl

vr

tl
tr

Figure 3: Vertex split s and half-edge collapse c

3.2. Vertex Split

A new vertex vn and two triangles tl and tr are added to M by
a vertex split s (cf. fig. 3). Let vb denote the end vertex of the
longest edge incident to va, then for simplicity vn = va+vb

2 ,
but any position inside the triangles to the right of the edge-
sequence vr,va,vl and incident to va will be suitable. This
operation preserves the topological type of M [HDD∗93].

For any mesh Mm = (Vm,Tm) a vertex split
s(va,vl ,vr,vn) is unambiguously defined by va,vl ,vr ∈ Vm
and the new vertex vn as a transformation from Mm to a new
mesh Mm+1 = (Vm∪{vn} ,Tm∪{tl , tr}) [Hop96]. Having
va and vb then vl and vr are determined in such a way that
(|va|− |vn|)2 is minimized after the split, with |v| denoting
the valence of v.

3.3. Half-Edge Collapse

An inactive neuron vx and two triangles tl , tr can be removed
from M by a half-edge collapse (cf. fig. 3). This operation is
not guaranteed to preserve the topological type of M. Thus,
removal of some vx ∈ Vx must be deferred until the respec-
tive collapse has become legal [HDD∗93].

For any mesh Mm = (Vm,Tm) a half-edge collapse
c(vn,va) is unambiguously defined by vn,va ∈ Vm as
a transformation from Mm to a new mesh Mm+1 =
(Vm\{vn} ,Tm\{tl , tr}), if c is legal [Hop96]. Obviously
split and collapse are invertible, so that s−1 (va,vl ,vr,vn) =
c(vn,va) and vice versa.

3.4. Progressive Mesh

Hoppe presented a bottom-up method to find a sequence
(o) = (s0,s1, . . . ,sn−1) and a coarse triangle mesh M0 for
any detailed triangle mesh Mn in such a way that Mn can be
reconstructed from M0 by applying (o): M0

s0−−A M1
s1−−A . . .

sn−1
−−−A Mn. Hoppe defined the tuple (M0,(o)) as a progres-
sive mesh (PM) representation of Mn [Hop96] – a compact
way to store any triangle mesh including level of detail.

3.5. New Vertex Removal

Using GCS to reconstruct M′n leads to a sequence
(
o′
)
=(

o′0,o
′
1, . . . ,o

′
n−1

)
consisting of both, split and collapse op-

erations. Thus,
(
M′0,

(
o′
))

is no PM representation of M′n, but
very similar to such a representation. Level of detail (LOD)

c© The Eurographics Association 2012.

T. Vierjahn et al. / Growing Cell Structures Learning a Progressive Mesh During Surface Reconstruction

0 5k 10k
vertices

0
20
40
60
t/s Cathedral

0 5k 10k
vertices

0
20
40
60
t/s Bunny

0 5k 10k
vertices

0
20
40
60
t/s Buddha

0 5k 10k
vertices

0
20
40
60
t/s Lucy

Figure 4: Median running times of the new vertex removal
(solid) compared to the classic half-edge collapse (dashed).

can still be achieved by subsequently applying the inverted
split and collapse operations of

(
o′
)

to M′n =
(
V′n,T′n

)
. But

during the LOD steps towards the coarser mesh, inverting any
collapse operation c′i ∈

(
o′
)

increases the number of ver-
tices. Since these superfluous vertices do not belong to V′n,
their position is undefined. To overcome this, we replace a
half-edge collapse in GCS by a more general vertex removal
in such a way that the neural network learns a PM represen-
tation, iteratively.

Until the first vx has to be removed from a mesh Mm, only
vertex splits have been performed and thus the correspond-
ing operation sequence (o) = (s0,s1, . . . ,sk, . . . ,sm−1) has
been stored. Instead of adding another operation to (o) that
removes vx we want to find a sequence

(
o′
)

not producing
vx from M0 in the first place, i. e., erase vx from history.

Let sk be the last operation in which vx is involved either
as va or vn, then (o) can be rewritten as (o) = ((o) ,sk,(o)).
To remove vx from Mm the inverted sequence (sk,(o))

−1 =(
s−1

m−1,s
−1
m−2, . . . ,s

−1
k+1,s

−1
k

)
is applied to Mm simplifying it

to Mk. If vx was involved as vn in sk then vx 6∈ Vk, since vx
was removed by applying s−1

k . Thus, vx can be deleted.

If on the other hand vx was involved as va in sk then
vx ∈Vk, so it is still connected in Mk. Therefore, vx must not
be deleted. Instead vn can be deleted since vn 6∈ Vk after ap-
plying s−1

k . The attributes assigned to vn must be preserved
by transferring them to vx, the neighbor of vn in Mk+1. So,
if vx was involved as va in sk, removal of vx is replaced by
removal of vn. As a consequence every reference to vn in the
operations of (o) has to be replaced by a reference to vx.

Special care must also be taken if no sk exists, i.e., vx ∈V0
has not yet been involved as va or vn in any split operation.
In that case (o) can be rewritten as (o) = (s0,(o)), and (o)−1

must be applied to Mm simplifying it to M0 with vx still con-
nected. As in the previous case, attributes of another ver-
tex (vn of s0) must be transferred to vx, the respective refer-
ences in (o) have to be replaced, and the other vertex can be
deleted.

Finally, the sequence (o) has to be reapplied to Mk to get
back a detailed mesh M′m reusing the original attributes from
Vm with one caveat: Since a vertex has been deleted, vl or vr
might have become invalid for some si = s(va,vl ,vr,vn) ∈
(o). Thus, some si have to be repaired. A straight-forward

*

*
*

**

*

**

*

*
*

**

*

**

c n c n c n c n
Cath. Bun. Bud. Lucy

20

40

60

80

100
t/s Running time distribution

40 60 80 100 120
time/s

.0

.2

.4

.6

.8

1.0
Quality vs. Running time

Figure 5: Reconstruction of 10,000 vertices. Left: Running
times of algorithm using half-edge collapse (c) and new ver-
tex removal (n). Right: Quality vs. running time for a re-
construction of 10,000 vertices in terms of ratio of valence
5-7 vertices (dashed) and Delaunay triangles (solid) for the
combined results of all four meshes.

repair is to identify a neighboring vertex vb of va minimizing
the angle ∠vbvavn. Thus, vn is near to the edge va,vb. Finally,
vl and vr can be determined as in subsection 3.2.

Let Mc = (Vc,Tc) be the mesh produced by removing vx
from Mm by a half-edge collapse and M′m =

(
V′m,T′m

)
be

the mesh produced by removing vx from Mm with the new
technique. Then |V′m| = |Vc| and |T′m| = |Tc| with | · | de-
noting the number of elements in a set. Furthermore, the
learned attributes associated to the vertices in M′m are the
same as those of Mc. So, M′m is similar to Mc and the se-
quence

(
o′
)
= ((o) ,(o)) is the one we had to find. By con-

struction all operations of
(
o′
)

are splits, and thus the tuple(
M0,

(
o′
))

is a progressive mesh representation of M′m.

4. Results

The presented algorithm was tested in a single thread on an
Apple MacBook Pro, 2.66 GHz Intel i7 CPU, 8 GB RAM.
Meshes were reconstructed from four point clouds: Bunny,
Happy Buddha and Lucy, obtained from the Stanford scan-
ning repository, and a synthetic model of the cathedral of
Paderborn, Germany. Each reconstruction was tested with 15
different random seeds. To address runtime effects each test
was repeated four times to determine mean reconstruction
times and quality measures for the respective seed.

4.1. Reconstruction Times

The proposed technique does not impose severe running
time overhead for the cathedral and Bunny (cf. fig. 4). When
reconstructing a triangle mesh of 10,000 vertices, median
running times increased from 32.0 s using half-edge collapse
to 38.9 s using new vertex removal for the cathedral and from
28.2 s to 34.3 s for Bunny. When reconstructing meshes with
very fine details, median running times increased from 34.4
s to 64.9 s for Buddha and from 33.0 s to 66.7 s for Lucy.

The new technique leads to a greater variation of running

c© The Eurographics Association 2012.

T. Vierjahn et al. / Growing Cell Structures Learning a Progressive Mesh During Surface Reconstruction

Table 1: Mesh Quality after reconstructing 10,000 vertices

Valence 5-7 Delaunay Hausd. Dist.
Mesh old new old new old new
Cathed. 79 % 77 % 86 % 82 % 1% 3 %
Bunny 87 % 84 % 91 % 89 % 3 % 4 %
Buddha 73 % 66 % 80 % 57 % 3 % 2 %
Lucy 78 % 64 % 85 % 50 % 4 % 7 %

times for different random seeds (cf. fig. 5 left). Neverthe-
less, running times for Cathedral, Bunny and Lucy do not
deviate as much from the respective median time than the
running times for Buddha do – a mesh not homeomorphic to
the others.

4.2. Mesh Quality

Quality of the reconstructed meshes was evaluated in terms
of regularity, i. e., the ratio of vertices with valence 5 to 7
and the ratio of triangles fulfilling the Delaunay criterion.
The new technique reduces mesh quality of the reconstructed
mesh only slightly for the cathedral and Bunny (cf. tab. 1)
and moderately for Buddha and Lucy.

Hausdorff distances were determined between each re-
construction and the respective triangle mesh from which the
point cloud was generated. With both, the old and our new
technique, similarly small Hausorff distances were achieved
(cf. tab. 1, normalized to the diagonal of the bounding box).

During vertex removal, sequences (sk,(o)) need to be re-
verted and reapplied. Short running times for a fixed num-
ber of reconstructed vertices indicate that those sequences
are short whereas long running times indicate that those se-
quences are long. From fig. 5 right it can be seen that quality
gets reduced for longer sequences. However, short sequences
(sk,(o)) exist for many different random seeds resulting in
good mesh quality. A visual example of the quality of the
reconstructed mesh is shown on the far left of fig. 1.

4.3. Level of Detail

At any time, the reconstructed mesh can be reduced to a
coarser mesh using the automatically learned level of detail
(LOD) steps while preserving the shape of the reconstructed
object with good visual quality. Fig. 1 shows an LOD se-
quence for Stanford Bunny reducing a mesh of 20,000 trian-
gles to a coarser mesh of 312 triangles.

4.4. Memory Requirements

In a reconstructed triangle mesh |T| ≈ 2|V|, |(o)| ≈ |V|. As-
suming that an index to a vertex consumes the same amount
of memory as a vertex’ component, an indexed triangle list
for the reconstructed 3D mesh M needs 3|V|+ 3 ·2|V| units
of memory. A progressive mesh representation of M needs
only 66 % of that, i.e., 3|V|+3|V| units of memory.

5. Conclusion and Future Work

We have successfully modified surface reconstruction based
on Growing Cell Structures in such a way that the recon-
structed triangle mesh is directly represented as a progres-
sive mesh. The running time overhead of the new technique
is related to the complexity of the final mesh but typically
low. The new technique allows for level of detail and com-
pact storage and transfer while preserving a good mesh qual-
ity.

We plan to use the progressive mesh representation for
transfer and visualization in the processing pipeline of the
AVIGLE project. Furthermore we will investigate how to uti-
lize the integrated level of detail in the triangle mesh render-
ing step to improve the rendering times.

Finally we plan to integrate recent improvements to GCS

like [AB10] into our new system.

Acknowledgements

The project AVIGLE is part of the Hightech.NRW initiative
funded by the Ministry of Innovation, Science and Research
of the German State of North Rhine-Westphalia.

References
[AB10] ANNUTH H., BOHN C.-A.: Smart growing cells. In

Proc. of the International Conference on Neural Computation
(Valencia, Spain, 2010). 1, 4

[Fri93] FRITZKE B.: Growing Cell Structures – A Self-organizing
Network for Unsupervised and Supervised Learning. Tech. Rep.
TR-93-026, International Computer Science Institute, Berkeley,
CA, USA, May 1993. 1

[HDD∗93] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD
J., STUETZLE W.: Mesh optimization. In Proc. of the 20th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1993), SIGGRAPH ’93, ACM,
pp. 19–26. 2

[Hop96] HOPPE H.: Progressive meshes. In Proc. of the 23rd
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1996), SIGGRAPH ’96, ACM,
pp. 99–108. 2

[IkJpS03] IVRISSIMTZIS I. P., K. JEONG W., P. SEIDEL H.: Us-
ing growing cell structures for surface reconstruction. In Shape
Modeling International 03, Conf. Proc. (2003), pp. 78–86. 1, 2

[RGW∗10] ROHDE S., GODDEMEIER N., WIETFELD C.,
STEINICKE F., HINRICHS K., OSTERMANN T., HOLSTEN J.,
MOORMANN D.: Avigle: A system of systems concept for an
avionic digital service platform based on micro unmanned aerial
vehicles. In Systems Man and Cybernetics (SMC), 2010 IEEE
International Conference on (oct. 2010), pp. 459 –466. 1

[RSH11] ROTERS J., STEINICKE F., HINRICHS K. H.: Quasi-
real-time 3d reconstruction from low-altitude aerial images. In
Proc. of the 40th Urban Data Management Society Symposium
(sep 2011), vol. 40 of UDMS Annual 2011, CRC Press/Balkema,
pp. 231–241. 1, 2

[SFS∗11] STROTHOFF S., FELDMANN D., STEINICKE F.,
VIERJAHN T., MOSTAFAWY S.: Interactive generation of virtual
environments using muavs. In ISVRI 2011: Proc. of International
Symposium on VR innovation (2011), pp. 89 – 96. 1

c© The Eurographics Association 2012.

