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Abstract
Trivariate data is commonly visualized using isosurfaces or direct volume rendering. When exploring scalar fields
by isosurface extraction it is often difficult to choose isovalues that convey “useful” information. The significance
of visualizations using direct volume rendering depends on the choice of good transfer functions. Understanding
and using isosurface topology can help in identifying “relevant” isovalues for visualization via isosurfaces and
can be used to automatically generate transfer functions.
Critical isovalues indicate changes in topology of an isosurface: the creation of new surface components, merging
of surface components or the formation of holes in a surface component. Interesting isosurface behavior is likely
to occur at and around critical isovalues. Current approaches to detect critical isovalues are usually limited to
isolated critical points. Data sets often contain regions of constant value (i.e., mesh edges, mesh faces, or entire
mesh cells). We present a method that detects critical points, critical regions and corresponding critical isovalues
for a scalar field defined by piecewise trilinear interpolation over a uniform rectilinear grid. We describe how to
use the resulting list of critical regions/points and associated values to examine trivariate data.

1. Introduction

An isosurface is the set of all points in three-dimensional
(3D) space where a trivariate scalar field has a certain iso-
value. By varying this isovalue v it is possible to visualize
an entire scalar field indirectly. Determining isovalues where
“interesting” isosurface behavior occurs is difficult. Features
of a scalar data set can easily be missed when certain isoval-
ues are not considered.

Direct volume rendering visualizes a scalar field by map-
ping scalar values to optical properties using a transfer func-
tion and rendering images. The value of resulting visualiza-
tions highly depends on the transfer function. Transfer func-
tions are commonly chosen in a cumbersome process based
on trial-and-error. Automatic transfer function design is an
area of ongoing research, see, for example, Pfister et al. [20]
or Fujishiro et al. [9, 11].

Isosurface topology provides insight into the fundamen-
tal structure of isosurface behavior across isovalues. Topo-
logical changes occur at critical points with an associated
critical isovalue. Three types of critical points exist. At a lo-
cal minimum a closed surface component is created. At a
saddle either the genus of an isosurface changes, i.e., holes
appear/disappear in a surface component, or surface com-

ponents separate or merge. At a maximum a closed surface
component vanishes. Traditionally, critical points and values
are the subject of Morse theory [15]. Any given position of
a data set can be classified by considering a small neigh-
borhood around it. Considering a C2-continuous function f ,
critical points can be determined analytically as points where
the gradient ∇ f vanishes. The associated type of the critical
point is determined by the eigenvalues of the Hessian at that
point. For general C0-continuous functions, including those
given by piecewise trilinear interpolation (at mesh vertices,
on mesh edges and on mesh faces), gradient and Hessian are
undefined. Based on the work of Banchoff [4] it is possible
to “emulate” these criteria for discrete data sets by looking
at a neighborhood around a point and checking how many
regions with a larger and how many regions with a smaller
value than the value at the considered location exist. This
definition has been used in computational geometry to de-
tect critical points of piecewise linear scalar fields, [8].

To handle general data sets we further need to extend the
concept of critical points to critical regions. While Morse
theory requires that only isolated points can be critical, it is
possible that a data set contains entire regions that are criti-
cal: A torus can form around a circle, which could be a min-
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imum, a new component can appear around a constant value
sub-volume, or two surfaces can merge along a line denoting
a saddle. We extend the concept of isolated critical points to
regions in a data set. This enables us to detect topology in
data sets that contain regions of constant value.

We consider the common case of data sets with data val-
ues given at vertices of a uniformly spaced rectilinear grid.
We define isosurface topology by assuming that trilinear in-
terpolation is used within individual cells and use the topol-
ogy of the level set of the trilinear interpolant in each cell
to define level set topology for the whole data set. We de-
tect both critical points and critical regions. For critical re-
gions, isosurface topology changes occur over a region (a
one-, two-, or three-dimensional manifold embedded in the
domain). We detect critical regions, classify them, and use
the resulting set of critical isovalues for interactive data ex-
ploration using isosurfaces and for automated transfer func-
tion design.

2. Related Work

Topology of level sets for data given on simplicial meshes
using linear interpolation in cells has been a subject of re-
search in computational geometry. Related to our work is the
concept of contour trees that encode topological changes of
level sets. A contour tree is a graph that describes how con-
tours in a level set appear, join, split, or disappear. Van Krev-
eld et al. [21] used contour trees to speed up isosurface ex-
traction. Using a contour tree, they compute a minimum seed
set for isosurface reconstruction. Starting from the resulting
seed points all isosurface components are tracked and com-
puted. Bajaj et al. [1] also considered tetrahedral meshes.
They determine a contour spectrum specifying properties
like 2D contour length, 3D contour area and gradient inte-
gral as functions of the isovalue. The contour spectrum is
displayed along with the contour tree of a data set aiding a
user in identifying interesting isovalues. Bajaj et al. [3] also
developed a technique that uses topology to enhance visual-
izations of trivariate scalar fields. Their method employs a
C1-continuous interpolation scheme for rectilinear grids and
detects critical points of a scalar field. Subsequently, inte-
gral curves (tangent curves) are traced starting from loca-
tions close to saddle points. These integral curves are super-
imposed onto volume-rendered images to convey structure
of the scalar field.

Fujishiro et al. [9] used a hyper-Reeb graph for explo-
ration of scalar fields. A Reeb graph encodes topology of
a surface, similarly to a contour tree. In addition to track-
ing the number of contours, it also encodes genus changes.
A hyper-Reeb graph encodes changes of topology in an ex-
tracted isosurface. For each isovalue that corresponds to an
isosurface topology change, a node exists in the hyper-Reeb
graph containing a Reeb graph encoding the topology of
that isosurface. Fujishiro et al. [9] constructed a hyper-Reeb
graph using “focusing with interval volumes,” an iterative

approach that finds a subset of all critical isovalues, which
was introduced by Fujishiro and Takeshima [10]. The hyper-
Reeb graph can be used, for example, for automatic genera-
tion of transfer functions. Fujishiro et al. [11] extended this
work and used a hyper-Reeb graph for exploration of vol-
ume data. In addition to automatic transfer function design,
their extended method allows them to generate translucent
isosurfaces between critical isovalues. Considering just the
images shown in their paper [9], it seems that their approach
does not detect all critical isovalues of a scalar field.

Topology is also important in the context of data simpli-
fication to preserve important features of a data set. Bajaj
and Schikore [2] extended previous methods to develop a
compression scheme preserving topological features. Their
approach detects critical points of a piecewise linear bivari-
ate scalar field f (x,y). In this approach, “critical vertices”
are those vertices for which the “normal space” of the sur-
rounding triangle platelet contains the vector (0,0,1). In-
tegral curves are computed by tracing edges of triangles
along a “ridge” or “channel.” Bajaj and Schikore’s method
incorporates an error measure and can be used for topology-
preserving mesh simplification.

Gerstner and Pajarola [12] defined a bisection scheme that
enumerates all grid points of a rectilinear grid in a tetrahe-
dral hierarchy. Using piecewise linear interpolation in tetra-
hedra, critical points can be detected. Data sets are simpli-
fied by specifying a traversal scheme that descends only as
deep into the tetrahedral hierarchy as necessary to preserve
topology within a certain error bound. The method incorpo-
rates heuristics that assign importance values to topological
features, enabling controlled topology simplification.

Our method for detecting critical regions extends the work
of Weber et al. [22]. They consider piecewise trilinear data
sets and detect critical points at grid vertices, faces, and the
interior of cells. To ensure that topological changes only oc-
cur at isolated points, they impose the constraint that two
edge-connected vertices must differ in value. If that condi-
tion is violated the classification step skips that vertex and
proceeds. Each vertex is classified by considering its six
edge-connected neighbors. Using a precomputed case table
with 64 entries that is manually precomputed using a crite-
rion based on Gerstner and Pajarola’s work [12], they clas-
sify each vertex.

Isosurface extraction is commonly used in scientific visu-
alization. Isosurfaces of data defined on rectilinear, hexahe-
dral grids are commonly extracted using the marching cubes
(MC) method introduced by Lorensen and Cline [14]. Due to
topological inconsistencies the original algorithm could pro-
duce holes in an extracted isosurface, see, for example, [7].
Several authors have proposed extensions [5, 6, 16, 17, 19]
to the original algorithm with the aim of generating con-
sistent and topologically correct isosurfaces. Most recently,
Nielson [18] has provided an in-depth analysis of the tri-
linear interpolant resulting in a consistent and topologically
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correct implementation of MC. In his doctoral dissertation,
Lopes [13] proposed the use of additional points in a cell’s
interior to improve accuracy of isosurfaces extracted by the
MC method. We use his approach with a minor correction
motivated by the work of Nielson [18] to extract topologi-
cally meaningful isosurfaces.

3. Critical Points and Critical Regions

Considering a C2-continuous function f , critical points oc-
cur where the gradient ∇ f vanishes, i.e., where ∇ f = 0.
The type of a critical point can be determined by the signs of
the eigenvalues of the Hessian of f . Trilinear interpolation,
when applied individually to the rectilinear grid cells dis-
cretizing a domain, produces, in general, only C0-continuous
functions.

Critical points can also be defined for discrete data sets.
Scalar fields defined on simplicial meshes using piecewise
linear interpolation have been subject of intensive research.
By considering the definitions from calculus, it is possible to
classify a point by considering its neighborhood. The result-
ing criteria lead to Definition 1, given in [22], which is based
on the work of Banchoff [4]. It can also be used for discrete
data. An extension allows us to define critical regions:

Definition 1 (Regular and Critical Points) Let M ⊂R
3 be

a mesh and F : M → R be a C0-continuous function that is
C∞-continuous in each grid cell. A point x∈R

3 is called (a)
regular or ordinary, (b) minimum, (c) maximum, (d) saddle,
(e) extended minimum, (f) extended maximum, (g) extended
saddle, or (h) flat point of F, if for all ε > 0 there exists
a neighborhood U ⊂ Uε(x) with the following properties:
If ˙⋃np

i=1Pi is a partition of the preimage of (F(x),+∞) in
U −{x} into “positive” connected components, ˙⋃nn

j= jN j is
a partition of the preimage of (−∞,F(x)) in U −{x} into
“negative” connected components, and

⋃̇nz
k=1Zk is the par-

tition of the preimage of {F (x)} in U −{x} into “zero set”
connected components, then (a) np = nn = nz = 1, (b) np = 1
and nn = nz = 0 (and U contains only ordinary points),
(c) nn = 1 and np = nz = 0 (and U contains only ordinary
points), (d) np +nn > 2, np,nn ≥ 1, nz > 1 (and U only con-
tains ordinary points), (e) np = 1, nn = 0, nz ≥ 1 (and U con-
tains non-ordinary points), (f) nn = 1, np = 0, nz ≥ 1 (and
U contains non-ordinary points), (g) np + nn > 2, nz = 1
(and U contains non-ordinary points), and (h) nz = 1 and
np = nn = 0.

Remark 1 The zero set corresponds to the level set for the
value at x.

Remark 2 Definition 1 is a modified form of Definition 1
from [22]. The original definition added the zero set to both
positive and negative sets. However, to extend the concept
of critical points to critical regions it becomes necessary to
consider the zero set individually.

(a) (b) (c) (d)

Figure 1: (a) Around a regular point x ∈ R
3, the isosurface

F−1(F(x)) divides space into a single connected volume P
with F > 0 (dark gray) and a single connected volume N
with F < 0 (white). (b)/(c) Around a minimum/maximum, all
points in U have a larger/smaller value than F(x). (d) In
case of a saddle, there are multiple (more than one) regions
with values larger or smaller than the value F(x).

Remark 3 Cases (a) – (d) describe localized critical and
regular points and are illustrated in Figure 1. These defini-
tions are equivalent to those used in topology and Morse
theory. Cases (e) – (g) extend these concepts to extended re-
gions. An extended minimum/maximum/saddle corresponds
to a region where each point in the region is a mini-
mum/maximum/saddle according to the original definition
in [22]. Concerning case (h), all points in U have the same
value as F(x), i.e., the region has constant value.

Remark 4 When U is small enough, the non-ordinary
points inside U all have the same value F(x): Inside a cell,
this stems from the fact that the derivative is zero at a non-
ordinary point and one can separate the regions with zero
derivative. At faces, this fact holds since critical points on a
face are also critical points for the bilinear interpolant, and
the derivative of the bilinear interpolant is used to provide
the answer. On an edge, it suffices to consider the linear in-
terpolant, which leads to the same result. Finally, vertices of
the grid have a neighborhood of points on edges, faces and
cell interiors.

For a localized minimum/maximum the mini-
mum/maximum is completely surrounded by larger/smaller
values. In both cases, nz is zero. If nz is one, each neigh-
borhood contains points with the same function value. Each
of these points of same value would also be a minimum
according to the original definition in [22]. (In that definition
the zero set is also included in the positive and negative
components.) At a saddle, surface components merge at a
point or along a region. The zero set corresponds to the level
set of the saddle value with the currently considered location
“cut out.” For a localized saddle, the level set at a saddle
corresponds to several surface components that meet in a
point. If this point is removed, these surface components
become disconnected, i.e., nz > 1. If the saddle is along a
region, the surface components meet along that region. If
one location is cut out, these components remain connected,
i.e., nz = 1. Thus, the number of components of the zero
set determines whether there are non-ordinary points in
each neighborhood. This fact holds for the 3D case, but it
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does not hold for the 2D case. In the 2D case, the zero set
would be partitioned into more than one components when
a saddle is “cut out,” regardless whether it is a face saddle
or not.

We can use the concept of an extended minimum, maxi-
mum, and saddle in combination with flat points to define
larger regions that are critical, i.e., larger regions around
which isosurface topology changes. We therefore extend the
definitions of distance and neighborhood:

Definition 2 (Region Distance) Let R be a connected re-
gion and ‖x‖ be a norm. The distance ‖x− R‖ of a point
p to a region is the infimum of distances of p to all locations
inside that region, i.e., ‖x−R‖ := inf{‖x− y‖,y ∈ R}.

Definition 3 (Region Neighborhood) Let R be a connected
region. The ε neighborhood Uε(R) of R consists of all loca-
tions that have a distance less than ε from R, i.e., Uε(R) :=
{x,‖x−R‖ < ε}.

Definition 4 (Classification Region) A connected region
R ⊂ R

3 in space is a classification region if the following
statement holds: Each point x ∈ R is a flat point, an extended
minimum, an extended maximum, or an extended saddle ac-
cording to Definition 1, and R has maximal size, i.e., each
point in an ε neighborhood around R is an ordinary point
according to Definition 1.

Remark 5 A Classification Region consists of points that
cannot be classified locally but must be classified by also
considering surrounding locations.

Definition 5 (Regular and Critical Regions) Let M ⊂ R
3

be a mesh and F : M → R be a C0-continuous function that
is C∞-continuous in each grid cell. A classification region
R ⊂ R

3 is called (a) regular, (b) minimum, (c) maximum,
or (d) saddle of F, if for all ε > 0 there exists a neighbor-
hood U ⊂ Uε(R) with the following properties: If ˙⋃np

i=1Pi is
a partition of the preimage of (F(R),+∞) in U − R into
“positive” connected components,

⋃̇nn
j= jN j is a partition

of the preimage of (−∞,F(R)) in U − R into “negative”
connected components, and

⋃̇nz
k=1Zk is the partition of the

preimage of {F (R)} in U−R into zero set connected compo-
nents, then (a) np = nn = nz = 1, (b) np ≥ 1 and nn = nz = 0,
(c) nn ≥ 1 and np = nz = 0, and (d) np +nn > 2 and nz = 1.

4. Connected Components in a Single Cell

We classify a region by examining those hexahedral cells
that contain its neighborhood. Within a cell, we are con-
cerned with one trilinear function. If we need to determine
connected components in a neighborhood around a classifi-
cation region, we need to know its behavior in single cells.
The following paragraphs provide proofs that document the
correctness of our method.

(a) (b)

Figure 2: With respect to the L∞-norm, the intersection
of the neighborhood with a cell is a collection of boxes. If
the neighborhood is chosen sufficiently small, vertices of the
boxes that do not coincide with cell vertices or faces have the
same polarity as an edge-connected vertex, and their corre-
sponding region is also connected to one of the cell’s edges.

Lemma 1 Let C be a rectilinear cell with trilinear in-
terpolation applied to it and v be an arbitrary value.
Each maximum-extended connected positive region R ⊂
f−1((v,+∞)) contains at least one vertex of C.

Proof A maximum-extended connected region with values
> v contains a local maximum within its compact closure.
Since trilinear interpolation only allows a maximum in the
vertices of a cell to exist, R contains a vertex. �

(The same lemma holds for negative connected regions.)

Lemma 2 Let C be a trilinearly interpolated rectilinear cell
that intersects the classification region R, i.e., a cell that con-
tains a number of vertices that belong to the classification
region with a value of v. Each connected positive or neg-
ative region in the neighborhood of R intersecting C, i.e.,
Uε(R)∩C, contains a part of an edge of the cell that starts
at a vertex belonging to the classification region. (The vertex
itself does not belong to the region.)

Proof (sketch) Consider the L∞-norm. A neighborhood
around a point is a cube, and a neighborhood around an edge
or a face is a (rectilinear) cuboid/box. The neighborhood
around a collection of points, edges, and faces is a set of
boxes. The intersection of the neighborhood with the cell is
also a set of boxes, see Figure 2. Values are trilinearly inter-
polated within each box. Vertices of a box coincide with ver-
tices of the cell, its edges, or lie in its interior. If we choose
a sufficiently small neighborhood, the vertices in the interior
have the same polarity as one of their edge-connected neigh-
bor vertices. Each connected region in one of the boxes is
connected to one of the vertices of that box. This vertex,
in turn, is connected to a vertex that lies either on an edge
of C or coincides with one of its vertices belonging to the
classification region. Thus, each positive- and each negative-
connected component within the neighborhood is connected
to an edge emanating from a vertex of the classification re-
gion. �

Furthermore, if two edges of same polarity are connected
within the intersection of a cell’s face with the neighborhood
of the classification region, their corresponding regions are
also connected. Additionally, “being connected” is a transi-
tive property, i.e., , if edge (region) A is connected to edge
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(region) B and edge (region) B is connected to edge (region)
C, then edge (region) A and edge (region) C are connected
as well.

5. Detecting Critical Regions

5.1. Overview

Our algorithm detects critical regions in a two-pass ap-
proach. First, we perform a pass that classifies all grid ver-
tices that can be classified locally, i.e., all grid vertices whose
edge-connected neighbors differ in value. This local classifi-
cation is performed as described in [22]. Using the polarities
of the six edge-connected neighbor vertices, an index for a
64 entry look-up table (LUT) is computed. The type of ver-
tex is then read from a manually generated LUT. Vertices
that cannot be classified locally are marked by setting an as-
sociated flag, see Figure 3(a).

Second, this flag is used in a subsequent pass that han-
dles global classification. The next vertex that belongs to a
region that needs to be classified is located. Starting with
this seed vertex we perform a “flood fill” operation that re-
cursively adds all vertices having the same associated scalar
value as the seed vertex and are edge-connected to the cur-
rent vertex. While adding these vertices to the classification
region we reset the associated flag that marks the vertex as
belonging to an unclassified region. We also maintain an up-
dated bounding box that contains all marked vertices. After
the flood fill we have a bounding box, shown as dotted rect-
angle in Figure 3(b), containing all vertices belonging to the
current classification region. All vertices belonging to this
region are flagged. We extend the bounding box containing
all vertices of the classification region to a bounding box of
grid cells such that no vertex belonging to the classification
regions lies on the boundary of this bounding box, shown as
dashed rectangle in Figure 3(b).

We classify a region by constructing two graphs whose
connected components correspond to connected regions in a
neighborhood around that region. One graph corresponds to
positive regions, and another graph corresponds to negative
regions. These graphs are constructed by marching through
all cells of the extended bounding box and adding nodes
and edges to this graph cell-by-cell. It follows from our ob-
servations (Section 4) that for each cell a connected region
in the neighborhood of the classification region contains at
least one edge starting from a vertex of the classification re-
gion. Thus, we can represent connectivity of these regions
by considering all edges that originate in a vertex belong-
ing to the classification region. For each of those edges, we
create a node in one of the graphs representing the classifi-
cation region neighborhood. To add edges as nodes to one of
the graphs, we assign a unique identification number to each
edge in a grid by effectively numbering all edges of the grid.
This step ensures that the same node in the neighborhood
graph is accessed for two cells sharing that edge.

v0 v1

v4 v5

v6
v7

y
z
x

e5

e6

e0

e7e3 e8

e2
e1

e11

e10

e9

e4

v3 v2

Figure 4: Vertex (v0–v8)and edge (e0–e11) numbering
scheme employed in this paper. Vertex numbers are also used
to determine the topology case number.

Once the two graphs representing the neighborhood of a
region are constructed, a region can be classified by counting
the connected components in them. The graph in Figure 3(c),
for example, indicates that the classified region is a saddle.
When a region is classified, the search for the next vertex
belonging to an unclassified region proceeds until all vertices
of the grid are checked.

5.2. Constructing the Connectivity Graphs within a Cell

Within a cell the graph is constructed based on the vertex
configuration within the cell. A main case is determined
based on which vertices of the current cell belong to the clas-
sification region. The vertices of a cell are numbered accord-
ing to Figure 4 and a look-up index is computed by setting
the corresponding bit for each vertex belonging to the classi-
fication region. This step results in an index referencing one
of 256 possible cases. Considering rotational symmetry this
number can be reduced to 23 base cases, shown in Figure
5. (This approach is similar to symmetry consideration, and
our numbering of base cases corresponds to the numbering
scheme used in [18].)

We reference an LUT that contains the base case num-
ber and permutations of vertices, edges, and faces that map
vertex, edge, and face numbers of the current case to ver-
tex, edge, and face numbers of the corresponding base case.
We then construct the edge graph for a cell by calling a func-
tion that handles the corresponding base case. Whenever this
function references a vertex, edge, or face of the cell it does
so via the corresponding permutation function for the current
topology case index.

We add all edges connecting the classification region to
positive vertices as nodes to the positive-components graph
and all edges connecting the classification region to nega-
tive vertices to the negative-components graph. If a pair of
edges belongs to the same connected region in a cell, we
connect the corresponding nodes in the positive or negative
edge graph. When cell marching terminates, the connected
components in one graph correspond to positive-connected
regions, and the connected components in the other graph
correspond to negative-connected regions.

We first consider cases C0 and C22. For case C0, a cell
does not contain any vertices of the classification region and
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(a) (b) (c)

Figure 3: Stages of the algorithm: (a) After the local pass all vertices that cannot be classified locally are marked with a flag
(indicated by a rectangle around these vertices in the figure). Once the first flagged vertex is determined we perform a flood fill
that marks all vertices belonging to the classification section (marked by solid black disks in the figure). The region is classified
by constructing two graphs, one representing positive- and one representing negative-connected regions in the neighborhood
around the classification region. For each edge originating in a vertex belonging to the classification region, a corresponding
node in the graph exists (shown as dark and light gray solid rectangles). Two nodes in the graph are connected when the
corresponding edges belong to the same connected region in a cell. A region can be classified by counting the connected
components in the two graphs.

C0 C1 C2 C3 C4 C5 C6 C7

C8 C9 C10 C11 C12 C13 C14 C15

C16 C17 C18 C19 C20 C21 C22
Figure 5: Base cases for constructing graphs that represent positive and negative regions around a classification region. A case
number is determined according to which vertices belong to the classification region (marked as solid black disks). The other
vertices can assume arbitrary values different from the value of the classification region.

thus does not intersect the ε-neighborhood of the classifica-
tion region. A C22 cell belongs completely to the classifica-
tion region and does not intersect the neighborhood either.
Cells of these types can be skipped during graph construc-
tion.

Cases C3, C4, C6, C7, C10, and C13 are handled by con-
sidering them as a combination of single vertices or single
edges belonging to the classification area. If we consider, for
example, case C3, we observe that two vertices belong to
the classification region. Both vertices have edge-connected
neighbor vertices that do not belong to the classification re-
gion. Thus, it is possible to handle them independently and
construct the neighborhood graphs for each vertex individ-
ually. Similarly, case C6, for example, can be handled by
constructing the graphs for an edge and for a vertex.

Constructing the neighborhood graph for a single vertex
corresponds to case C1. This is equivalent to the situation in

a single cell as described in [22]. The neighborhood around
the vertex in the classification region is partitioned in the
same way as in a linearly interpolated tetrahedron. Thus, in
this case all vertices of the same polarity are always con-
nected, and we only need to add edges between all edges of
equal polarities in the corresponding graph.

For the construction of the neighborhood graph of an
edge, we must consider 16 cases. (The edge is connected to
four vertices that do not belong to the classification region.)
By using symmetry and reversing polarities, it is possible
to reduce the number of cases to four possible sub-cases,
see Figure 6. Figure 6 shows possible configurations for the
edge-connected vertices that have either positive (gray) or
negative (white) polarity. Each edge has a corresponding
node in the classification graph (shown as white rectangles
for the negative graph and gray rectangles for the positive
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C2.0 C2.1 C2.2 C2.3

B

A
C

C2.4 C2.4.0 C2.4.1 C2.4.2

Figure 6: Sub-cases for connecting an edge.

Figure 7: Disambiguation for case C2.4.

graph). Two nodes are connected by a line segment when
they must be connected in their graph.

Cases C2.0 to C2.3 are derived from this observation: In
these cases, nodes of the same polarity are on a face, and they
are connected on the intersection of that face with the neigh-
borhood of the classification region. Since connectivity is
transitive, the actual connectivity graph is the transitive hull
of the graphs shown in the figure. However, we are only in-
terested in the number of connected components in a graph.
Thus, it suffices to add those edges to the graphs that are
shown in the figure. For case C2.4 two diagonally opposite
vertices have the same polarity. In this case, we must deter-
mine whether the positive vertices are connected (C2.4.0),
whether the negative vertices are connected (C2.4.1), or
whether all regions are separated (C2.4.2). To distinguish
between these cases, we first determine for which parame-
ter values tA and tB along the edges “A” and “B” the value of
the classification region is taken on. (For both parameter val-
ues, zero corresponds to the “left” end of the edge and one
to the “right” end of the edge.) If tA < tB then the regions
belonging to v2 and v4, i.e., the negative regions, overlap. If
tA > tB, the regions belonging to vertices v3 and v5, i.e., the
positive regions, overlap. If tA = tB, the bilinear slice through
the cell at that parameter value contains three vertices with
the value of the classification region. The remaining vertex
on edge “C” determines the polarity of the whole face. If it is
positive, the positive vertices v3 and v5, along with their cor-
responding edges, are connected (C2.4.0); if it is negative,
the negative vertices v2 and v4, along with their correspond-
ing edges, are connected (C2.4.1). If it also has the value of
the classification region, all vertices and edges are separated
(C2.4.2). The remaining sub-cases can be derived from these
base cases.

For the remaining base cases, those vertices that do not
belong to the classification region, but are connected to
one of its vertices by an edge, are numbered. We subse-
quently compute a topology sub-case number by setting the

C5.0 C5.1 C5.2 C5.3

C5.4
Figure 8: Sub-cases for topology base case C5.

C8.0 C8.1 C8.2 C8.3
Figure 9: Sub-cases for topology base case C8.

bit for each positive vertex. These sub-cases can be derived
from a number of base sub-cases. Figure 8 shows base sub-
configurations for topology base case C5. (Edges e8 and e0
lead to the same non-classification region vertex on a face
and are connected within the intersection of a neighborhood
of the classification region with that face. Thus, their corre-
sponding nodes in the classification graph are always con-
nected.)

Similarly to the construction of the classification graph
for an edge, the graphs for most cases can be derived from
the fact that nodes for edges on the same face are connected
within the intersection of the region neighborhood and that
face if they have the same polarity and using transitivity of
the graph. Similarly to the edge case C2, only a minimum
number of edges needed to obtain a correct number of con-
nected components is given for the neighborhood graphs.
The actual neighborhood graphs are the transitive closure of
the graphs in the figure. Sub-configuration C5.4 is interest-
ing: In contrast to sub-configuration C2.4 no ambiguity ex-
ists. The bottom face has always the same polarity as vertex
v0. Because trilinear interpolation is continuous, a bilinear
slice close to the bottom face connects the vertices of the
same polarity as v0, i.e., v0 and v6. Thus, nodes for edges
leading from the classification region to these vertices must
be connected in the classification graph.

Case C8, see Figure 9, is similar to the case of handling an
edge belonging to the classification region. For cases C8.0 –
8.2 the same arguments can be used to derive the classifica-
tion graphs in each cell. It differs from the edge case in the
way ambiguities (C8.3) are resolved: All vertices of the bot-
tom face have the same value. Thus, contours on all bilinear
slices parallel to the top face are topologically equivalent to
contours on the top face. We use the asymptotic decider [19]
to determine connectivity on that face and connect negative
nodes, or positive nodes. If the saddle on the top face has the
same value as the classification region, no nodes are con-
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C9.0 C9.1
Figure 10: Sub-cases for topology base case C9.

C11.0 C11.1 C11.2 C11.3

C11.4 C11.5
Figure 11: Sub-cases for topology base case C11.

nected. In this case, the saddle on that face is connected to
the classification region via an “extended” internal cell sad-
dle (see Section 5.3). To classify the region correctly in this
case it would be necessary to trace that saddle and combine
region classification with classification of extended face sad-
dles. We currently do not do this. The neighborhood graphs
for base case C9, see Figure 10, can be constructed using the
same arguments as for case C5.

Figure 11 shows the classification graphs for sub-cases of
topology case C11. The graphs for cases C11.0-C11.4 can be
constructed using the same observations as for base case C5.
For sub-case C11.5 we observe that all positive regions are
connected since the complete bottom and back faces have
positive polarity.

Case C12 is a combination of base case C5 and vertex case
C1. Case C14 can be obtained by “mirroring” base case C11.
Base case C15 is a combination of base case C9 and vertex
case C1. Base case C16 has only three vertices that do not
belong to the classification region. If a pair of vertices has
the same polarity, it is alway connected in the neighborhood
of the classification region. For base cases C17, C19, and
C20, all vertices not belonging to the classification region
lie on a single face. Furthermore, on this face they are al-
ways connected, when they have the same polarity. Thus, in
these cases vertices of equal polarity are always connected.
Base case C18 contains only two vertices that do not belong
to the classification region. If these vertices have the same
polarity, they are connected. Case C21 consists of only one
vertex. In this case, it is necessary to connect the nodes in the
classification graph that correspond to its incoming edges.

5.3. Detecting Saddles on a Cell Faces and within its
Interior

We currently detect saddles on a cell’s faces and within its
interior using the same criteria that are described in [22].

On cell faces, saddles of the bilinear interpolant are de-
tected. Subsequently we determine by considering the ad-
jacent cells, whether that saddle is a saddle of the piecewise
trilinear interpolant. We note, that internal saddle need not
occur at isolated points anymore. The gradient of the inter-
polant within a cell can be zero along a line or a hyperbolic
curve that connects two cell face saddles. In some cases, it
is not possible, to determine locally, whether a face saddle is
a saddle of the piecewise trilinear interpolant. We currently
discard these cases. To handle them correctly, it is necessary
to combine face saddles and extended interior saddles and
classify them together.

6. Applications

A convenient way to use critical isovalues is to provide a user
with a navigational tool in addition to an isosurface viewer.
Prior to starting an isosurface viewer, critical points, critical
regions, and corresponding isovalues can be computed and
displayed in an “isovalue navigator” window. In this win-
dow, critical isovalues are listed along with a correspond-
ing type (vertex minimum, vertex maximum, vertex saddle,
face saddle, interior saddle, region minimum, region max-
imum, region saddle). When a user selects a critical point,
its corresponding position in space is marked by a sphere
whose color depends on the type (blue, red, and green rep-
resenting minimum, maximum, or saddle, respectively). For
regions we mark its position by a point set with a color cor-
responding to type. Buttons allow a user to set the isovalue
of a displayed isosurface to a value slightly below, equal to,
or slightly above a critical isovalue. The isovalue offset for
the isosurfaces below and above a chosen critical isovalue is
specified in a text field.

In data sets containing several “nested isosurfaces,” i.e.,
data sets where one isosurface component is completely con-
tained within another, it can be difficult to locate a critical
point, even if its position is marked. The “isovalue naviga-
tor” contains a button that positions the camera so that the
viewing focus is the critical point. For critical regions we
position the camera to view the centroid of the critical re-
gion.

Critical isovalues can guide in the construction of transfer
functions. Given a list of critical isovalues we can construct
a corresponding transfer function based on the methods de-
scribed in [22], which, in turn, are based on the work of Fu-
jishiro et al. [9, 11].

7. Results

Figure 12 shows a region maximum of value 190 in the
“Nucleon” data set (courtesy of SFB 382 of the Ger-
man Research Council (DFG), available at http://www.
volvis.org) which was missed by the previous approach
[22]. In the neighborhood of this maximum a torus-shaped
isosurface component disappears.
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(a) (b)

Figure 12: Region maximum in “Nucleon” data set (cour-
tesy of SFB 382 of the German Research Council (DFG)).
(a) Isosurface for an isovalue slightly below the maximum.
(b) Isosurface for an isovalue slightly above the maximum.

Figure 13 shows results obtained by applying topologi-
cal analysis to the “Hydrogen” data set (courtesy of SFB
382 of the German Research Council (DFG), available at
http://www.volvis.org). Figures 13 (a) and 13 (b)
show volume-rendered images of the data set using trans-
fer functions that were automatically generated from a list
of critical isovalues. Figures 13 (c) – (l) show a topological
analysis of the same data set using isosurfaces.

8. Conclusions and Future Work

We have presented an algorithm that determines critical re-
gions for minima, maxima, and saddles. Our approach de-
tects exact regions for maxima and minima. Region saddles
are detected, and our approach can mark a large region as
a saddle, a region larger than the actual saddle region. We
plan to extend our approach to detect exact regions of sad-
dles. Handling of face saddles and internal saddles should be
merged into a combined step that traces saddles in the inte-
rior of cells, even though this case rarely occurs. It should be
possible to adapt our approach to detect critical regions for
piecewise linear simplicial meshes. Developing additional
automatic transfer function schemes could also help in gain-
ing insight in data sets containing a large number of critical
regions/points and isovalues.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

(k) (l)

Figure 13: Topological analysis of the “Hydrogen” data set: (a), (b) Volume rendered images with automatically generated
transfer functions emphasizing topological changes (a) and zones of similar topological behavior (b); (c) – (l) topological
structure; (c) around a region minim having a value of zero, two components appear simultaneously; (d), (e) at a saddle region
having a value of 3.5, a hole in one surface component closes; (f), (g) the “inner” surface is separated into three disjoint
components along two saddle regions having a value of 12; (h) a close-up of one of the two saddle regions having a value of 12;
(i), (j) The “ring” component disappears around a region maximum having a value of 36; (k),(l) Two components disappear at
two region maxima having a value of 80; The remaining component disappears around a localized maximum having a value of
250; (Data set courtesy of SFB 382 of the German Research Council (DFG).)
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Figure 13: Topological analysis of the “Hydrogen” data set: (a), (b) Volume rendered images with automatically generated
transfer functions emphasizing topological changes (a) and zones of similar topological behavior (b); (c) – (l) topological
structure; (c) around a region minim having a value of zero, two components appear simultaneously; (d), (e) at a saddle region
having a value of 3.5, a hole in one surface component closes; (f), (g) the “inner” surface is separated into three disjoint
components along two saddle regions having a value of 12; (h) a close-up of one of the two saddle regions having a value of 12;
(i), (j) The “ring” component disappears around a region maximum having a value of 36; (k),(l) Two components disappear at
two region maxima having a value of 80; The remaining component disappears around a localized maximum having a value of
250; (Data set courtesy of SFB 382 of the German Research Council (DFG).)
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