
Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2003)
G.-P. Bonneau, S. Hahmann, C. D. Hansen (Editors)

Efficient Visualization of Large Medical Image Datasets on
Standard PC Hardware

V. Pekar1, D. Hempel1, G. Kiefer2, M. Busch2, and J. Weese2

Philips Research Laboratories Hamburg1 and Aachen2, Germany
vladimir.pekar@philips.com

Abstract

Fast and accurate algorithms for medical image processing and visualization are becoming increasingly impor-
tant due to routine acquisition and processing of rapidly growing amounts of data in clinical practice. At the same
time, standard computer hardware is becoming sufficiently powerful to be used in applications which previously
required expensive and inflexible special-purpose hardware. We present an efficient volume rendering approach
using the example of maximum intensity projection (MIP), which is an important clinical tool. The method sys-
tematically exploits the properties of general-purpose hardware such as hierarchical cache memories and super-
scalar processing. In order to optimize the cache efficiency, the dataset is processed in blocks which fit into the
processor cache. The innermost ray casting loop is transformed such that the arithmetic operations and memory
accesses can be processed in parallel on current general-purpose processors. Combined with other optimization
strategies, such as vectorization and block-wise ray skipping, this approach yields near-interactive frame rates for
large clinical datasets using a standard dual-processor PC. Data compression and simplification methods have
intentionally not been used in order to demonstrate the achievable performance without any quality reductions.
Some of the presented ideas can be applied to other computationally intensive image processing tasks.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
J.3 [Life and Medical Sciences]: Medical information systems.

1. Introduction

In recent years the quantity of acquired clinical image data
has been growing very rapidly, in particular due to new
imaging technologies, such as multi-array CT or 3D ultra-
sound. Data processing time becomes a critical factor in
clinical routine, and there is a strong demand for fast image
processing algorithms. One important application is volume
data visualization, where the ability to interact with the sys-
tem in real time is crucial for its acceptance by the clinicians.
In this case, a system should render 5-10 frames per second,
corresponding roughly to threshold timing of hand-eye co-
ordination.

One way to achieve the required rendering performance
is the use of dedicated hardware, e.g. VolumePro boards 1.
For many applications, however, there is a strong interest
in fast volume rendering on standard PC hardware, since
it is cheaper and more flexible to be adapted to specific

demands 4. Unfortunately, interactive rendering is still at
the upper performance limit of standard hardware even for
moderately sized datasets of 32-256 MB. Consumer graph-
ics cards can be used to accelerate volume rendering using
2D or 3D textures 12. However, their memory is typically too
small to store the complete dataset, and the data transfer to
the card may become a serious bottleneck.

The purpose of this paper is to develop and evaluate a
software-based rendering approach. In order to be applica-
ble in clinical practice, there must not be any restrictions on
the size of the dataset. We also do not consider simplification
techniques like (adaptive) downsampling, data quantization
or lossy compression, which may speed up volume rendering
considerably at the expense of (minor) quality reductions.

An important criterion for the performance assessment of
visualization algorithms is their memory access behavior.
One can distinguish between image ordered methods, such

c© The Eurographics Association 2003.

135

http://www.eg.org
http://diglib.eg.org


Pekar et al. / Efficient Visualization of Large Medical Image Datasets on Standard PC Hardware

as ray casting, and object ordered methods, such as splatting.
Shear-warp factorization 5 is a fast hybrid technique, where
the volume is mapped to a sheared image adapted to the ob-
ject space. Mora et al. 8 propose an object ordered method
which mimics the output behavior of ray casting at the ex-
pense of a larger total number of memory accesses and a
slightly reduced computational accuracy.

The approach presented in this paper is based on ray cast-
ing, since it provides the best image quality among the tech-
niques listed above. We chose as an application the parallel
maximum intensity projection (MIP), however, most of the
techniques described below are also applicable to general-
ized volume rendering with perspective projection.

State-of-the-art general-purpose processors provide
super-scalar processing capabilities, deep pipelining and
out-of-order execution 3. The speedup achievable by these
techniques is determined by control, data, and structural
dependencies among software instructions. Similarly to
some prior work 4, 11, we use software pipelining and
vectorization in order to eliminate such dependencies and
improve the utilization of the CPU.

Unfortunately, the rapid increase of CPU clock rates does
not always lead to a corresponding performance increase of
image processing algorithms. One significant reason for this
is the limited speed of memory access. In order to achieve
maximum computational performance, the caching strategy
of modern CPUs should be carefully respected 11. In the
field of numerical algorithms, the transformation of multi-
dimensional data structures into locally bounded blocks is
a well known technique aimed at improving the cache us-
age 2, 7. Volume decomposition into small sub-blocks is also
a useful method for ray tracing and ray casting algorithms
which dramatically improves the memory access perfor-
mance 10, 13. Analogously to these approaches, the strategy
chosen here is to process the dataset block-wise.

The proposed techniques enable near-interactive render-
ing performance for real clinical datasets on a dual-processor
PC. The methodology is also applicable in other image re-
construction and image processing algorithms (e.g. back-
projection or Hough transformations).

In Section 2, the block-based ray casting approach is in-
troduced which aims at optimizing the cache efficiency and
forms the basis for some of the other optimizations. Sec-
tion 3 describes how the super-scalar processing can be uti-
lized. Multi-processor parallelization is addressed as well.
Further algorithmic optimizations are described in Section 4.
In Section 5, experimental results are presented.

2. Block-Based Ray Casting

The principal disadvantage of conventional ray casting with
regard to computational efficiency is that the dataset is not
processed in storage order. This can result in a considerable

amount of cache misses depending on the viewing direction,
and the rendering speed can consequently be severely de-
graded. In order to circumvent this problem, data locality
must be improved.

Ideally, a cache line should be processed completely be-
fore being replaced by the next one. One way to optimize
the cache usage is to process the volume in compact units
(blocks). However, block-wise processing alone is not al-
ways sufficient due to the fact that several memory addresses
may compete for the same cache line. Therefore, a cache-
conscious storage scheme should also be used, where the
data is stored in contiguous memory blocks fitting entirely
into the cache. In order to load a minimum set of cache lines
per block, the data should be stored with a small overlap de-
pending on the radius of the interpolation kernel.

For block-wise data processing in a ray casting algorithm,
pixels in the target image plane affected by each block must
be determined. For example, pre-computed discrete projec-
tions were used to determine voxel footprints 9. We use a dif-
ferent approach, and our block-based ray casting algorithm
can be formulated in the following way:

1. Split dataset into blocks fitting into the cache.
2. Project block vertices onto the image plane.
3. For each pixel in the bounding box of the block projection

send a ray back into the volume.
4. If the ray intersects the block, cast the ray within the vol-

ume and compute the corresponding pixel value.

For MIP, blocks can be processed in arbitrary order and the
final pixel value corresponds to the maximum data value
along the ray cast through all contributing blocks.

An important issue in the algorithm is the optimal block
size. Today’s PC and workstation processors have a hier-
archical memory system with two or three levels of cache.
Typical cache sizes are 8-64 KB for a level-1 cache and 256-
1024 KB for a level-2 cache. For optimal cache performance,
a data block should be small enough to fit into the level-
1 cache which provides the fastest way of delivering data to
the CPU. On the other hand, if the total number of blocks be-
comes large, the computational overhead is not compensated
by the speed of data delivery, and the rendering performance
decreases considerably.

The dependence of the rendering performance on the
block size is shown in Fig. 1. The tests have been performed
with a synthetic 2563 dataset on a 1 GHz Pentium III PC for
the viewing directions which correspond to the “best” and
“worst” memory/cache interaction. It can be seen that blocks
which fit into the level-2 cache (256 K) provide the best per-
formance, whereas for small blocks which fit into the level-
1 cache (16 KB) the overhead dominates over the additional
speedup in memory access. In our experiments, the optimal
block size was between 403 and 603. If the block does not
completely reside in the cache, severe performance degrada-
tion may occur, depending on the view direction. If it fits into

c© The Eurographics Association 2003.

136



Pekar et al. / Efficient Visualization of Large Medical Image Datasets on Standard PC Hardware
re

nd
er

in
g 

tim
e 

(s
ec

.)

3

block size (voxels)

3 3 3 3 3 33 3 3 33 3 3 33

Figure 1: Minimum and maximum rendering time in depen-
dence on the block size.

the cache, the dependency of rendering performance on the
viewing direction is almost completely eliminated. Note that
certain block sizes above 633 cause cache mapping conflicts,
which result in characteristic peaks in the diagram.

3. Super-Scalar Processing

Modern processors typically provide facilities for
instruction-level parallelism, i.e. several instructions
are processed in parallel using multiple independent
execution units. The instruction scheduling can be done
statically by the compiler or dynamically by the processor
hardware. In either case, the parallelization and reordering
of instructions is limited by dependencies, which can
be classified as data dependencies (one operation needs
the result of the other), structural dependencies (e.g. two
multiplications cannot be parallelized if only one multiplier
is present), or control dependencies (e.g. instructions
located after a conditional branch cannot be executed
before the branch condition is evaluated) 3. Being aware
of this, we adopted two measures in order to optimize the
degree of instruction-level parallelism (Sections 3.1-3.2).
Furthermore, the block-based rendering approach has been
generalized for multi-processor parallelization (Section 3.3).

3.1. Eliminating Intra-Loop Dependencies

The most time-critical part of a ray casting algorithm is its
innermost loop over N samples, which has the general form:

for i = 1 to N
CalcAddress (i);
LoadVoxels (i);
Interpolate (i);

end for;

Each of the main blocks CalcAddress, LoadVoxels, and In-
terpolate may consist of approx. 20-40 machine instructions.

In terms of hardware resources, LoadVoxels can be executed
in parallel to Interpolate and CalcAddress, as LoadVoxels
mainly needs the memory port but not the ALU, while the
other two blocks contain ALU instructions, but no memory
accesses. However, the implementation above does not allow
this due to data dependencies: each step needs the result of
the previous one. These data dependencies can be eliminated
by a technique known as software pipelining 6. In the follow-
ing equivalent code, operations from different loop iterations
have been rearranged to form a new loop body:

CalcAddress (1);
LoadVoxels (1);
CalcAddress (2);
for i = 2 to N-1

Interpolate (i-1);
LoadVoxels (i);
CalcAddress (i+1);

end for;
Interpolate (N-1);
LoadVoxels (N);
Interpolate (N);

Now, the memory accesses of LoadVoxels can be executed
in parallel to the arithmetic operations of CalcAddress and
Interpolate. On PC processors like the Pentium 4, the par-
allelization is scheduled internally by the processor 14, and
experiments have confirmed that the rearranged loop runs
considerably faster than the original version, even though the
number of operations is exactly the same in both cases.

Besides this, control dependencies are minimized by re-
placing conditional branches by conditional move opera-
tions as far as possible. Conditional branches that can not
be eliminated are transformed such that they become more
predictable by the branch prediction unit of the processor.

3.2. Vectorization

Most PC and workstation processors provide Single Instruc-
tion – Multiple Data (SIMD) instruction set extensions,
which commonly provide vectorized integer and floating-
point operations such as multiplications, additions as well as
other primitive ALU and data transfer operations. Depend-
ing on the processor type, they differ in the vector width, the
number of registers, and some details of the instruction set.
Nevertheless, they can all be used in a similar way to speed
up ray casting.

In order to make use of vector processing, the ray cast-
ing loop has been unrolled n times (where n is the vector
size) and rearranged such that the computations for n subse-
quent sample points are performed in parallel. For example,
the vector processing unit of a Pentium 4 processor provides
8 registers of 64 bit and 8 register of 128 bit. This is suffi-
cient to unroll the inner loop 4 times and thus to process 4
samples in parallel. All intensity values are processed as 16
bit values. A reduction to 8 bit values would allow a higher

c© The Eurographics Association 2003.

137



Pekar et al. / Efficient Visualization of Large Medical Image Datasets on Standard PC Hardware

degree of vectorization but may be insufficient for medical
applications.

3.3. Multi-Processor Parallelization

A crucial property of the block-based ray casting algorithm
is that rendering tasks for individual blocks are mutually in-
dependent, and the resulting image can be composed from
the partial images by simple 2D operations. Hence, the al-
gorithm can easily be parallelized on multi-processor sys-
tems with both shared and distributed memory. For MIP, the
resulting image can be composed by a maximum operation
from the intermediate images. This facilitates the paralleliza-
tion on distributed memory systems, e.g. PC clusters, since
only 2D images have to be transferred across the network.

We implemented a shared memory parallelization using
threads for dual-processor PCs. A separate thread on each
CPU picks up blocks from a queue and renders a separate
image. The speedup factor by rendering on a dual-processor
system instead of a single-processor one is typically 1.7–1.8.

4. Further Optimizations

4.1. Data Interpolation

Interpolation order is one of the most important issues in the
rendering process, since it determines the quality of the ren-
dered image. A commonly used method is to sample the vol-
ume at equidistant locations and to compute the respective
sample values by tri-linear interpolation (see Fig. 2a). Linear
interpolation offers a reasonable compromise between good
image quality and relatively low computational costs.

Instead of equidistant sampling we use samples located
at the voxel cell boundaries (Fig. 2b). Compared to equidis-
tant sampling this technique allows to reduce computational
effort considerably. As tri-linear interpolation is defined by
the weighted sum of two bi-linearly interpolated values, the
number of memory accesses and arithmetic operations for
tri-linear interpolation is more than twice as high as for
bi-linear interpolation. With the samples being located at
cell boundaries, tri-linear interpolation is equivalent to bi-
linear interpolation which can be computed much faster. In
addition, cell-border sampling adapts the sampling rate to

a) b)

Figure 2: Equidistant (a) and cell-border (b) sampling.

the data resolution while avoiding undersampling atrifacts
which may occur in the case of equidistant sampling with a
comparable rate.

Fig. 3 shows a comparison between cell-border sampling
and standard equidistant sampling. For the latter case, 4×
oversampling was used. When observing fine vessel struc-
tures, no visible differences in the images can be seen.

4.2. Block-Wise Ray Skipping

The idea of block-wise ray skipping is to reduce the number
of rays cast through individual blocks. A block does not con-
tribute to a pixel value in the final MIP if its maximum data
value is less than or equal to the current pixel value. Block-
wise ray skipping can then be implemented as follows:

1. Maximum data values are computed for each block when
loading the dataset from disk.

2. The block list is sorted in decreasing order according to
the maximum block value.

3. During the rendering process, if the value of a pixel af-
fected by the block is already greater than the maximum
block value, the ray is not cast through this block.

Due to the processing order of the block list according
to the maximum value, brighter structures are rendered first,
and more rays can be skipped compared to the processing in
an arbitrary order. This results in a speedup factor of 1.3–1.6,
depending on the data and the block size.

5. Results

We tested our MIP algorithm on three medical datasets: a
contrasted 512x512x376 thorax CT dataset (Fig. 4), a blood
pool contrasted 512x512x120 MRA dataset (Fig. 3), and a
smaller 256x256x256 CT dataset (Fig. 5). In all cases, we
generated a sequence of images corresponding to a complete
rotation of the dataset around the z-axis. Note that this does
not include the view direction of the worst memory/cache in-
teraction but all of the clinically used views. The image sizes
are 512x512 pixels for the first two datasets and 256x256
pixels for the 2563 dataset. For the experiments, we used a
computer with two 2.2 GHz Pentium 4 Xeon processors. The
ray casting loop (Sections 3.1-3.2) was implemented in as-
sembly language. All computations on intensity values were
performed at an accuracy of 16 bit. By reducing the accu-
racy to 8 bits, a considerable speedup can be achieved as
only half of the memory traffic is required and the degree
of SIMD vectorization can be increased by a factor of two.
However, this may lead to visible quantization artifacts after
possible post-processing steps which is not acceptable for
some clinical applications.

We investigated the impact of the described acceleration
techniques on the rendering performance. Table 1 shows the
minimum, average and maximum rendering times computed
with the optimal block size as well as the average speedup

c© The Eurographics Association 2003.

138



Pekar et al. / Efficient Visualization of Large Medical Image Datasets on Standard PC Hardware

CT dataset MRA dataset Thorax dataset
Min. Avg. Max. Speedup Min. Avg. Max. Speedup Min. Avg. Max. Speedup

Simple ray casting 0.48 2.60 3.78 0.89 5.10 7.20 3.31 15.28 20.09
+ memory opt. 0.52 0.73 0.84 3.56 1.02 1.46 1.66 3.49 3.63 4.57 5.09 3.34
+ super-scalar proc. 0.28 0.41 0.50 1.78 0.56 0.84 1.00 1.74 2.03 2.68 3.03 1.71
+ ray skipping 0.17 0.28 0.41 1.46 0.41 0.67 0.81 1.25 1.47 2.01 2.19 1.33
+ second CPU 0.09 0.16 0.22 1.75 0.22 0.38 0.44 1.76 0.83 1.15 1.34 1.75

total speedup 16.25 13.42 13.29

Table 1: Rendering times (in sec.) per frame and speedup factors for individual optimizations.

factors. With all optimizations enabled, we achieved an av-
erage frame rate of 6.3 frames per second with the 2563

dataset. For the other datasets, the rendering time increases
linearly with the number of voxels, showing that the ap-
proach is scalable for large datasets. The largest gain is
achieved just by optimizing the memory access behavior via
block-based processing.

6. Conclusions

We have presented an efficient concept for the visualization
of large volumetric datasets by ray casting on standard PC
or workstation hardware, using the example of MIP. Without
any loss in image quality, an average frame rate of 6.3 has
been achieved for a 2563 dataset.

One of the goals of this work was to determine the achiev-
able performance on standard hardware and to determine
the most relevant bottlenecks. A timing analysis of the vari-
ous optimization techniques has shown that block-based data
processing leads to the largest performance gain. This indi-
cates that ray casting is clearly memory-limited with current
hardware. Further techniques support super-scalar process-
ing and allow to perform arithmetic computations in parallel
to the memory accesses by reducing data dependencies.

The presented algorithmic methodology is also applica-
ble to other computationally intensive tasks in image re-
construction and processing, in which it is possible to alter
the data processing order towards the processing of compact
memory-aligned data blocks rather than scattered patterns.

Acknowledgments

We thank Dr. Toombs and Dr. Flamm of St. Luke’s Episco-
pal Hospital, Houston, for providing the MRA dataset and
Dr. Rogalla of Charité Hospital, Berlin, for providing the
thorax CT data.

References

1. TeraRecon, Inc. http://www.terarecon.com

2. S. Carr and K. Kennedy. Compiler blockability of nu-
merical algorithms. Supercomputing ’92, pages 114–
124.

3. J. Hennessy, D. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers,
2nd edition, 1996.

4. G. Knittel. The UltraVis system. VolVis ’00, pages 71–
79.

5. P. Lacroute and M. Levoy. Fast volume rendering using
a shear-warp factorization of the viewing transforma-
tion. Computer Graphics (Proc. of SIGGRAPH’ 94)
28:451–458.

6. M.S. Lam. Software pipelining: An effective schedul-
ing technique for VLIW machines. SIGPLAN ’88 Conf.
on Programming Language Design and Implementa-
tion (PLDI), pages 318–328.

7. M.S. Lam, E.E. Rothberg, and M.E. Wolf. The cache
performance and optimization of blocked algorithms.
4th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pages 63–74.

8. B. Mora, J.-P. Jessel, R. Caubet. A New Object-
Ordered Ray-Casting Algorithm. IEEE Visualization
2002, pages 203–210.

9. L. Mroz, H. Hauser, and E. Gröller. Interactive high-
quality maximum intensity projection. EUROGRAPH-
ICS 2000, pages 341–350.

10. S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen,
and P. Shirley. Interactive ray tracing for volume vi-
sualization. IEEE Transactions on Computer Graphics
and Visualization, 5(3):238–250, 1999.

11. I. Wald, P. Slusallek, C. Benthin, and M. Wagner. In-
teractive rendering with coherent ray tracing. EURO-
GRAPHICS 2001, pages 153–164.

12. R. Westermann and T. Ertl. Efficiently Using Graph-
ics Hardware in Volume Rendering Applications. SIG-
GRAPH ’98, pages 169–177.

13. C.-K. Yang and T. Chiueh. I/O conscious volume ren-
dering. VisSym’01, pages 263–272.

14. Intel Pentium 4 Processor Optimization Reference
Manual. http://developer.intel.com

c© The Eurographics Association 2003.

139



Pekar et al. / Efficient Visualization of Large Medical Image Datasets on Standard PC Hardware

Figure 3: Maximum intensity projection (MIP) of a contrast enhanced MR angiography dataset. Frontal view (left) and diagonal
close-up views. Tri-linear interpolation with 4× oversampling (middle) and bi-linear interpolation at the voxels boundaries
(right).

Figure 4: Selected MIPs from the image sequence with a thorax dataset.

Figure 5: Selected MIPs from the image sequence with a CT dataset.

c© The Eurographics Association 2003.

140


