
Eurographics/ IEEE-VGTC Symposium on Visualization (2007)
Ken Museth, Torsten Möller, and Anders Ynnerman (Editors)

Interactive Visual Exploration of Unsteady 3D Flows

K. Bürger†, J. Schneider, P. Kondratieva, J. Krüger, R. Westermann

Computer Graphics and Visualization Group, Technische Universität München

Abstract
In this paper we present GPU-based techniques for the interactive visualization of large unsteady 3D flow fields
on uniform grids. We propose a novel dual-core approach to asynchronously stream such fields from the CPU,
thus enabling the efficient exploration of large time-resolved sequences. This approach decouples visualization
from data handling, resulting in interactive frame rates. Built upon a previously published GPU particle engine
for flow visualization we have developed new strategies to compute and to visualize path lines and streak lines on
the GPU. To provide additional visual cues, focus+context techniques for polygonal meshes have been integrated.
The proposed techniques are used in the visual analysis of the Terashake 2.1 earthquake simulation data, and they
have been shown to be very effective in revealing the relevant information in this data.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism

Keywords: Flow visualization; unsteady flow; GPU-based techniques; particle engine

1. Introduction

Interactive visual exploration of unsteady 3D flows is still
one of the grand challenges in many areas of science and
engineering. Popular applications where such fields arise in-
clude computational fluid dynamics and mechanics, as well
as medical imaging techniques like functional CT. In the
unsteady case the expert gains insight into the underlying
physical phenomena especially from the dynamics of the
flow. Consequently there is a dire need for real-time tech-
niques that provide rapid visual feedback. These techniques,
however, have to be supported by interactive and intuitive
metaphors to enable the user to focus on relevant details and
to flexibly select the most appropriate visualization option.
Only then the massive amount of 3D information provided
to the user can be filtered adequately.

Despite the advances in CPU and graphics hardware
technology, existing visualization techniques for reasonably
sized unsteady 3D flow fields still cannot run at acceptable
rates. As numerical and rendering capabilities continue to in-
crease, so does the size of the data sets to be visualized. To-
day, time-resolved numerical simulations comprised of bil-

† buergerk@in.tum.de

Figure 1: Visualization of the time-resolved Terashake 2.1 simu-
lation data. On a dual core processor equipped with a single GPU
particle-based visualization using 256K primitives in combination
with volume rendering runs at over 40 fps.

lions of grid points are available, making the visualization
difficult due to memory constraints. Figure 1 shows such a
gigantic field that consists of 227 time steps at resolution
750×375×100 and requires over 70GB to store velocity in-
formation. As these requirements will continuously increase
in the future, there is a dire need for flow visualization tech-
niques that comprehensively address these issues.

c© The Eurographics Association 2007.

http://www.eg.org
http://diglib.eg.org

K. Bürger et al. / Interactive Visual Exploration of Unsteady 3D Flows

In this paper, we present a novel visualization technique
for unsteady 3D flow fields that addresses the aforemen-
tioned requirements. This technique is based on a streaming
approach for time-resolved sequences. Compared to previ-
ous visualization techniques for such fields, both the map-
ping of visualization data onto renderable primitives and the
rendering of these primitives is performed entirely on the
GPU. Our approach has the following properties:

• Memory efficiency: Asynchronous streaming of the data
allows the visualization of an unlimited amount of time
steps. Recent advances of multi-core architectures are ex-
ploited to abstract from the limited size of the local GPU
memory.

• Exploration efficiency: Since the reconstruction of local
flow features – e.g. stream, streak, and path lines, as well
as derived scalar quantities – is integrated into the ren-
dering process on the GPU, our system provides instanta-
neous visual feedback to the user. This accommodates a
more efficient and better understanding of even very com-
plex flow phenomena.

• Visualization efficiency: Particle tracing and the compu-
tation of characteristic lines is performed on the GPU to
visualize the dynamics of unsteady flows. This results in
a significant performance gain compared to previous ap-
proaches.

• Cost efficiency: The visualization techniques presented
in this work are especially designed for off-the-shelf PC
hardware.

To further assist the user in the analysis of complex flows,
focus+context techniques have been integrated. These tech-
niques enable the user to emphasize selected regions of inter-
est and to reduce the massive amount of 3D information typ-
ically produced by particle-based visualization techniques.
It also eases the problem of occlusions typically inherent to
3D flow visualization techniques. The current system sup-
ports the visualization of polygonal models to better reveal
the spatial relationships between flow structures and bound-
aries of the flow domain, as well as arbitrary clip geometries
to restrict the visualization to the regions of interest.

To verify the effectiveness of the presented techniques
they have been used for the visual analysis of the Terashake
2.1 earthquake simulation data [ODM∗06] provided in the
context of the IEEE Visualization 2006 Contest. This contest
is designed to foster comparison of visualization techniques
and to provide benchmarks for the visualization community
based on a particular subject of visualization. By showing
that correct answers to dedicated questions from a team of
experts can be obtained primarily via visual data exploration,
the effectiveness of the used techniques was to be proven. As
will be shown by a number of results throughout the remain-
der of this paper, the techniques we propose are very effec-
tive in revealing the relevant information in this particular
data set. By a number of additional examples this observa-
tion is backed up.

The remainder of this paper is organized as follows: In the
next section we will discuss related work. Data handling and
transfer issues inherent to visualization techniques for un-
steady flow fields will be addressed in Section 3. The GPU-
based particle engine is presented in Section 4. Next, various
visualization options are discussed. To validate our results
we present some insight we gained when working with the
Terashake data set and additional simulation results. We fi-
nally suggest a number of directions for future research.

2. Related Work

In contrast to steady 3D and unsteady 2D flow, the literature
on interactive techniques for unsteady 3D flow is amazingly
sparse. In this section, we will review existing approaches
and try to motivate how our system can fill this gap. Unlike
Laramee et al. [LEW∗06], we will classify approaches more
coarsely into dense methods and sparse methods.

Dense methods [LHD∗04] seek to reconstruct all char-
acteristic lines at once. To overcome occlusion effects, the
process is usually restricted to regions of interest, such as
vortex regions [WSE05] or stream surfaces [Sta98]. The re-
striction to regions of interest culminates in image-based
techniques [vW03, LJH03], which trade highly interactive
frame rates, even for unsteady flow, versus artifacts due to
the screen-aligned nature of the regions. Traditionally, un-
steady fields are problematic, since it is not a priori clear how
non-instantaneous characteristics such as streak or path lines
can be integrated into dense methods [FC95, SK97]. The
problem of spatio-temporal coherence is is mostly treated
by recent publications [WSE05], but at considerable effort.
Lately, several authors propose to exploit the GPU to achieve
significant speed-ups [JEH01, WSE05, LTH06]. Especially
for 3D flow, occlusion effects can be alleviated by generat-
ing different views interactively. Even more, the motion par-
allax provides an excellent depth cue. Furthermore, an an-
imated visualization clearly shows the dynamic structures,
while communicating both direction and magnitude of the
flow. Mapping the time axis into the final image may still be
feasible for 2D unsteady flow [STW∗06], but in 3D it can-
not be understood intuitively. Consequently, we mandate to
preserve the time axis as an important feature of the data set.

In contrast, sparse methods reconstruct characteristic
lines only at specific, discrete locations. Particle tracing
[SvWHP94, BL91] and the reconstruction of stream, streak,
and path lines [Lan96] fall into this category. Also methods
seeking to extract topological structures [HH89, TSW∗05]
or features in general [PVH∗03] can be considered sparse
methods. Both classes are appealing in their own right, de-
pending on which aspects of the data should be empha-
sized; however, Figure 2 clearly demonstrates that for large
amounts of primitives sparse methods naturally converge to-
wards dense methods. Most sparse methods pay particular
attention to proper seeding strategies [TB96,PBL∗05]. How-
ever, recent work by Wiebel et al. [WS05] indicates—maybe

c© The Eurographics Association 2007.

252

K. Bürger et al. / Interactive Visual Exploration of Unsteady 3D Flows

opposing common belief—that there is a need for a simple,
controllable, and very localized probing metaphor. Mim-
icking the dye- and smoke-injection of real-life windtunnel
experiments, such a metaphor elegantly circumvents prob-
lems naturally arising when seeding in unsteady flow fields.
Krüger et al. [KKKW05] show that a probing metaphor com-
bined with rapid visual feedback is a convenient and highly
effective method to explore the complex dynamic structures
present in many flow fields. Probing the flow is a very intu-
itive and valuable tool that gives engineers full control of the
visualization process, rather than forcing them to rely on an
automatic seeding algorithm.

Figure 2: Visualization of a large eddy simulation of the flow
around a cylinder. Dense particle sets are visualized using oriented
rendering primitives to achieve a “LIC-like” look.

For 3D unsteady flow, recent methods seeking to extract
topological features [GTS04,TSW∗05] yield both significant
and non-trivial insight into the data, but most of them can-
not run at interactive rates. Also, since critical points are not
Galilean-invariant, such methods might not be suited for ev-
ery application.

To achieve interactivity when visualizing large, steady
flow fields, some authors [BKHJ01,EGM04] propose to pre-
compute a large amount of particle traces and to store them
in external memory. During visualization, visible traces are
paged in [CE97]. While these systems can manage bil-
lions of particles, storage and pre-processing requirements
are tremendous and can become prohibitive quickly. Also,
a flexible choice of rendering primitives is not addressed.
Ueng et al. [USM97] propose an out-of-core algorithm to
perform stream line reconstruction. Ahrens et al. [ABM∗01]
utilize a large computing cluster to perform parallel data
streaming and visualization, but none of these approaches
addresses 3D unsteady flow.

3. Data Handling

In this section we describe the necessary modifications to
the GPU-based particle engine proposed by Krüger et al.
[KKKW05] to enable interactive visualization of unsteady
3D flows, given in form of a discrete set of vector fields. On
the GPU these fields are stored in 3D textures, enabling effi-
cient access to interpolated velocities. The extended engine

employs multi-threading by assigning one thread to con-
secutively stream one time step after another from disc to
the GPU, and another thread to manage visualization spe-
cific GPU calls. Since these threads are concurrent per se,
the visualization process is entirely decoupled and mostly
unaware of the streaming data upload. Consequently, data
transfer does not block the visualization thread.

To advect particles seamlessly in an unsteady field ṽ rep-
resented by a discrete set of vector fields {ṽ(ti), i ∈ [1,n]} at
time steps ti, we need to store at least three fields in GPU
memory. For example, Euler integration requires read ac-
cess to two fields at times ti, ti+1, and a third field ti+2 has
to be available once time integration proceeds beyond ti+1.
By implementing a ring buffer, we can dynamically choose
how many time steps to keep on the GPU, depending on the
order of the time-integration scheme. As soon as the time
index t of the visualization enters the interval [ti, ti+1], the
memory manager is notified. The manager then advances in
the sequence by overwriting the GPU container storing time
step ti−1 with the next time step ti+2 (see Figure 3). This
leads to a very smooth transition in time, and, if the time
needed to stream the next time step is smaller than the phys-
ical time associated with one interval, the whole sequence
can be explored in real time.

Since graphics cards lack the ability to fetch data directly
from disk, the memory manager prefeches as many time
steps as possible from disk and stores them in CPU system
memory. If the entire sequence fits into RAM, it is buffered
at application startup and can then be streamed without any
further disc access. Otherwise, the manager uses an addi-
tional ring buffer which provides containers for a system-
specific or user-defined number of data sets. This is illus-
trated on the right of Figure 3.

If only one thread is used to implement visualization and
data handling, both disc transfer and the upload of data to the
GPU will block the entire application. This is because both
operations are issued via blocking system calls. Decoupling
the two tasks into separate threads enables the particle en-
gine to issue rendering calls even while new data is streamed
to the GPU. Multi-core architectures benefit most from this
implementation; yet even for single core CPUs we observe
a significant gain in visualization performance. This is due
to the fact that the operating system scheduler alternatively
switches between the two threads, enabling parallel execu-
tion of data upload and rendering.

Currently, the GPU visualization module and the two
memory managers are running in two separate threads (see
Figure 3, left). Once the visualization thread enters the next
time interval, for which the required time steps are available,
it requests the next time step of the sequence that is not yet
resident via standard thread communication mechanisms.
The memory manager either acknowledges that this time
step has already been successfully uploaded to the GPU, or
the requested time step is streamed to the GPU. Afterwards,

c© The Eurographics Association 2007.

253

K. Bürger et al. / Interactive Visual Exploration of Unsteady 3D Flows

RAM�GPU Field

Particle Tracing

HD�RAM Field

t0 t1

t2

t3

t4

t2

t5

Particle Tracing [t 0,t 1]

RAM�GPU Field(t2)

HD�RAM Field(t5) HD�RAM Field(t6)

RAM�GPU Field(t3)

t1 t2

t3

t4

t5

t3

t6

Particle Tracing [t 1,t 2]

1

2

3

Figure 3: In the left and middle images one cycle performed by the
data handler when advancing in the sequence is depicted. The right-
most image illustrate the separation of the asynchronous stream
manager into distinct threads.

the system memory is updated, overwriting the block con-
taining the now obsolete time step. Note that in this scenario
contiguous streaming can be realized with only one buffer in
CPU system memory.

Table 1 compares the raw data throughput that is achieved
for streaming two different data sequences on different ar-
chitectures. Note that this throughput has been measured
with the visualization thread not imposing any additional
load. If visualization is enabled, including rasterization and
shader operations on the GPU, our experiments have shown
a loss in throughput of about 15%. Both test machines are
equipped with 3GB RAM, two WD Raptor 74GB hard-
disks in a RAID0, and an NVIDIA GeForce 7900GTX
with 512MB video memory. The single-core CPU is a P4
3.2GHZ, while the dual-core CPU is a Core2 Duo 6600. As
can be seen, on the dual-core architecture using the same
disk and memory system the multi-threading approach al-
ready yields a noticeable gain in throughput.

Table 1: Performance measurements of the stream manager under
various configurations.

Cylinder Flow (32 MB/Field) Terashake 2.1 (64 MB/Field)

HD → CPU CPU → GPU HD → CPU CPU → GPU

1-Core 90 MB/s 1130 MB/s 95 MB/s 1317 MB/s

2-Core 94 MB/s 1240 MB/s 100 MB/s 1590 MB/s

On future quad-/multi-core architectures the memory
management can be split further into separate threads to de-
couple streaming from disk to CPU and from CPU to GPU
(see Figure 3, right). Still, for off-the-shelf PCs, loading
from disk is clearly the bottleneck of the system. To alleviate
this problem we can simply prefetch additional time steps
into CPU system memory when the user restarts or pauses
the application. A further increase in performance can be
gained if more efficient RAID systems are employed.

4. GPU Particle Tracing

Particle tracing is realized by numerically solving the ordi-
nary differential equation

dx̃
dt

= ṽ(x̃(t), t) with x̃(t0) = x0,

where x̃(t) is the current particle position, dx
dt is the tangent to

the particle trajectory, and ṽ the interpolated unsteady field.
For a detailed description on the efficient implementation of
a GPU particle engine we refer the reader to [KKKW05].
The engine provides a set of integration schemes ranging
from Euler and Runge-Kutta to an embedded RK3(2), where
higher order time-integration schemes require multiple time
steps to be available on the GPU. Especially the RK3(2) has
proven itself to be a very reliable and convenient integration
scheme, since it provides fast, 3rd order integration and an
estimate ε of the integration error. While ε is usually used to
adapt the step size, in real-time applications such an adaption
compromises the physical interpretation of particle veloci-
ties. To avoid this problem, we use ε to hint the user about
the error visually and allow to adapt the step size manually.

Of all the modules of the GPU particle engine, only the
particle advection module has to be changed to account for
unsteady flow fields. This module will be described briefly
in the following.

Object-space particle positions are stored in RGB-color
components of a floating point texture of size M ×N, such
that M×N matches the amount of desired primitives. The α
component of each texture element contains the respective
particle’s lifetime. With respect to the asymmetric fragment
vs. vertex processing capabilities of recent GPUs, particle
advection is entirely performed in the fragment stage. Since
mutual exclusion prohibits concurrent read/write access to a
single texture, in each time step updated particle positions
are rendered into a second render target of the same size and
format as the current container (see Figure 4). These two
textures, A and B, are used in a “ping-pong”-like fashion; A
is the current read buffer containing old particle positions,
and B is the current write buffer to which the result of the
advection is written. After each advection cycle A and B are
swapped. The time steps required to integrate the particles’
characteristic lines are bound to 3D texture units.

Figure 4: A fragment stream is generated by rendering a quad that
covers as many pixels as there should be items in the stream.

For the sake of simplicity we will only discuss the imple-
mentation of an Euler scheme here, where two time steps

c© The Eurographics Association 2007.

254

K. Bürger et al. / Interactive Visual Exploration of Unsteady 3D Flows

suffice to perform the numerical integration over time. For
unsteady flows the field ṽ is sampled on a discrete space-
time lattice, which requires spatial and temporal interpola-
tion. Spatial interpolation is usually performed by the GPU,
temporal interpolation has to be implemented in a shader
program based on an appropriate linear interpolation weight
ω . This weight is fed into the pipeline as a shader variable
to perform the desired interpolation in time.

In a fragment shader the following operations are executed:

• Texture Access: Current particle positions and lifetimes
are read from buffer A.

• Death Test: The shader checks for invalid positions, i.e.
particles outside the domain or particles whose lifetime
has expired. If one of these conditions is true the particle is
reincarnated at a different location. Otherwise the particle
is advected through the flow.

– Advection: Based on each particle’s position p(t), t ∈
[ti, ti+1], values are fetched from both ṽ(ti) and ṽ(ti+1).
Additional fetches may be necessary if the hardware
does not support automatic spatial tri-linear interpola-
tion for the texture format used. Once tri-linearly inter-
polated values have been fetched, temporal interpola-
tion using ω yields the velocity ṽ(p̃(t), t). The particle
is then advected using the chosen integration scheme
and written to buffer B. If higher order integration
schemes are to be used, additional texture fetches have
to be performed. Compared to steady flow fields, the
amount of 3D texture fetches is at least doubled due to
quadri-linear vector interpolation.

– Reincarnation: Reincarnation is realized by using an
additional texture storing one starting position and
lifetime per particle (see [KKKW05] for full detail).
If a particle dies, its initial position and lifetime is
fetched and written to buffer B.

To render particles on the GPU we use the possibility to
access texture maps in vertex units. A static “dummy” vertex
buffer is stored on the GPU containing as many vertices as
there are particles. Whenever particles are displayed this ver-
tex buffer is rendered. A simple vertex shader then replaces
each dummy position with the respective particle’s position.
In this way, any readback to the system memory is avoided.

5. Visualization of Characteristic Lines

To offer additional visualization modes for unsteady flow
fields we have integrated GPU based construction of stream,
streak, and path lines into the particle engine. Figure 5 shows
such lines in an unsteady flow around a cylinder. For the
construction of characteristic lines particles are initially po-
sitioned inside a user-defined probe. The construction of
stream and path lines essentially uses particle advection as
described before. For the construction of streak lines, how-
ever, we perform a slightly different strategy. Throughout the

following discussion we will assume that characteristic lines
of M×N particles are to be computed.

5.1. Stream Lines

A stream line describes an instantaneous particle path, which
is a path of a particle in an unsteady flow frozen at time t.
Traces of all particles released are stored in a texture atlas
large enough to store L blocks of M ×N entries, where L is
the number of advection steps to be performed every frame.
If the size of this atlas exceeds the maximum texture size,
many of such atlases might have to be stored.

Particle advection is performed as described above, but
after each advection step the content of the output buffer is
copied into the respective part of the atlas. Once all particle
trajectories have been computed, a vertex buffer containing
L entries is rendered M×N times as a line strip, with a vertex
shader replacing vertex coordinates by the respective values
from the atlas. The application takes care of setting appropri-
ate 2D texture coordinate offsets as uniform shader variables
to correctly access the atlas.

5.2. Path Lines

A path line describes a particle trajectory over time in an un-
steady flow. GPU construction of path lines differs from the
construction of stream lines as only one advection step per
frame is computed in the time-varying field. Thus ω goes
periodically from 0 to 1 in user-defined increments and the
textures containing the ṽ(ti) are updated consecutively on the
GPU. If the number of positions along the path line exceeds
L, the texture atlas is accessed in a ring-like manner. This
means that in each frame the oldest of all stored positions
of a particle is overwritten by the current position. Since in
this way the start vertex of the lines to be rendered is shifted,
texture coordinates have to be adapted using modulo arith-
metic in the vertex shader. As a result, line primitives of
growing length are constructed and displayed. As soon as
the amount of traced positions (frames) exceeds L, the traces
start to move with the flow.

If a particle dies it cannot simply be reincarnated, as this
creates an incorrect line segment from the last position be-
fore the reincarnation to the new seed position. Instead, in-
visible line segments are generated in this case. The frag-
ment shader copies the old position but marks the particle by
setting its α-component to 0. Then the next advection step
determines that the particle dies, but also that it has been
marked during the last pass. In this case a new initial seed
position is read and the α-component is left at 0. In the next
step, the shader recognizes that the particle has been prop-
erly reincarnated during the last pass, and sets the α-channel
of the respective entry back to 1. The particular line seg-
ments can finally be masked out using α-blending.

In contrast to path lines, streak lines do not depict the his-

c© The Eurographics Association 2007.

255

K. Bürger et al. / Interactive Visual Exploration of Unsteady 3D Flows

Figure 5: Comparison between stream (white), streak (green) and path lines (red) in the same data set.

tory of particles moving in an unsteady flow, but rather de-
scribe the paths traced by dye continuously injected into the
flow at a fixed position. In this case all the positional infor-
mation stored in the texture atlas has to be updated every
frame. Thus, instead of using two ping-pong buffers of size
M×N, as in the construction of stream and path lines, these
two buffers now have to be as large as the entire texture at-
las. Note that all L×M ×N particles can be advected in a
single rendering pass. Again the atlas is implemented as a
ring buffer, seeding new initial positions after L frames into
the respective texture entries.

6. Discussion and Results

Compared to particle tracing in steady flows, the tracing
of particles in unsteady flows is more time-consuming due
to the following reasons: Firstly, the velocity fields have to
be updated on the GPU, imposing additional bandwidth re-
quirements. This problem has been alleviated by the multi-
threading approach presented in this work. As data handling
and visualization run concurrently in separate threads we
achieve 1) a significantly higher overall system performance
and 2) much more homogeneous frame rates by selecting the
time increments used for path integration according to the
expected time needed for data throughput. Second, numer-
ical and memory access operations are more than doubled
due to interpolation in the 3+1D data set. Due to the second

Figure 6: Dye injection in the cylinder flow. Semi-transparent par-
ticles are injected into the field using the probing metaphor.

constraint we observe in all our experiments a loss in per-
formance of about 20-40%, depending on the geometry and
rasterization load imposed by the rendering of particles.

The computation of stream lines in unsteady flow fields
comes at the expense of recalculating the whole texture at-
las, i.e.,the entire set of lines within the frozen time step,
within one frame. Path lines, on the other hand, only cause
a slightly higher computational load than particle tracing,
because copying per-frame results into the atlas as well as
the proposed line primitive rendering can be realized with-
out noticeable performance loss. For streak lines, numerical
integration in the 4D field has to be performed every frame
and for each position stored in the atlas. On the other hand,
streak lines can effectively be used to emphasize changes in
unsteady flow (see Figure 6 for a snapshot of an interactive
visualization). A comparative performance analysis between
stream, streak, and path lines is given in Table 2.

Table 2: Performance measurements (in fps) for stream / path /
streak lines of varying length L.

amount L=100 L=500 L=1000
128 133 / 872 / 870 30 / 835 / 330 15 / 388 / 175
512 125 / 586 / 400 29 / 238 / 88 15 / 125 / 47

1024 98 / 252 / 208 27 / 114 / 45 15 / 60 / 24

In Figure 7 an alternative rendering mode using particles
is shown, where we just test whether a particle is close to
a clip plane. If so, its position is projected into this plane,
the aligned particle sprite is rendered, and the integration
starts at the new position. As can be seen, the flow structures
within the plane can be effectively visualized.

7. Validation

To validate the proposed visualization techniques we em-
ployed them for the visual exploration of the Terashake 2.1
earthquake simulation [ODM∗06]. Each time step holds one
3D floating point velocity vector per grid cell. Particle-based
visualization was employed for the classification of interest-
ing types of waves as they typically occur in earthquakes.

By the possibility to interactively advect and render huge
amounts of particles, specific structures formed by the par-
ticle traces can be observed easily. These structures show

c© The Eurographics Association 2007.

256

K. Bürger et al. / Interactive Visual Exploration of Unsteady 3D Flows

Figure 7: Particles-in-plane visualization.

typical flow patterns caused by compressional (P), shear (S),
and Love (L) waves. In the analysis of these patterns it turned
out to be very helpful to interactively zoom into the data and
to visualize particular regions using different visualization
modes like oriented particles or path and streak lines. Due to
the efficiency of the proposed visualization techniques, and
thus the possibility to visually convey the dynamics of the
flow in real time, all relevant patterns could be understood
almost immediately (see Figure 8).

Figure 8: Wave types are revealed by specific particle patterns that
are formed in the unsteady flow visualization. From left to right:
P-waves, S-waves, and L-waves are shown. These three types can
be recognized most effectively in motion. Orange marks the wave
propagation direction, and white marks local particle motion.

Only one particular wave type, the so called Rayleigh (R)
waves, was very difficult to understand using particle-based
visualizations. To analyse these very special waves we used
a mixed modality visualization using particles and additional
color-coding on a context-surface. Therefore, the xyz com-
ponents of the near-surface displacements were first mapped
to RGB-colors. These colors were then used to modulate
the topographic map overlayed to the height-field over the
simulation domain. Furthermore, normals on the height-field
were perturbed by the displacement to further emphasize
displacement maxima. This results in caustic-like patterns
on the ground that clearly indicate important regions (see
Figure 9). As can be seen in all of the examples shown, by
augmenting the visualization data with additional modali-
ties such as height-fields, textures, geometries etc., the co-
location of different features becomes very easy.

Figure 9: Snapshot of the TeraShake 2.1 data set. Near-surface
displacements are color-coded and visualized together with parti-
cles. Top: Observe the characteristic patterns formed by the parti-
cles. Bottom: Red particles indicate a large longitudinal displace-
ment, while green indicates a large transversal component.

8. Conclusion and Future Works

In this paper we have presented interactive techniques for the
visualization of large unsteady 3D flows. We have shown
that on recent dual-core architectures even high-resolution
data sets can be streamed to the GPU at interactive rates.
We have exploited features of recent graphics accelerators
to advect particles on the GPU, saving particle positions in
graphics memory, and then sending these positions through
the GPU again to obtain images in the frame buffer. This
approach allows for interactive streaming and rendering of
millions of particles, and it enables virtual exploration of

c© The Eurographics Association 2007.

257

K. Bürger et al. / Interactive Visual Exploration of Unsteady 3D Flows

high resolution fields in a way similar to real-world exper-
iments. To our best knowledge, this is for the first time ever
that large unsteady 3D flows can be visualized at interactive
rates on consumer class PCs. Our experiments, and in partic-
ular a thorough validation of the proposed techniques using a
benchmark for the visualization community clearly demon-
strate the effectiveness of these techniques for the purpose
of visual data analysis.

In the future, we will investigate parallelization strategies
on multi-core CPUs and distributed systems including multi-
ple GPUs. In this respect, the question how to efficiently par-
allelize particle-based visualization methods on distributed
memory architecture has to be answered first. Furthermore,
we would like to add alternative visualization modes to dis-
play different modalities most effectively.

References

[ABM∗01] AHRENS J., BRISLAWN K., MARTIN K., GEVECI

B., LAW C., PAPKA M.: Large-scale data visualization using
parallel data streaming. IEEE Computer Graphics & Applica-
tions 21, 4 (2001), 34–41.

[BKHJ01] BRUCKSCHEN R., KUESTER F., HAMANN B., JOY

K.: Real-time out-of-core visualization of particle traces. In
Proc. IEEE Symposium on Parallel and Large Data Visualization
and Graphics (2001), pp. 45–50.

[BL91] BRYSON S., LEVIT C.: The virtual windtunnel: An envi-
ronment for the exploration of three-dimensional unsteady flows.
In Proc. IEEE Vis (1991), pp. 17–24.

[CE97] COX M., ELLSWORTH D.: Application-controlled de-
mand paging for out-of-core visualization. In Proc. IEEE Vis
(1997), pp. 235–244.

[EGM04] ELLSWORTH D., GREEN B., MORAN P.: Interac-
tive terascale particle visualization. In Proc. IEEE Vis (2004),
pp. 353–360.

[FC95] FORSSELL L., COHEN S.: Using line integral convolu-
tion for flow visualization: Curvilinear grids, variable-speed ani-
mation, and unsteady flows. IEEE TVCG 1, 2 (1995), 133–141.

[GTS04] GARTH C., TRICOCHE X., SCHEUERMANN G.: Track-
ing of vector field singularities in unstructured 3D time-
dependent datasets. In Proc. IEEE Vis (2004), pp. 329–335.

[HH89] HELMAN J., HESSELINK L.: Representation and display
of vector field topology in fluid flow data sets. IEEE Computer
22, 8 (1989), 27–36.

[JEH01] JOBARD B., ERLEBACHER G., HUSSAINI M.:
Hardware-accelerated texture advection for unsteady flow
visualization. In Proc. IEEE Vis (2001), pp. 155–162.

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P., WEST-
ERMANN R.: A particle system for interactive visualization of
3D flows. IEEE TVCG 11, 5 (2005), 744–756.

[Lan96] LANE D.: Visualizing time-varying phenomena in nu-
merical simulations of unsteady flows. In 34th Aerospace Science
Meeting & Exhibit (1996).

[LEW∗06] LARAMEE R., ERLEBACHER G., WEISKOPF D.,
GARTH C., TRICOCHE X., WEINKAUF T., THEISEL H., POST

F., VROLIJK B., HAUSER H., DOLEISCH H.: Texture and
feature-based flow visualization. In Tutorial #2, IEEE Vis. 2006.

[LHD∗04] LARAMEE R., HAUSER H., DOLEISCH H., VROLIJK

B., POST F., WEISKOPF D.: The state of the art in flow visual-
ization: Dense and texture-based techniques. Computer Graphics
Forum 23, 2 (2004), 203–221.

[LJH03] LARAMEE R., JOBARD B., HAUSER H.: Image space
based visualization of unsteady flow on surfaces. In IEEE Vis
(2003), pp. 131–138.

[LTH06] LI G.-S., TRICOCHE X., HANSEN C.: GPUFLIC: In-
teractive and accurate dense visualization of unsteady flows. In
Proc. EuroVis (2006), pp. 29–33.

[ODM∗06] OLSEN K., DAY S., MINSTER J., CUI Y., CHOURA-
SIA A., FAERMAN M., MOORE R., MAECHLING P., JORDAN

T.: Strong shaking in los angeles expected from southern san
andreas earthquake. Geophysical Research Letters 33, L07305
(2006).

[PBL∗05] PARK S., BUDGE B., LINSEN L., HAMANN B., JOY

K.: Dense geometric flow visualization. In Proc. EuroVis (2005),
pp. 21–28.

[PVH∗03] POST F., VROLIJK B., HAUSER H., LARAMEE R.,
DOLEISCH H.: The state of the art in flow visualisation: Feature
extraction and tracking. Computer Graphics Forum 22, 4 (2003),
775–792.

[SK97] SHEN H.-W., KAO D.: Uflic: A line integral convolution
algorithm for visualizing unsteady flows. In Proceedings IEEE
Visualization 97 (1997), pp. 317–323.

[Sta98] STALLING D.: Fast Texture-Based Algorithms for Vector
Field Visualization. PhD thesis, Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin, 1998.

[STW∗06] SHI K., THEISEL H., WEINKAUF T., HAUSER H.,
HEGE H.-C., SEIDEL H.-P.: Path line oriented topology for 2D
time-dependent vector fields. In Proc. EuroVis (2006), pp. 139–
146.

[SvWHP94] SADARJOEN A., VAN WALSUM T., HIN A., POST

F.: Particle tracing algorithms for 3D curvilinear grids. In IEEE
Scientific Visualization, Overviews, Methodologies, and Tech-
niques (1994), pp. 311–335.

[TB96] TURK G., BANKS D.: Image-guided streamline place-
ment. In Proc. Computer Graphics and Interactive Techniques
(1996), pp. 453–460.

[TSW∗05] THEISEL H., SAHNER J., WEINKAUF T., HEGE H.-
C., SEIDEL H.-P.: Extraction of parallel vector surfaces in 3D
time-dependent fields and applications to vortex core line track-
ing. In Proc. IEEE Vis (2005), pp. 631–638.

[USM97] UENG S., SIKORSKI C., MA K.-L.: Out-of-core
streamline visualization on large unstructured meshes. IEEE
TVCG 3, 4 (1997), 370–380.

[vW03] VAN WIJK J.: Image based flow visualization for curved
surfaces. In IEEE Vis (2003), pp. 123–130.

[WS05] WIEBEL A., SCHEUERMANN G.: Eyelet particle trac-
ing – steady visualization of unsteady flow. In IEEE Vis (2005),
pp. 607–614.

[WSE05] WEISKOPF D., SCHAFHITZEL T., ERTL T.: Real-time
advection and volumetric illumination for the visualization of 3d
unsteady flow. In Proc. EuroVis (2005), pp. 13–20.

c© The Eurographics Association 2007.

258

