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Abstract
Anomaly detection, which is approaching the problem of face anti-spoofing as a one-class classification problem, is emerging
as an increasingly popular alternative to the traditional approach of training binary classifiers on specialized anti-spoofing
databases which contain both client and imposter samples. In this paper, we discuss the training protocols in the existing work
on anomaly detection for face anti-spoofing, and note that they use images exclusively from specialized anti-spoofing databases,
even though only common images of real faces are needed.
In a proof-of-concept experiment, we demonstrate the potential benefits of adding in the anomaly detection training sets images
from general face recognition, rather than specialised face anti-spoofing, databases, or images from the in-the-wild images.
We train a convolutional autoencoder on real faces and compare the reconstruction error against a threshold to classify a face
image as either client or imposter. Our results show that the inclusion in the training set of in-the-wild images increases the
discriminating power of the classifier on an unseen database, as evidenced by an increase in the value of the Area Under the
Curve.

CCS Concepts
• Computing methodologies → Computer vision tasks; Image manipulation;

1. Introduction

Face liveness tests authenticate users of face recognition systems
by processing input images and deciding whether they come from
a human face or, for example, from printed photos held in front of
the system’s camera by an imposter. The main challenge for de-
veloping a robust face anti-spoofing system is the large number of
different types of presentation attacks the system must learn to rec-
ognize. For example, an imposter could be presenting to the face
recognition system a printed photo, a screen displaying a still im-
age, or a screen replaying a video. A multitude of other factors,
such as the quality of the printed photo, the resolution and type
of the displaying screen, the illumination conditions of the scene,
and the characteristics of the system’s camera, may also have a sig-
nificant effect on the performance of any anti-spoofing algorithm.
Moreover, a robust anti-spoofing algorithm should be able to cope
with previously unseen attack methods, which were not anticipated
prior to its deployment.

Traditionally, face anti-spoofing is approached as a binary classi-
fication problem and classifiers are trained on specialised datasets,
containing both client and imposter images and videos. The main
limitation of this approach is associated with the high cost of cre-
ating such databases. That is, a limited only number of attacks is
simulated, on a limited number of subjects, while the variability
of important environmental factors such as illumination conditions

and background is also limited. As a result, the classifiers do not
always generalize well to previously unseen attacks.

In this context, anomaly detection, using classifiers trained on a
one class dataset of client images only, is becoming an increas-
ingly popular approach to face anti-spoofing [AKC17] [AK18].
The present work is motivated by the observation that training with
client images only can also use in-the-wild face images, that is, a
set of face images harvested online, as well as face images from
databases that do not specialize in face-anti-spoofing.

After giving a brief overview of the general literature on face
anti-spoofing, in Section 2.2 we review the relevant literature on
the use of anomaly detection for face anti-spoofing and establish
our main observation. That is, in the existing literature, the training
data are drawn from specialised face anti-spoofing databases, even
though they are just common face images.

In Sections 3 and 4, we describe a proof-of-concept experiment
on the feasibility of an alternative approach to the creation of one-
class training sets. In particular, we augment an initial training set
of client images from specialised face anti-spoofing databases, first
with images from non-specialised databases, the SCFace [GDG11]
and the CASIA-Web Face [YLLL14] in particular, and then with
images from the in-the-wild, which were semi-automatically har-
vested from online sources.
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Our anomaly detection anti-spoofing algorithm is based on a
Convolutional Autoencoder (ACE), similar to the one we used
in [AI20]. Following a well-established methodology, the ACE
is trained on client images, and test images are classified as
clients when their reconstruction error is below a threshold. First,
we trained the ACE with client images from the Replay-Attack
[CAM12] database, and tested it on the Replay-Attack and NUAA
[TLLJ10] databases, creating a baseline. Next, we added into the
training dataset the images from the in-the-wild, which were semi-
automatically collected from online sources, and finally, we added
to the training set images from SCFace and the CASIA-Web Face,
which do not specialize in face anti-spoofing. The results show that
the classifier’s discriminative power, as measured by the Area Un-
der the Curve metric, increases markedly on the unseen NUAA,
with a moderate only drop on Replay-Attack. Finally, we added
to the training set images from databases that do not specialize in
anti-spoofing, SCFace [GDG11] and CASIA-Web face [YLLL14]
in particular, obtaining again similar results.

The main contributions of the paper are:

• We review the literature on anomaly detection for face anti-
spoofing and establish the observation that the training sets
consist of images drawn from specialised face anti-spoofing
databases.
• In a proof-of-concept experiment, we developed an anomaly

detection method for face anti-spoofing based on a convolu-
tional autoencoder and tested it on the previously unseen NUAA
database, showing performance increases when we add into the
training set in-the-wild face images and face images from non-
specialized databases.

2. Background

The progress in the field of face anti-spoofing is inextricably linked
to the development of specialised, image and video, anti-spoofing
databases. The first such database to become publicly available,
and set the standards for subsequent developments, was the NUAA
Photograph Imposter Dataset [TLLJ10]. The NUAA samples were
collected from 15 subjects, using a cheap webcam, in three ses-
sions on different environments and illumination conditions. The
attacks were based on digital images captured with a professional
camera, and then printed on paper at various resolutions. Other no-
table databases that are most commonly used in the literature, are
the Replay-Attack [CAM12], which we will use here to form the
baseline of our experiment, the CASIA-FASD [ZYL∗12], and the
MSU-MFSD [WHJ15]. These newer databases include some novel
characteristics, especially the video presentation attacks, however,
regarding the number of subjects, the number of different types of
simulated attacks and the variability of the environmental condi-
tions, they do not differ materially from the NUAA.

2.1. Face anti-spoofing

In the past few years, a large number of methods have been
proposed for the face presentation attack problem (PAD). Such
methods can be classified into intrusive and non-intrusive types
[PAHA15], depending on their interference with the bio-metric
data acquisition process. The non-intrusive methods have received

more attention in the literature. Another categorization of spoofing
detection methods examines the way the classification algorithm
handles image features. On the one hand, we have the traditional
face anti-spoofing methods, which use hand-crafted features and
employ shallow machine learning, and on the other hand the deep
learning methods.

Regarding the more traditional approaches to anti-spoofing,
[TLLJ10] studied several hand-crafted feature / shallow classifier
combinations. The features included Differences of Gaussians, and
features obtained through Logarithmic Total Variation smoothing,
while their classifiers included Sparse Logistic Regression, Sparse
Low Rank Bilinear Logistic Regression, and SVMs. In subsequent
work, Local Binary Patterns (LBPs) are the most commonly used
image features. In [CAM12], LBPs are used against various pre-
sentation attacks, such as printed photographs, digital photos and
videos.

The above shallow methods do not always generalise well to pre-
viously unseen attacks. Deep learning is an alternative approach,
which regularly outperforms more traditional approaches, since, in
the context of such complex tasks, multi-layered methods seem bet-
ter suited for the extraction of the high-level features of a dataset
[WHJ15].

Convolutional Neural Networks (CNNs) in particular have
achieved impressive results on a range of image and video clas-
sification tasks. One of the earliest attempts on face anti-spoofing
with CNNs is Yang et al. [YLL14]. Their results were improved by
Atoum et al. [ALJL17] using a two-stream CNN-based network,
which performed well under an intra-dataset testing protocol. Xu
et al. [XLD15] extract temporal elements using a deep architecture
combining LSTM units with convolutional layers and max-pooling.
Again, their model performed well under an intra-dataset testing
protocol, however, as it was usually the case with the early deep
learning approaches, cross-database generalisability was poor. The
early algorithms did not perform well on previously unseen attacks,
and also could not cope with the high cross-database variability of
the environmental conditions, as well as variability in image and
video quality.

Going beyond the concise literature review on PAD approaches
included in this paper for self-containment and completeness, for
a more detailed review of the area we refer the reader to the re-
cent survey in [MVLB20]. While it covers only PAD methods that
utilize common RGB cameras on consumer level devices, it con-
tains a comprehensive overview of the relevant publicly available
databases, as well as substantial experimental results comparing the
various PAD methods.

2.2. Anomaly detection in face anti-spoofing

In [XA18], the proposed anomaly detection classifier uses an au-
toencoder for feature extraction, followed by a one-class SVM for
classification. The validation of the method focuses on its perfor-
mance on previously unseen attacks, rather than previously un-
seen databases. In the various experiments, the network was trained
using client samples from the CASIA, Replay-Attack and MSU
databases. To demonstrate results were presented for networks
trained on subsets of the initial training set, but in all cases only
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client images from specialised presentation attack databases were
used.

In [YLM16], they use LBPs to extract low-level features, fol-
lowed by a sparse autoencoder extracting high-level features, while
the final classification was based on a LibSVM. The training and
the testing utilised the CASIA and the NUAA databases.

In [AKC17], they use again hand-crafted features, such as LBPs
and image quality metrics, and then they show that one-class clas-
sifiers work better than the binary ones on cross-database testing
mode. Training and testing utilises three specialised databases, the
CASIA-FASD, Replay-Attack, and the MSU-MFSD.

In [AK18], they use one-class classifiers and demonstrate that
the utilisation of subject-specific information can improve con-
siderably the system’s performance. Training and testing utilised
an aggregated composition of three specialised databases, Replay-
Attack, Replay-Mobile, and MSU-MFSD.

In [NMAM18], assuming that client images have similar tex-
ture types, a Gaussian Mixture Model is used to learn textures.
Again, one-class classifiers were shown to outperform the binary
ones. Training and testing utilised the Replay-Attack database and
the enrolment data of each client.

In [JCPC19], the anomaly detection classifier is based on the
use of a deep metric learning model with a triplet focal loss as
regulariser. They trained and tested on subsets of the GRAD-
GPAD, which is an aggregated dataset from several specialised
anti-spoofing datasets, and their protocols took explicitly in con-
sideration the type of the attacks, lightning conditions, capturing
device and resolution.

In [BOPP20], they used one-class CNNs trained by client images
only. The authors noted the close proximity between the client and
imposter feature spaces, and they introduced adaptive mean estima-
tion strategy to generate pseudo-negative data following a Gaussian
distribution. They trained and tested on four specialised datasets:
Replay-Attack, Rose-Youtu, OULU-NPU and Spoof-in-Wild.

The approach in [NGM19] differs from the ones discussed above
in that depth and near-infrared information is utilised together with
RGB images from the WMCA dataset. We note, however, the use
of the non-specialised CelebA database to train a convolutional au-
toencoder, before an MLP is trained as a binary classifier, with both
client and imposter images.

3. Experiment

Our proof-of-concept experiment is based on a convolutional au-
toencoder. Autoencoders are neural networks consisting of two
parts. The encoder processes the input image and produces the
code, a compressed representation of the input which, usually, has
a much lower dimension. The decoder reconstructs the original im-
age from the code. The loss function is the reconstruction error,
here the Mean Squared Error (MSE) between the original Y and
the reconstructed image Ŷ , seen as 3mn-dimensional vectors, i.e.,
one dimension per pixel, per colour band.

MSE =
1

3mn

3

∑
k=1

m

∑
j=1

n

∑
i=1

(
Yi, j,k− Ŷi, j,k

)2 (1)

As the network is trained to minimise the reconstruction error of the
client images, a high reconstruction error indicates images outside
the client class. Thus, we classify an image as imposter when the
reconstruction error is higher than a predefined threshold.

Following [XCW∗15], we implemented both the encoder and
the decoder as multi-layer CNNs. Following [BRF18], the entire
autoencoder was trained with images from a single class, here the
client images.

3.1. The autoencoder

Figure 1 shows the architecture of the proposed autoencoder. The
input is a 64× 64 RGB image; the encoder consists of three con-
volution layers of kernel size (3,3), each one followed by a Max-
Pooling layer of kernel size (2,2), which is used for spatial down-
sampling. The decoder consists of two transpose convolutional lay-
ers, followed by one convolution layer, and reconstructs a represen-
tation of original input image. In all layers, we used ReLu activa-
tion functions, except for the last layer where a sigmoid function
was used.

All code was written in Python, on the Keras platform, and the
experiments ran on an Intel Core i7 CPU 64 GB RAM PC with an
Nvidia GTX 1650. The whole network was trained with the RM-
Sprop optimizer for 50 epochs, with a learning rate of 0.001. The
batch size was set to 32.

3.2. Training, validation, and test datasets

The faces in all training and testing images were detected with the
Haar feature-based cascade classifier [VJ01], followed by manual
inspection and selection. The user input was necessary, especially
in the creation of training images from the in-the-wild, due to per-
formance issues of the face detector on such images; general image
quality issues such as out of focus blurry faces; and in few cases
by the need to exclude imposter images, e.g. faces on a poster on
a wall. All selected face images were cropped and normalized to
64× 64 pixels. We note that face detection followed by cropping
is a standard procedure in PAD. In fact, as a standard practice, the
images in the benchmark databases are accompanied by a set of
coordinates giving the positions of the faces.

We tested the autoencoder on two test datasets, the first from the
Replay-Attack and the other from the NUAA, consisting of 236
images each. The imposter subset contained images from all types
of attacks supported by these two databases. We note that NUAA
is consider a particularly challenging case when one is testing for
cross-database generalization [YLM16], and the use of webcams as
capture devices increases further the challenge of generalisability.

The aim of this paper is not to propose an optimised network ar-
chitecture, but we focus instead on studying the effect of the train-
ing set on the generalisability. Thus, the architecture and the train-
ing protocol of the autoencoder are fixed, and the main variable of
our experiment is the training set. To see how the augmentation of
the training set with images from non-specialised databases affects
the generalisation power of the classifier across the two test sets,
we opted for three training sets such that D1 is a subset of D2 and
D3, and D2 subset of D3:

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

23



L. Abduh & I. Ivrissimtzis / Anomaly detection

Figure 1: The architecture of the proposed convolutional autoencoder.

Table 1: Description and size of the training datasets.

Description size
D1 Replay-Attack 2800
D2 Replay-Attack + in-the-wild mages 2902
D3 Combine Replay-Attack with others DB 3422

D1. Images form the Replay-Attack dataset only. We used 10
client subjects’ videos, both controlled and adverse.
D2. We added to D1 102 face images harvested online using
general keywords such as teachers. These 163 face images were
manually chosen from a larger collection, the main considera-
tions being to be frontal face images, in-focus, and of a good size
so the normalisation to size 64× 64 does not require excessive
zooming.
D3. We added 520 images from the SCFace [GDG11] and the
CASIA-WebFace databases. The SCFace is a surveillance cam-
era face database from which we used the mugshot, still color
images, captured indoors under controlled illumination condi-
tions. The CASIA-WebFace is a very large dataset, consisting
of 10,575 subjects, collected in a semi-automatic way from the
Internet. We used a random subset of it.

Table 1 summarizes the description of the training datasets.

The validation dataset was kept constant to simplify the design
of the experiment. It consisted of 578 live and fake images from
the Replay-Attack. As the use of a validation set with a compo-
sition similar to the most general training dataset D3 may lead to
an underestimation of the performance of proposed autoencoder on
the Replay-Attack under an intra-database protocol, we also report
HTER values computed under the use of a validation set consisting
of Replay-Attack images only.

4. Results and discussion

Figure 2 shows the ROC curves of the proposed autoencoder,
trained on the three datasets, and tested on Replay-Attack (left) and
NUAA (right). The corresponding Areas Under the Curve(AUC)

are reported on Table 2. We notice that the inclusion of the in-the-
wild images in the training dataset improved markedly the cross-
database generalisation power of the classifier, with the value of
the AUC on the NUAA going up from 0.63 when trained with D1
to 0.72 when trained with D2. Moreover, the inclusion of images
from non-specialized databases further increased further the AUC
to 0.80 when trained with D3. There is also a noticeable fall on the
performance on Replay-Attack, with the AUC going down from
.93 to .89 and then to .82. We also note the high performance of the
algorithm under an intra-database test mode, that is, the high AUC
value of .93 AUC on the Replay-Attack.

Table 2: The AUC values corresponding to the ROC curves shown
in Figure 2.

D1 D2 D3
Replay-Attack .93 .89 .82

NUAA .63 .72 .80

The value of the AUC is an integral over all possible operating
points, that is, overall possible thresholds against which we com-
pare the reconstruction error to determine whether a sample should
be classified as client or imposter. Thus, it separates the problem
of assessing the discriminative power of the classifier from the
problem of finding an optimal, for the given test, operating point.
Next, we will discuss the problem determining an optimal operat-
ing point.

In the literature, classifier performance on a specific operating
point is usually assessed either by reporting separately the False
Positive Rate (FPR) and the False Negative Rate (FNR), or their
mean average Half Total Error Rate. We note that reporting an op-
erating specific performance metric does not necessarily mean that
the problem of finding the optimal operating point has been ad-
dressed. For example, some papers report the minimum HTER over
all operating points, or the True Positive Rate corresponding to cer-
tain fixed values of FPR. Employing a technique that is commonly
used to address this problem, we first compute a threshold on the
validation set, here the threshold corresponding to the Equal Er-
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Figure 2: ROC curves corresponding to classifier/training dataset combinations, tested on Replay-Attack (left) and NUAA (right).

ror Rate (EER) on that set, and use this threshold to compute the
HTER.

Table 3 summarizes the HTERs of our method, and for com-
parison, the HTER range of the four different classifiers proposed
in [BdSPR∗19]. Regarding the performance on the NUAA, despite
the satisfactory discriminating power of the classifier as shown by
the ROC curves, the high HTER values indicate that the threshold
computed on the validation set, which is a set containing images
from the Replay-Attack only, cannot be used on the NUAA. We
note that [BdSPR∗19] also reports very high HTERs, which again
indicate that a satisfactory operating point on NUAA could not be
found. Regarding the performance on the Replay-Attack, we note
that under such an intra-database testing mode, our convolutional
autoencoder performs significantly worse on Replay-Attack than
the best performing classifier in [BdSPR∗19], but its performance
is inside their reported range.

Table 3: HTERs computed on the operating point corresponding to
the EER of the validation set. The last column shows the range of
HTERs reported in [BdSPR∗19].

D1 D2 D3 [BdSPR∗19]
Replay-Attack .15 .24 .26 [.05 - .32]
NUAA .57 .54 .39 [.51 - .65]

5. Conclusions and future work

A research of the literature on anomaly detection methods for
face anti-spoofing shows that their training datasets are exclusively
drawn from specialised anti-spoofing databases. This seems to be
an unnecessary limitation, given that the one-class training sets of
the anomaly detection methods requires just normal face images,
which can be found in abundance in non-specialised databases, or
can be obtained from the in-the-wild.

In a proof-of-concept experiment, we showed that the inclusion
of such images in the training set of a convolutional autoencoder,

which was originally trained on the Replay-Attack database, in-
creased its performance on the unseen NUAA database, as shown
by the ROC curves and the corresponding AUC values while, con-
versely, the performance on the Replay-Attack itself decreased.
That is, as expected, in a cross-database testing mode, the inclusion
of images from outside the specialised databases had a moderating
effect, rather than a positive or a negative one.

We note that in the most recent papers on face anti-spoofing,
as the ones reviewed here, cross-database testing is becoming the
norm. That is, regardless of its relevance in typical practical ap-
plication scenarios, in the literature, the issue of how the classi-
fier would perform on images from previously unseen databases is
considered important. In this context, the behaviour of the classifier
on unseen client images outside specialised anti-spoofing databases
becomes an equally legitimate question. The various methodologi-
cal challenges that would arise from the use of such non-symmetric
test sets, where the client images will be drawn from more sources
than the imposter images, is an issue we plan to address in our fu-
ture work.

To increase further the scope of our investigation, in the fu-
ture, we also plan to work on evaluating the performance of the
various training sets in conjunction with anomaly detection clas-
sifiers based on adversarial models, such as BiGANs [ZFL∗18],
AnoGANs [SSW∗17], which, recently, have been employed to
tackle the PAD problem [GNO19].
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