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Abstract
Voronoi tree maps are an important milestone in information visualization, representing a substantial advancement of the
original tree maps concept. We address a less-studied variant of Voronoi tree maps that uses multiplicative-weighted Voronoi
diagrams. We highlight the merits of this variant, and discuss the difficulties that might have discouraged further exploration,
proposing insights for overcoming these difficulties.

1. Introduction

Introduced by Shneiderman and Johnson [JS91], tree maps repre-
sents an invaluable invention in information visualization of hier-
archical data. The basic idea is to recursively partition the display
area into regions whose areas are proportional to given weights of
the data. The key advantage of tree maps is that they utilize the full
two-dimensional space for displaying information.

A lot of research followed the seminal 1991 paper, and many
variants were proposed to improve the model. A significant ad-
vancement, by Balzer et al. [BDL05], was the introduction of
Voronoi tree maps that solved important issues of the rectangular
models. The idea is to construct a Voronoi-like tessellation with
proportional areas to the given weights. A Voronoi tessellation is
a partitioning of space that assigns each point in the space to the
nearest site from a given set of sites. For tree-mapping, a weight-
ing mechanism is needed to control the area of the Voronoi-like
cells. Balzer and Deussen [BD05] discussed two alternatives: addi-
tive weighting (AW), by adding a fixed weight to the Euclidean dis-
tances, and power weighting (PW), which adds the weights to the
squared distance. AW produces a very appealing organic look, with
parabolic boundaries between cells, but is considerably more diffi-
cult to control and represent. PW, with its linear cell-boundaries,
trades the aesthetic look for efficiency, and very efficient computa-
tion algorithms were developed subsequently [NB12].

A different weighting mechanism for Voronoi diagrams, mul-
tiplicative weighting (MW), remained almost unexplored for tree
mapping. In MW Voronoi diagrams, distances from sites are di-
vided by the weight of the site. This leads to circular-arc boundaries
between the cells, which seems quite attractive for tree-mapping,
combining the organic look with the ease of representation. On the
downside, however, is the fact that multiplicative weighting does
not necessarily produce contiguous regions of the cells as does the
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additive (linear or power) weighting: there is a chance of having
some fragmented cells, or some cells being islands inside other
cells. The work of Reitsma et al. is the only tree-mapping one we
are familiar with that considered MW, and they did not offer a solu-
tion to the mentioned problems. Another difficulty with multiplica-
tive Voronoi tessellation is the high (quadratic) time complexity of
known computation algorithms, compared to regular Voronoi dia-
grams or power diagrams [AE84].

2. Balzer’s Algorithm

At a later time, an interesting algorithm for computing weighted
Voronoi-like diagrams was presented by Balzer and colleagues
[BH08, BSD09]. In a nutshell, the domain is discretized into a
set of points that are assigned randomly to the sites, and then the
points are exchanged between pairs of sites in accordance to the
(weighted) distance, until no more exchanges take place. Thus, the
algorithm starts with an invalid Voronoi diagram, and ends up with
a valid one. The algorithm is typically applied alternately with an
optimization algorithm such as Lloyd’s, in which each site is moved
to the centroid of its assigned region.

While the original Balzer algorithm is considerably slow, with
quadratic time complexity, it is truly versatile, being able to handle
a wide range of weighting mechanisms. Quite notably, even though
the algorithm came from the same group of researchers who in-
troduced Voronoi tree maps, we are unaware of any use of it for
generating tree maps, possibly due to the existence of faster alter-
natives.

Most recently, specifically last year in this conference, Ahmed
and Deussen proposed an accelerated implementation of Balzer al-
gorithm that offered very competent performance [AD17]. The idea
is to consider only the (unweighted) Voronoi neighbors, instead of
all the pairs of sites. Even though the idea is slightly flawed, as we
will discuss below, this improvement brought the original powerful
algorithm into focus, and was the primary source of our inspiration.
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3. Balzer Algorithm with MW

Our primary observation is that, combined with Lloyd optimiza-
tion, Balzer algorithm is capable of eliminating the aforementioned
problems (islands and fragmentation) with MW Voronoi tessella-
tion. The key insight to this is found in [AE84, Observation 2–1]:

“Let S = p,q consist of two weighted points in
the plane and let w(p) < w(q). Then the region
of influence of p is the closed disc with center((

w2 (p) p−w2 (q)q
)
/
(

w2 (p) p−w2 (q)q
))

. . . ”

Upon careful inspection of this formulation we see that the cen-
ter is always away from the other site, hence Lloyd optimization
would move the sites further apart, pushing any islands of smaller
sites towards the cell edges of larger sites. This should effectively
eliminate islands and fragmentation.

4. Ahmed’s Implementation with MW

With Ahmed’s accelerated implementation framework of Balzer al-
gorithm [AD17], multiplicative Voronoi diagrams would represent
an attractive solution for tree maps. The computation of the sorting
keys for the exchange process turns to be surprisingly simple; the
sorting key of a point is simply the ratio of its distances to the two
sites. This follows directly from the definition of MW. Thus, the
expected performance is similar to that in [AD17] for power cells,
except that there is a division operation involved.

However, Ahmed’s model is slightly flawed, since the topology
is different for weighted and unweighted Voronoi tessellation. This
difference is not that significant for the stippling application show-
cased in their paper, hence, apparently, the flaw went unnoticed. In
contrast, wrong identification of neighbors matters for tree maps,
since the focus is on the regions, not the sites. Fortunately, we were
able to find a working idea to replace the auxiliary Delaunay trian-
gulation, relying on the topology of the underlying point distribu-
tion. Two sites are neighbors if some of their assigned points are ad-
jacent. Thus, a sweep over the pixels would be sufficient to retrieve
neighbor information. Once found, the rest continues as in [AD17].

5. Conclusions and Outlooks

We coded a basic implementation of the adapted Ahmed’s imple-
mentation of Balzer’s algorithm to test the preceding insights that
the modified algorithm effectively and efficiently removes islands
and fragmentation. The initial results are promising; see Figure 1.
The resulting tessellation arguably looks similar to AW Voronoi
tree maps, but representing and reproducing circular boundaries is
supposedly easier and simpler than parabolic boundaries. There is
a lot of details to investigate further, making this concept a suitable
research project for a master-level student, we think. We briefly
outline some of the aspects that need to be investigated:

• A formal proof and an empirical evaluation are required to vali-
date the approach.

• The required resolution for identifying neighbor relationships
is not necessarily the same as that for the exchange process.
“Minkowski’s Theorem” is the keyword for a research on the
optimal resolution.

Figure 1: A multiplicative-weighted Voronoi tessellation of 50 sites
with random weights between 1 and 5, free of islands and fragmen-
tation artifacts. This 512×512 plot was computed in 2.2 seconds in
a 2.5 GHz CORE i5 laptop.

• We only tested a non-hierarchical tessellation. Again, deciding
the optimal resolution is needed across levels of the hierarchy.

• The edges are circular, hence they should be easy to represent.
However, extracting these edges requires explicit assignment of
weights to the sites. This seems tricky, as far as we can see.

• Finally, a thorough comparison with AW and PW is required.
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