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Figure 1: We demonstrate a method to enhance the color and details of an abstracted image based on the solution of the
Poisson equation. We control the brightness of the abstracted image and emphasize on details where subjects located based
on a smooth transition map. The left image is an input, and in right we show our result of color and detail enhancement.
The highlighted textures of the grass, antlers and fur on the body of the deer are picked by our algorithm. Our approach in
brightening the images showed interesting colorization effects. Original deer image ©Peter Pham, CC BY 2.0.

ABSTRACT
Abstraction in non-photorealistic rendering reduces the amount
of detail, yet non-essential details can improve visual interest and
thus make an image more appealing. In this paper, we propose
an automatic system for photo manipulation that brightens an
image and alters the detail levels. The process first applies an edge-
preserving abstraction process to an input image, then uses the
residual to reintroduce and exaggerate details in areas near strong
edges. At the same time, image regions further from strong edges
are brightened. The final result is a lively mixture of abstraction
and enhanced detail.

CCS CONCEPTS
• Computing methodologies → Non-photorealistic render-
ing;
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1 INTRODUCTION
Photo abstraction, as practiced in image-based artistic rendering,
has traces in the traditional arts. Pablo Picasso, Henri Matisse, Hans
Hofmann and other abstract expressionists tried to connect to a
viewer through simple but effective visual effects. For example,
Matisse paintings are characterised by flat shapes, controlled lines,
and pointillism. In non-photorealistic rendering, abstraction meth-
ods often remove high-frequency details from images. Animal fur
or whiskers, bumps on rocks, and facial wrinkles are examples of
details at risk of being lost through abstraction. Although removing
detail is the essence of abstraction, doing so can also be a barrier
concealing the real nature of an image. For example, an aged face
may not be distinguishable from a younger face. Moreover, textures
and details bring believability and vigor to images, as they do to
realistic paintings. We would like to recover and in some cases
exaggerate details lost through abstraction. This paper proposes a
hybrid detail enhancement and abstraction process, where an input
image is first abstracted with edge-aware filtering, and then a subset
of the residual is added back to the filtered image; small residual
elements and those further from strong edges are suppressed, while
extended elements close to strong edges are enhanced. This pro-
cess is intended to mimic the artistic notion of indication [Guptill
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2014], where image elements such as texture are suggested with
scattered details rather than being represented in full. Within the
same process, we brighten the photograph such that the areas of
interest will get increased contrast while colors in the areas of less
interest will become lighter and less saturated. The combination
of selective detail enhancement, image brightening, and image ab-
straction generates a new stylized image. An example is shown in
Figure 1.

Our paper contributions include the following:

• We present an automatic algorithm to locally emphasize
image details: details near strong edges are enhanced and
those far from edges are reduced.

• We define a system for scoring texture elements, used to
establish different levels of texture indication.

• We propose a simple brightening method to be used in con-
junction with detail enhancement.

The remainder of this paper is organized as follows. Section 2
reviews related work on image abstractions methods, Poisson equa-
tion, and brightness and contrast enhancement. We present our
algorithm in section 3. Section 4 discusses the details of our re-
sults and compare them with some existing methods in contrast
enhancement. Finally, Section 5 concludes this paper and gives
possible directions for the future work.

2 RELATEDWORK
Many image filters, such as Gaussian convolution or median fil-
tering, remove high-frequency features such as small textures. An
audience might prefer to preserve such details, at least in part. Our
stylized filter takes inspiration from three different areas of past
work. We start by reviewing past work on image abstraction. Next,
we give a brief review of Poisson image editing, used for our color
shifting method. Last, we discuss some previous approaches to
relighting and color shifting a single input image.

2.1 Image Abstraction
Many abstraction methods have concentrated on artistic styliza-
tion of 2D content. Broadly speaking, abstraction of photographs
can be divided into stroke-based techniques [Collomosse and Hall
2002, 2005; Haeberli 1990; Hertzmann 1998] and filter-based tech-
niques [Bai and Sapiro 2007; Criminisi et al. 2010; Kyprianidis et al.
2009; Mould 2013; Papari et al. 2007; Paris et al. 2008; Tomasi and
Manduchi 1998]. We take a filtering approach in this work.

The bilateral filter [Paris et al. 2008; Tomasi and Manduchi 1998]
smooths low-contrast regions while preserving high-contrast edges.
It involves computing a custom arrangement of weights for each
pixel, where the distance of the central pixel to each other pixel
is a combination of spatial distance and color space distance. This
versatile filter is sometimes a component of abstraction algorithms,
such as that of Winnemöller et al. [Winnemöller et al. 2006].

Bilateral filters were not intended to produce an abstraction effect
and using them for abstraction by themselves is problematic, as
they may preserve isolated features and high-contrast textures. The
bilateral filter has difficulty preserving edges of different amplitudes
under a single parameter setting. Also, there is a tradeoff between
preserving edges and preserving noise or fine details.

Geodesic approaches [Bai and Sapiro 2007; Criminisi et al. 2010],
consider a 2D image as a 3D surface and compute weighted dis-
tances from a pixel or group of pixels over the manifold. Geodesic
filters penalize edges: when crossing an edge, the geodesic distance
jumps suddenly but rises slowly thereafter. On the other hand, the
geodesic distance rises quickly over textured areas, as numerous
small gradients must be crossed [Mould 2013].

Kyprianidis et al. [Kyprianidis et al. 2009] presented a generaliza-
tion of the Kuwahara filter [Papari et al. 2007]. Their painting-like
method preserves shape boundaries but different from conventional
edge-preserving filters, the flattening effect occurs along the local
feature directions. This effect can cause an unpleasant deviation in
extracted high-frequency details.

Mould [Mould 2013] offered an edge-aware filter called cumu-
lative range geodesic filtering. In this approach, distance in the
image plane is lengthened proportionally to the color distance be-
tween the current pixel and the starting pixel. Our proposed system
uses Mould’s filter as the default filtering process. We intend to
enhance textures while preserving sharp edges, and rely on an
edge-preserving abstraction method.

2.2 Brightness and Contrast Enhancement
We consider two types of methods for image illumination and
contrast enhancement: histogram-based methods [Lee et al. 2013;
Pisano et al. 1998; Puff D, Pisano E, Muller K, Johnston R, Hem-
minger B, Burbeck C, McLelland R 1994; Xu et al. 2014] and filtering-
based methods [Bennett and McMillan 2005; Deng 2011; Fattal et al.
2002; Kass and Solomon 2010; Paris et al. 2011].

Histogram-based methods aim to generate an output image hav-
ing a histogram with a target image. They usually are simple and
used mostly to enhance low contrast images. However, there is
a trade-off between contrast enhancement and noise amplifica-
tion [Xu et al. 2014].

More flexibility can be seen in filtering-based methods. Some of
these methods are combinations of optimization, segmentation and
histogram-based methods [Deng 2011; Yuan and Sun 2012]. Some
filter-based methods decompose image into a base layer and a detail
layer, with each layer undergoing separate processing before being
recombined.

Kass and Solomon [Kass and Solomon 2010] introduced an edge-
preserving contrast enhancement technique, suggesting a multi-
layer diffusion operator to enhancing image details.

The edge-aware Local Laplacian filter introduced by Paris et
al. [Paris et al. 2011] also used the concept of separating base and
detail layers. Although they generated high quality images, the ex-
aggerated details in some soft areas like walls could be undesirable.
Similarly, our method uses an abstracted image as the base layer in
brightening process and a detail map to sharpen the textures.

Naturalness preservation and color enhancement were the main
features of previous approaches, while we want to change a natural
and uniform image to an artistic one by manipulating the colors.
Recent work by Semmo et al. [Semmo et al. 2016] transforms images
into an oil painted look. They extract representative colors from the
image and assemble a palette, then quantize the input image using
that palette. Sharp highlights appearing in the results imitate the
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bumped surface of the oil paint on the canvas. A significant draw-
back of the quantization is that it can introduce hard transitions
into previously smooth gradients.

Our color shifting process brightens the colors more strongly at
locations further from prominent edges in the image. We solve a
Poisson equation to obtain a map over the image, dictating where
the residual will be suppressed vs. exaggerated, and telling us where
to brighten the image and where to leave the colors unchanged.

2.3 Poisson Equation
The Poisson equation has been used effectively for image synthe-
sis and processing [Elder and Goldberg 2001; Orzan et al. 2007;
Pérez et al. 2003]. Elder and Goldberg [Elder and Goldberg 2001]
introduced an image editing system in the contour domain. Their
system reconstructs the image intensity from brightness at edges.
They assumed that in regions other than edges, the intensity func-
tion approximately satisfies the Laplace equation ∆I (x ,y) = 0, and
therefore solving the Laplace equation provides a good reconstruc-
tion of the original intensity. Perez et al. [Pérez et al. 2003] also
used the Poisson equation as an interpolation mechanism. Their
proposed method smoothly imports source image regions into a
destination image and could affect the texture, illumination, and
color of objects within the selected region. Orzan et al. [Orzan et al.
2007] used a Poisson reconstruction method for image stylization,
controlling local detail levels in an input photograph.

Orzan et al. [Orzan et al. 2009] and Jeschke [Jeschke 2016] used
the Poisson equation to interpolate colors smoothly on either side
of a boundary curve. The Diffusion Curve Image (DCI) introduced
by Orzan et al. [Orzan et al. 2009] specifies colors on either side of
Bezier curves. Jeschke [Jeschke 2016] improved DCIs by introducing
new boundary conditions midway between the diffusion curves.

Like previous methods, we solve the Poisson equation, using it
for both brightening and detail enhancement. We obtain a smooth
map over the image considering two main boundary conditions:
edges of the image and the ridges of the distance transform map
obtained from edges. Jeschke [Jeschke 2016] also used the term
“ridges” to refer to curves midway between the diffusion curves.

The resulting map provides a smooth gradient between the edges
and the ridges far from edges. We intend to keep the brightness
close to edges intact; such regions mostly introducemain textures of
the subjects. However, areas far from edges do not carry significant
high-frequency details, so detail can be suppressed here.

3 PROPOSED METHOD
The smooth map obtained from the Poisson solution can be used to
govern detail and brightness adjustment. We aim to generate a styl-
ized photograph by recombining the high-frequency information
while avoiding unfavorable overenhancement; Wang et al. [Wang
et al. 2013] mention that extreme high-frequency details may result
in an unnatural-looking photograph. In this section we present our
solution for an automatic but controllable detail and brightness
enhancement process.

Our algorithm has several steps. First, we extract residuals by
subtracting the filtered image from the input image. To determine
which detail elements should be emphasized and which eliminated,
we use two post-processing steps; sticks filtering [Czerwinski et al.

1999] and scoring connected components. Next, we solve a Poisson
equation to obtain a map that governs the magnitude of brightening
and the exaggeration of the residuals. Finally, we combine the
selected residuals with the brightened filtered image. Figure 2 shows
the pipeline of our method with an example image.

Given an image I, we apply the cumulative range geodesic fil-
ter [Mould 2013]. We subtract the filtered image from the input
image, yielding the residual map R(x ,y). The signed residuals then
undergo additional processing before being recombined with the
output image.

3.1 Sticks Filtering
Extended linear structures, like tree branches or facial wrinkles,
are visually important yet may be suppressed even by an edge-
preserving filter. In seeking to recover them, the variations in inten-
sity of the residual pixels nearby may make it difficult to distinguish
thin features from sparse and disconnected features. To enhance
thin and connected line structures, we use the sticks filter, originally
designed to reduce speckle noise and preserve linear structures [Cz-
erwinski et al. 1999].

We use the sticks directions as a decision process. We create a
sticks map T (x ,y) using equation 1:

T (x ,y) = max
1≤s≤i

∆(µ(si ) − În (x ,y)) (1)

În (x ,y) =

∑
(r,s)∈nxn I (r , s)

n2
(2)

µ(si ) =

∑
(j,k )∈si I (j,k)

n
(3)

The sticks direction T (x ,y) determines the maximal contrast
response, defined as the maximum difference between the average
intensity µ(si ) of a stick and the average intensity În (x ,y) of the
neighboring pixels. Parameter n is the length of each stick; there are
i sticks. In our approach we used n = 5 for i = 8 sticks orientations.

3.2 Scoring Connected Components
Textured areas can be characterized by aggregations of high-
frequency details, as opposed to sparse or low-frequency details.
We estimate whether a given detail is part of a texture by assigning
it a score based on the residual content in its neighbourhood.

We convert the grayscale residual map to a binary image and
find its connected components [Serra 1998]. The residual image
is thresholded, setting to zero all R(x ,y) such that |R(x ,y)| < 5;
the nonzero R(x ,y) are then considered foreground pixels in the
later connected components calculations. Positive and negative
components are scored separately. For each connected component
C , we get a territory (everything within d pixels of any pixel in C;
we used d = 10) and we sum the magnitudes of all residual pixels
with the same sign as pixels in C . Thus, large components, with a
large territory, as well as smaller components close to areas with
large residuals, will receive large scores.

The scores will determine which portions of the residual are
emphasized: we will sort the components in order of decreasing
score, and the top portion will be exaggerated while the rest are
discarded. We normally report the scoring threshold st as a relative
position in the sorted list; e.g., we might discard all but the top 20%,
using st = 0.2.
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Figure 2: Overview of our method. Original rock arch image ©Vadim Kurland, CC BY 2.0.

Figure 3: Scored connected components. Left: positive resid-
uals; right: negative residuals.

Figure 3 shows an example of the scored connected components
of the positive and negative signed residuals. Using the signed
residuals allows us to better control the size of the connected com-
ponents: individual elements are scored separately, rather than
foreground and background being mixed together in a single com-
ponent as might be the case when absolute values are used.

3.3 Poisson Solver
We plan to preserve the colors close to edges and brighten the
image far away from the edges. We will use a Poisson solver to give
us a map of where each pixel lies relative to the edges. A possible
alternative is to compute the distance from edges directly, but this
quantity would not be smooth and could be difficult to normalize
properly.

We solve a Poisson equation F over a 2D domainΩ, with Dirichlet
boundary conditions at edges Γ set to zero and a fixed value v on
the ridges A. We extract edges Γ using the classical Canny edge
detector [Canny 1986] and the ridges A are effectively the medial
axis of the distance transform, that is, the pixels equidistant between
edges. Thus, we have the following overdetermined linear system:

∆F(p) = 0 p ∈ Ω

F(p) = 0 p ∈ Γ

F(p) = v p ∈ A

(4)

The solution to the above will be a collection of smooth hills,
with minimum height at the edges themselves (where the height

is zero) and maximum at the ridges between the edges (where the
height is v , set to 50 in all images unless mentioned otherwise).

We will use the map P obtained from solving the above system
of equations both to tell us where to brighten the image and where
the detail should be maximally enhanced. Brightening is greater
where P(x ,y) is larger; details are enhanced most where P(x ,y) is
low and least where P(x ,y) is greatest.

3.4 Image Brightening
The next step is to brighten the filtered image. Brightening the
filtered image furthers our goals in two ways. First, the smooth
transition of the Poisson map varies the brightness across the image
and highlights subjects in focus. Second, a shift in colors presents
that generates a gradient of colors that results in interesting effects.
Our color shifting process is defined as follows:

Ibright(x ,y) = (1 + b × Φ(x ,y) × γ ) × If(x ,y) (5)

Φ(x ,y) = min(1− I (x ,y).red, 1− I (x ,y).green, 1− I (x ,y).blue) (6)
where γ is a normalized value based on the Poisson solution at each
pixel position and b is a user-chosen value that scales the level of
brightening. We control the over-brightening of the image based
on the values of the color channels for each pixel. In equation 6,
Φ(x ,y) is the minimum of 1 − c over all channels, where c is the
normalized color for each channel. In equation 5, we attenuate the
colors based on Φ(x ,y). This operation is core of the color shifting
process.

3.5 Detail Enhancement
When we recombine the details with the brightened filtered image,
we want to keep the details with higher scores while avoiding to
bring back the details with lower scores. We keep the details above
a threshold score unchanged, while the details with lower scores
will be reduced or eliminated.

Let T (x ,y) be the detail map obtained directly from the sticks
decision process. We will compute a final detail map D(x ,y) gov-
erned by a scoring factor 0 < s(x ,y) < 1, output from the sticks
decision process T (x ,y), a weight λ(x ,y) based on the normalized
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Poisson distances P̂(x ,y), and a user-selected constant k , control-
ling the extent of the detail exaggeration. The detail map D(x ,y) is
computed as follows:

D(x ,y) = k × s(x ,y) × λ(x ,y) ×T (x ,y) × R(x ,y) (7)

s(x ,y) =
(|Score(x,y) − st | − st)2

st 2
(8)

λ(x ,y) = (m − (m − 1)P̂(x ,y)) (9)
Parameter s(x ,y) in equation 8 is a parabolic downward function

that ranges between 0 and 1; its domain varies based on the scoring
threshold st . If the score of a pixel (x ,y) exceeds st its details will
be preserved completely, otherwise the amount of the details to be
preserved depends on the value of the s(x ,y).

The parameter λ(x ,y) ranges from a minimum of 1 far from the
edges to a maximum of m on the edges. We used m = 3 for our
results. Figure 4 shows different detail maps for m = 3, m = 4,
m = 5, and m = 10; we can see that the magnitude of D(x ,y)
increases with largerm. Note that bothm and k can increase the
details, but they work differently:m increases details locally while
k acts globally. We set k = 3 for Figure 4.

Finally, we combine the brightened image and the detail map to
produce the output:

Iout(x ,y) = Ibright(x ,y) + D(x ,y) (10)

Figure 5 shows the effects of filtering and then the outcomes from
brightening the filtered image and from computing the detail map.
The final image displays the outcome of merging the brightened
base image and the detail layer. The filtering process removed the
whiskers, eyebrows and many small hairs on the face of the cat.
Next, the filtered image was brightened by a factor of b = 2, with
the largest effect on the cat’s chest, left shoulder, forehead, and
eyes. We set the exaggeration parameter and the score threshold to
k = 3 and st = 0.5, respectively. The brightened abstracted image
and the detail map are merged in the last step, reintroducing the
whiskers and other details on the cat.

4 RESULTS AND DISCUSSION
Our stylization method took advantage of the smooth Poisson so-
lution map to brighten up the images with automatic control over
the regions of interest. We created brighter-looking images while
focusing the attention on subjects.

The non-uniform illumination made a shift in colors and created
more illustrative and expressive results than the original colors.
Changes in brightness are present in all images. An interesting
illusion of motion appeared in some results, like the water in swans,
whale, and Venice in Figure 6. The parameters selected depend on
image properties and on the intended result. Moreover, independent
parameters allow some manipulation of the results. Figure 6 shows
some representative stylized images from our method. Parameters
were set on a per-image basis. The brightness parameter used for
the rock arch, old lady, eye, swans and the rock formation was b = 1;
for all others, we set b = 2. The detail exaggeration parameter set
to k = 3 for all images. The score threshold value was st = 0.33 for
the Venice, st = 0.92 for rock formation, and st = 0.5 for the rest.

In whale we can see a small shift in color of the surrounding wa-
ter, making the whale more distinct from the background. Similarly,

the brightness on the face of the old lady shows a cheerful face that
emphasizes details, such as the wrinkles. In the eye example, we
created a more chromatic iris, yet the skin color around the eye
remained normal. Also, the thin vessels on sclera and the eyelashes
were preserved well by our detail enhancement process.

In our technique, the more details the original image contains,
the more flexibility we have to manipulate them. The Venice, skull
rocks, and old lady images contain a significant amount of details.
However, we did not add any details to the flattened regions so
as to keep the abstract background. The brightening effect and
detail enhancement through the Poisson solution are visible in all
results. Abstraction has its largest magnitude on the ridges where
the Poisson solution has higher values; details are enhanced on
edges, where the Poisson solution has its minimum. Note that the
abstraction may not be very apparent near ridges, depending on the
actual image content; for example, in a pure blue sky, there is no dif-
ference between the abstracted (smoothed) image and the original.
To alter the balance between abstraction and detail exaggeration,
we can vary the threshold of the connected component scores. The
most abstracted image was the rock formation, using st = 0.9 and
hence keeping only a few details. We found the combination of
the smooth skull rocks and the sharp features of the shrubs to be
quite striking. In waterfall, the tree, surface of the rocks, and green
textures are emphasized, making the content of the image more
clear.

Figure 7 shows results from the benchmark image set [Mould
and Rosin 2016]. In the barn, the details of the barn, trees and some
ground textures are enhanced. The beard andwrinkles of the Yemeni
face are emphasized. The seared trees of the desert are exposed in
front of a brighter background, and the fur and whiskers of the cat
are enhanced.

The original Flickr images are illustrated in Figures 8; we also
used some images from the NPRgeneral benchmark set [Mould and
Rosin 2016].

4.1 Effect of Parameters
Our method has three user-chosen parameters with direct influence
over the results: the brightening factor b, the detail exaggeration
factor k , and the score threshold st .

We illustrated the effect of the brightening parameter b in Fig-
ure 11 for b = 1, and b = 2. The ceiling of the cave, the surface of
the rocks and water are the regions most affected by brightening.
However, the darkest area (lower left) does not experience signifi-
cant changes, owing to the multiplicative brightening process: in
general, areas with intensity near zero will not be brightened.

Results from different score thresholds are shown in Figure 9. The
exaggeration parameter was set to k = 3 for all results. Choosing
a higher threshold removes details with lower scores. From left
to right, the first image is the original image, and the remaining
images are enhanced with thresholds st = 0.9, st = 0.75, st = 0.33
and st = 0.16, respectively. In this case, more aesthetic images
result from higher thresholds. By reintroducing only a few details,
we can reveal the abstraction while emphasizing prominent details
of the image.

Figure 10 shows results from different detail exaggeration pa-
rameters. Small details on the surface of the stones that are not



CAe’17, July 28-29, 2017, Los Angeles, CA, USA R. Azami and D.Mould

Figure 4: Effect of parameterm in λ(x ,y). Left to right: detail maps form = 3,m = 4,m = 5, andm = 10.

Figure 5: Example steps of the enhancement process. Left to right: original image; filtered image; result from brightening the
filtered image; detail map; and the final result from merging the brightened image and the detail map. Original Angry cat
©Peter Pham, CC BY 2.0.

pronounced for k = 3 become visible for k = 5 and k = 7, em-
phasizing the roughness of the stone surface. Conversely, while
at k = 3 the stylized cat image is a good mix of abstraction and
detail, for higher k the details on the face and forehead become
too severe. In extreme cases (k = 7), overenhancement of the de-
tails manifests visually as noise; noise-like elements appear in the
background around the cat’s whiskers. In images such as the cat
with large-scale coherent texture, more gentle detail exaggeration
is warranted.

4.2 Comparisons
Our method is akin to the work by Bae et al. [Bae et al. 2006], who
pioneered the base-detail decomposition that we also follow. Our
approach can generate a more colorful and brighter image. In order
to capture the detail layer they applied the bilateral filter but we
chose the cumulative range geodesic filter since we want to partly
abstract the image. They magnify high-frequency detail according
to an estimate of textureness; our scores can be considered a tex-
tureness estimate as well, but we add a second factor to govern the
detail amplification, which is the map of distance to a strong edge,
enabling us to focus the detail towards the key image elements.

We compare the performance of our algorithm with results from
state-of-the-art contrast enhancement methods in Figure 12. From
left to right we see the original image of the Stanford Memorial
Church, the LDR result from Lee et al.’s method [Lee et al. 2013],
gradient domain HDR compression from Fattal et al.’s approach [Fat-
tal et al. 2002], and the result from our algorithm.

The result from Lee et al. preserves the details well in the brighter
area, while in dark regions on the ceiling, it loses visibility. The
colors are dark and stuffy and it does not convey the original colors.
The result by Fattal et al. is brighter and more colorful than that
from Lee et al. The details are not emphasized everywhere, as we
can see, for example, on the small and large arcs.

In our result, the contrast is enhanced naturally and the details
are well preserved almost everywhere. The reader is encouraged to
zoom in to better see the differences. The colors are much brighter
than either the originals or the result from Lee et al. and the dark
hidden regions showed up with a good amount of details. Also,
the glasses, fence, and stairs are better emphasized than in Fat-
tal et al.’s result. Note that in order to achieve a uniform level of
detail enhancement, we could omit the local variation of detail
enhancement.

Finally, we compare our result with the local Laplacian filters
of Paris et al. [Paris et al. 2011]; see Figure 13. Although both
local Laplacian filtering and the proposed algorithm brightened
the original image, our algorithm provides better visibility in some
regions. For instance, in the right corner of the room, there is a
plant and a statue on a long table in front of it, which is unclear in
the local Laplacian result. Also, the over-enhanced result from local
Laplacian filtering exaggerates the noise on the wall as is apparent
in the close-up images in the bottom row.

4.3 Timing
The computation time varies linearly with the number of pixels.
Our algorithm takes about 3 minutes to process a 1024 × 640 image
on a laptop Intel(R) Core(TM) i7-4510U with a 2.6 GHz CPU and
16.0 GB of RAM. Filtering and solving the linear system of the
Poisson equation takes the majority of the time. The cumulative
range geodesic filter takes less than a minute to process an image
with a mask size of 500 and 22 seconds to process with a mask size
200. Solving the linear system is the most time consuming part of
our algorithm, requiring almost 2 minutes. Our implementation
is not optimized and there is a great deal of room to improve the
speed. We used a naive edge detection in our work, while a cleaned
up edge detection can decrease the number of edge pixels and solve
the linear system faster.
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Figure 6: Stylization effects. From upper left: rock arch, whale, swans, old lady, eye, skull rocks, Venice, rock formation and
waterfall.

Figure 7: Brightened and detail-enhanced images from benchmark set [Mould and Rosin 2016] . Left to right: barn, Yemeni,
desert and cat.

4.4 Limitations
We experienced some failure cases. The most common failure case
for our method is the poor color shifting in regions far away from
edges, such as the sky. The sky in Venice in Figure 14 is an example
of this case. This deficiency could be improved by choosing a larger
value for v in Poisson solver. We demonstrated an improved out-
come for the Venice sky in Figure 6 usingv = 50, while usingv = 20
in Figure 14. Another possible direction to remedy this problem
would be using a flexible value for v , such that the value of v on
the ridge changes with respect to its distance transform value.

Another cause of failure is preserving too much texture; this
depends on the choice of the input image. Images with many close
edge points preserve most of the texture from the original image.
We want the output result to partially contain the background
abstracted image, so that the detail map shows the effect of en-
hancement. The rocks, ocean and grass of Etretat in Figure 14 show
this issue; while overall it looks nice, the abstraction effect can
hardly be seen. We may be able to address this issue with more
sophisticated edge detection that can eliminate the redundant edges.
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Figure 8: Original Flickr images used in our paper. From upper left: rock arch ©VadimKurland, CC BY 2.0,whale ©Christopher
Michel, CC BY 2.0, swans ©Dun.can, CC BY 2.0, skull rocks by Joshua Tree National Park (public domain), Venice ©Pug Girl, CC
BY 2.0, old lady ©Lemuel Cantos, CC BY 2.0, waterfall ©Loren Kerns, CC BY 2.0, stones by CanyonlandsNPS (public domain),
eye ©Evan Schaaf, CC BY-SA 2.0, northern cardinal ©Bill Damon, CC BY 2.0, Chinese ©Anja Disseldorp, CC BY 2.0, Etretat
©Cristian Bortes, CC BY 2.0 and rock formation ©Henry Burrows, CC BY-SA 2.0.

Figure 9: Detail enhancement with different thresholding of the sorted connected component scores. Left to right: original,
st = 0.9, st = 0.75, st = 0.33 and st = 0.16. Original cow image ©Alastair Campbell, CC BY-SA 2.0.

Also, a coarse transition of colors between adjacent pixels is per-
ceived as noise in some images. This could be due to clamping of the
colors in different channels. To address this issue we need a smooth
transition in shifting the colors after augmenting the detail map;
also, using a different color space may help with this limitation.
In Figure 14 the noisy line of the fingers and the line above the
shoulder of the old man shows this problem.

5 CONCLUSIONS
In this paper, we presented an automated image manipulation tech-
nique intended to give an appealing blend of detail and abstraction.

In regions of the image near strong edges, assumed to represent
relevant detail, we exaggerate detail, and in regions more distant
from strong edges, we allow the abstraction effect to dominate.
Also, we brighten the image far from edges, preserving the original
image colors near edges. The net effect is a cheerful image in which
some details are emphasized while others are suppressed.

We note a few possible directions for future work. In this paper,
we operated in the RGB colorspace; treating color differently, in-
cluding moving to a perceptually uniform colorspace to perform
our calculations, is likely to be beneficial. We assumed that strong
edges correspond to salient detail, but this assumption sometimes
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Figure 10: Different exaggeration parameters. Left to right: k = 3, k = 5, k = 7. Original stones image by CanyonlandsNPS
(public domain) and angry cat image ©Peter Pham, CC BY 2.0.

Figure 11: Different brightness. Our results with b=1 (left) and b=2 (right). Original Oparara image (not shown) taken from
benchmark set [Mould and Rosin 2016].

fails, and making direct use of a salience estimate is likely to be
more helpful. Our ad-hoc scoring system is adequate, but a more
elaborate scheme that better keeps track of context is likely possible.
Finally, we made use of the sticks filter to repair linear features, but
other shapes – circular features, say, or corners – might also be of
interest.
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Figure 12: Brightness comparison. Left to right: original image of Memorial Church , contrast enhancement of Lee et al. (LDR),
gradient domain HDR compression of Fattal et al., our result. Original Stanford Memorial Church image ©Paul Debevec.

Figure 13: Comparison of detail enhancement. Top row, left image: original image; middle: local Laplacian filter of Paris et al.;
right: our result. The bottom row shows a close-up of the wall. Original Belgium House image ©Raanan Fattal.

Stanford Memorial Church image and Raanan Fattal for the original
Belgium House.
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