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Abstract
Vortex breakdown bubbles are a subject which is of interest in many disciplines such as aeronautics, mixing, and
combustion. Existing visualization methods are based on stream surfaces, direct volume rendering, tensor field
visualization, and vector field topology. This paper presents a topological approach which is more closely oriented
at the underlying theory of continuous dynamical systems. Algorithms are described for the detection of vortex
rings and vortex breakdown bubbles, and for visualization of their characteristic properties such as the boundary,
the chaotic dynamics, and possible islands of stability. Since some of these require very long streamlines, the
effect of numerically introduced divergence has to be considered. From an existing subdivision scheme, a novel
method for divergence conserving interpolation of cuboid cells is derived, and results are compared with those
from standard trilinear interpolation. Also a comparison of results obtained with and without divergence cleaning
is given.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction

The current popularity of vector field topology in visualiza-
tion is to a large extent due to its capability of automati-
cally segmenting 2D vector fields into regions of similar flow
behavior. For the segmentation it is enough to compute the
topological skeleton which is the set of all critical points (i.e.
isolated zeros) and all stable and unstable manifolds of sad-
dle points. The stable manifold of a point P is the set W s(P)
of points from where a streamline converges to P with time
t→∞. The unstable manifold W u(P) is defined likewise but
with t →−∞. For saddle points in a 2D vector field these
manifolds are also known as the separatrices.

From a theoretical point of view, the 3D case is not much
different. The role of the saddle points is now taken by the
3D saddles and the spiral saddles (saddle foci), as defined,
e.g. in [Asi93]. And their stable and unstable manifolds now
come in a pair of a 1D and a 2D manifold. The 2D mani-
folds, which are special stream surfaces, provide again a seg-
mentation of the field. In practice, however, this has not yet
proved very successful, except perhaps for irrotational vector
fields. One reason for this is of course the occlusion problem
which forbids to display dozens of stream surfaces. A possi-
ble solution is to display not the stream surfaces themselves,

but only their pairwise intersections, known as saddle con-
nectors [TWHS03]. But even if there are just a few critical
points (two are sufficient), a skeleton can result which has
very convoluted stream surfaces. In the case of divergence-
free vector fields, this is often due to the well known chaotic
phenomenon first described by Shilnikov [Sil65] and ex-
plained in Section 2. But also if the field has some amount
of divergence, Shilnikov chaos can be observed.

As an approach to solve this problem, we propose not to
use the full stream surfaces required by the skeleton, but only
specific parts of them. We will show later how by combining
parts of stream surfaces, a systematic visualization of recir-
culations can be achieved. While on the one hand we argue
for a restriction of the skeleton, we extend it on the other
hand by the periodic orbits because a topological skeleton
based on critical points alone gives an incomplete picture.
This can be seen already in two dimensions, whenever the
vector field contains periodic orbits. Periodic orbits can be
attractors or repellors and thus behave like sinks or sources.
In three dimensions, periodic orbits are even more relevant
since they can also be of saddle type. In this case they have
a pair of 2D (un-)stable manifolds which behave much like
separatrices in 2D vector fields and therefore should not be
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neglected in the topological skeleton. Figure 15 shows an
example of such a case. It can be said that with increasing
dimensionality, the variety of topological phenomena also
increases, and therefore the need to include more than criti-
cal points into the visualization. While in 2D, attractors can
be critical points or periodic orbits, in 3D two more types ex-
ist, namely invariant tori and strange attractors. It could be
argued that a “complete” topological skeleton should con-
tain all lower-dimensional stable and unstable manifolds of
any type of attractor.

While vector field topology, initiated by Helman and Hes-
selink [HH89], builds on the underlying theory of continu-
ous dynamical systems (see e.g. [GH83]), only a small part
of the latter has been explored for the purpose of visualiza-
tion. Critical points clearly received most attention in vi-
sualization of both flow data [GLL91] and dynamical sys-
tems [LDG98]. But also Poincaré maps were shown to be
useful for visualization [Loe98]. It is a goal of this paper to
demonstrate that by borrowing more concepts from dynam-
ical systems theory more structure can be detected and visu-
alized, not only in synthetic flow fields but also in industrial
CFD results.

Vortex breakdown bubbles in CFD data have been ob-
served and visualized by Garth et al. [GTS∗04a, GTS04b]
using techniques based on stream surfaces, and by track-
ing the pairs of critical points associated with this structure.
Tricoche et al. [TGK∗04] used direct volume rendering for
visualization and vector field topology in planar slices for
extracting periodic orbits. Rütten and Chong [RC06] devel-
oped a visualization method based on tensor field color cod-
ing. In this paper we propose techniques based on Poincaré
maps which exploit the special topology of vortex rings.
They can robustly and automatically handle features such as
non-isolated periodic orbits within nested tori, periodic or-
bits of higher periodicities, and stream surfaces with strong
folding, which are difficult to treat with general-purpose
methods.

2. Background on Vortex Rings

A simple model of a vortex ring consists of a set of nested
tori on which all streamlines have to lie. In the simplest topo-
logical case, the nested tori are bounded on the inner side by
a periodic orbit and on the outer side by a sphere-like sur-
face. If we further assume that the vortex ring has nonva-
nishing swirl, (rotational component around the axis of the
tori), the whole structure has only two critical points. They
are of spiral saddle (saddle focus) type, and they are located
where the axis intersects the outer boundary. If the tori are
allowed to have non-circular cross sections, then such vortex
models can be physically valid, i.e. be solutions of Navier-
Stokes equations. Examples are Hill’s vortex (see [Saf92])
and Norbury’s vortex rings [Nor73]).

Nevertheless, this ideal topology of a vortex ring is usu-
ally not found in practical velocity fields. The reason is that

it requires the 2D unstable manifold of the one critical point
to exactly coincide with the stable manifold of the other, and
likewise for the pair of 1D manifolds, a configuration which
is not structurally stable. In a perturbed version of this ideal
vortex ring, the 2D manifolds do not exactly match, which
means that the boundary is not “water-tight” or that the recir-
culation is not perfect. On the inner side, the 1D manifolds
do not coincide either, so that the axis of the structure is no
more well defined in a topological sense. As a side remark,
this is a nice example of a vortex whose core line is not a
streamline.

Figure 1: Unstable manifold (blue) and stable manifold
(red) of spiral saddles C0 and C1, respectively, intersecting
in saddle connectors σ and σ

′. In a Poincaré plane through
C0 and C1, the seed curve for integration is chosen between
two successive intersection points s0 and s1 of σ.

If the vector field is divergence-free, e.g. because of an in-
compressible fluid, the effect of a perturbation is even more
dramatic. In divergence-free 3D vector fields with sufficient
swirl, any transversal intersection of the 2D (un-)stable man-
ifolds of two spiral saddles automatically implies the so-
called Shilnikov chaos [Sil65]. This is illustrated in Figure 1,
where C0 is a 1:2 spiral saddle and C1 is a 2:1 spiral sad-
dle. In general, the 2D (un-)stable manifolds of such criti-
cal points do not coincide, but intersect transversally. In this
case they intersect at an even number of saddle connectors
(heteroclinic orbits), usually a pair σ and σ

′ of them. Be-
tween the windings of the saddle connectors, the manifolds
form two “tubes” that are wrapped around the structure. The
tubes have constant flux (i.e. independent of cross sections)
because the 2D manifolds are stream surfaces, and the sum
of the two fluxes is zero because of the divergence-free con-
dition. This implies that near the critical points, where ve-
locities approach zero, the tubes must either have increasing
cross section area or develop folds which extend into regions
of higher velocities. While a vortex breakdown bubble and
a smoke ring are two different physical phenomena, from a
topological point of view, they can both be treated as vortex
rings.

The definition of stable and unstable manifolds requires
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either a steady or an instantaneous vector field. This raises
the question about their relevance for time-dependent flows,
especially if they are chaotic and thus require long inte-
gration time. The answer is that practical flow often has
small enough time-dependence that their visualization as
steady flow is a good enough approximation. Vortex rings
and, in particular, vortex breakdown bubbles have been pho-
tographed in experiments (see Figure 2) and their shape has
been shown to be consistent with the manifolds of critical
points in a steady vector field [SVL01].

Figure 2: Photograph of vortex breakdown bubble in exper-
iment. Image copied with permission from [SMH98].

3. Detection of Vortex Rings

Our strategy for finding vortex rings is to look for pairs of
critical points, one of them being a 1:2 spiral saddle and one
a 2:1 spiral saddle. The number of such candidate pairs can
be reduced by imposing a maximal distance. Additionally,
it can be demanded that they lie on a common vortex core
line. Each candidate pair of critical points is then checked
for defining a vortex ring. For this purpose, a Poincaré sec-
tion is taken by using a plane passing through the two points.
The 2D (un-)stable manifold of the spiral saddle is now com-
puted based on a discrete set of seed points and the intersec-
tions of the manifold with the Poincaré section are stored as
a (texture) image. The extent of the grid is chosen based on
the distance d between the two critical points. We found a
square with edge length 2d to be sufficient in most cases.

Seed points for the manifold of, say, C0 are generated as
follows (see Figure 1). A first seed s0 is chosen at a small
offset from C0 on the Poincaré plane where it intersects the
plane spanned by the two complex eigenvectors. From s0 a
streamline is integrated in the time direction where the dis-
tance from C0 increases. Its next iterate (i.e. intersection with
the Poincaré plane) is denoted by s1. Further seed points
are now generated on the straight line segment between s0
and s1 by logarithmically interpolating the distance of the
seed points to C0. Logarithmic interpolation is appropriate
because streamlines of the linearized vector field at C0 are
logarithmic spirals, and the error introduced by interpolating
along a straight line falls off with the streamlines converging
to the 2D manifold.

The resulting image (Figure 3 is an example) then shows

Figure 3: Planar section of 2D manifolds of a synthetic vor-
tex breakdown bubble.

Figure 4: Manifolds of Figure 3 at longer integration time.

a section of the manifold with its folds, also called lobes, ex-
tending toward the second critical point. In the image plane,
it is easily possible to check for an intersection of the two
curves. If an intersection is detected, the vortex ring is veri-
fied and ready for its visualization.

One way of visualizing the vortex ring is to increase the
integration time until the inner structure becomes visible on
the Poincaré section, as is depicted in Figure 4. The resulting
image shows the chaotic region formed by the inward fold-
ing lobes, and it typically shows a hierarchy of islands of
stability. The islands of stability are toroidal regions around
a periodic orbit of minimal period. The inner part of stabil-
ity islands is typically filled with nested invariant tori with
no flux across them.

Islands of stability can be visualized by showing their
outer boundary and/or their center periodic orbit. The pe-
riodic orbit can be located as usual by searching for fixed
points in the Poincaré map. A faster algorithm exploiting the
given structure of nested tori in islands of stability is pre-
sented in [PS07] where also a method for computing the ap-
proximate boundary of the island is described. These points
and curves in the Poincaré section can further be used as
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integration seeds, giving a 3D visualization of the periodic
orbits and invariant tori, respectively.

4. Computing a Boundary Surface

A practically useful result for pairs of spiral saddles is that
the recirculation zone defined by such a pair can be visual-
ized by a boundary surface constructed from the 2D (un-)
stable manifolds. The boundary is made up of two stream
surfaces and can be closed by adding a so-called turnstile
[MMP84] which is usually small and which is the only place
where flux through the surface can occur.

Figure 5: Poincaré section of unstable (blue) and stable
(red) manifolds. The manifolds are joined at P, resulting in
a turnstile between A and B.

In Figure 5 it is shown how a boundary of a (perturbed)
vortex ring is obtained. First, the intersection of the 2D man-
ifolds W u(C0) and W s(C1) with a Poincaré section are com-
puted (shown as red and blue curves). Then an intersection
point P is found at which the two curves are trimmed and
joined into one.

The criterion for the choice of P is to minimize the total
arc length of the curve C0−P−C1. For an approximate so-
lution we use the following greedy algorithm: Starting with
the curve segment between the seeds s0 and s1, compute suc-
cessive iterates of the segment and add it to the curve.

The obtained segments have the same frequency as the
lobes (corresponding to a cycle of hues in Figure 6), with
a possible phase shift. This process of extending a curve is
done in an interleaved way with both curves, such that the
arc lengths of the two next segments are compared and the
shorter of the two is used.

Having now a seed curve, a stream surface is integrated
backward and forward until the section plane is intersected
again. Under these “half turn” (π-period) Poincaré maps the
curve C0−P−C1 is mapped to C0−A−C1 and C0−B−C1,
respectively. The two curves coincide with the exception of
their parts between A and B. Therefore the stream surface is
closed, up to the figure eight shaped opening lying in the

Poincaré section plane between the points A and B. This
opening, the turnstile, consists of an inflow and an outflow
having equal absolute flux if the field is divergence-free. The
influx (or outflux) can be easily computed and it tells what
fraction of the enclosed fluid is exchanged per time unit. In
practical cases, the turnstile is often very small. Figures 6
and 7 show the two manifolds for the application example
of Section 6.1 and Figure 8 shows the resulting seed curve.
When starting from here, stream surface integration yields
the boundary of the vortex ring shown in Figures 9 and 10.

Figure 6: Section of the manifolds of the vortex ring in the
Francis draft tube.

Figure 7: Close-up of Figure 6.

Figure 8: Manifolds after trimming at selected intersection
point, minimizing the maximal size of the lobes.

5. Vortex Rings in Discrete Data

From a topological aspect, the divergence-free case is par-
ticularly interesting, as already mentioned in the introduc-
tion. However, when discrete data are used, divergence can
be artificially introduced by the interpolation method. Fur-
thermore, the data may have some residual divergence. And,
finally, they may be divergence-free only with respect to the
dual grid, as is the case for finite volumes solutions. We de-
scribe now two techniques that can be applied to cope with
these problems.

5.1. Divergence Cleaning

For a divergence-free field, the total flux through the bound-
ary of a volume element is zero by Gauss’ theorem. How-
ever, if the data set is a finite volumes solution, this holds
for the control volumes, but not necessarily for the grid cells
if standard multilinear interpolation is assumed. The control
volumes are in general more complex polyhedra than hex-
ahedra or tetrahedra, so it is usually not an option to use
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Figure 9: Unstable manifold (blue) and stable manifold
(red) rendered as stream surfaces. Streamlines entering
(white) and leaving (black) the recirculation region.

Figure 10: Close-up of Figure 9

the control volumes as the visualization grid. Instead, we
keep the original grid, or resample it to a rectilinear (pos-
sibly nonuniform) grid if necessary.

Divergence cleaning methods [BK03] were developed
mostly within the field of magnetohydrodynamics. One of
them is the Hodge projection [Tot00] which removes diver-
gence based on the decomposition u = u0 +∇s of u into a
divergence-free part u0 and an irrotational part∇s. It follows
∇·u =∇·∇s which is a Poisson equation for s. Effectively,
the flux of each cell is distributed to its neighbor cells by
making small changes to the vector data at the grid nodes.
These changes can be minimized either in the absolute or
relative sense.

5.2. Divergence Conserving Interpolation

Let us assume now a rectilinear 3D grid which is divergence-
free in the sense that for each cell the trilinear interpolant has
zero flux through its boundary. Unfortunately, this does not
mean that the trilinear interpolant has zero divergence at all
inner points. It is instead necessary to use a divergence con-
serving interpolation scheme. Tóth and Roe [TR02] describe
how a hexahedral grid can be subdivided such that the zero
flux property is conserved. By iterating this approach a few

times followed by trilinear interpolation, one could get inter-
polated field values with sufficiently small divergence. We
found however that Tóth and Roe’s technique can be mod-
ified to generate instead of a subdivision a tetrahedral de-
composition with the property that the piecewise linear in-
terpolant is exactly divergence conserving.

Starting with the 2D case, we consider a rectangular cell
with edge lengths sx and sy. Let (ui j,vi j)(i, j = 0,1) be the
velocity vectors at the cell corners. Assuming bilinear inter-
polation, the total flux out of the cell is:

Φ =
1
2 ∑

p=0,1

(
u1p−u0p

)
sy +

(
vp1− vp0

)
sx (1)

The divergence of the bilinear interpolant is not constant
in general. In particular, even if Φ = 0, the divergence is not
necessarily zero. However, after splitting the cell into four
triangles a piecewise linear interpolant can be found which
has constant divergence Φ

sxsy
. For this, the velocity at the cell

center must be set to

u 1
2

1
2

= 1
4 ∑

i, j=0,1
ui j +(−1)i+ j sx

sy
vi j

v 1
2

1
2

= 1
4 ∑

i, j=0,1
vi j +(−1)i+ j sy

sx
ui j

(2)

These expressions for u 1
2

1
2

and v 1
2

1
2

can be found by sym-
bolically solving the four equations which are obtained by
setting the divergence in each of the four triangles to Φ

sxsy
.

It turns out that the rank of this linear system is two, hence
there is a unique solution.

For the 3D case, consider now a cuboid cell with edge
lengths sx, sy and sz. Let (ui jk,vi jk,wi jk)(i, j,k = 0,1) be the
velocity vectors at the cell corners. For trilinear interpola-
tion, the total flux out of the cell is

Φ = 1
4 ∑

p,q=0,1

(
u1pq−u0pq

)
sysz +

(
vq1p− vq0p

)
szsx

+
(
wpq1−wpq0

)
sxsy

(3)

Again, a piecewise linear interpolation can be found
which has constant divergence within the entire cell. For this,
the hexahedral cell has to be split into 24 tetrahedra, given
by the six face centers and the cell center in addition to the
vertices. At the face centers, the velocity field is interpolated
analogous to (2), e.g. for the two k = const faces:

u 1
2

1
2 k = 1

4 ∑
i, j=0,1

ui jk +(−1)i+ j sx
sy

vi jk

v 1
2

1
2 k = 1

4 ∑
i, j=0,1

vi jk +(−1)i+ j sy
sx

ui jk

w 1
2

1
2 k = 1

4 ∑
i, j=0,1

wi jk

(4)

Note, that correction terms appear only in the u and v compo-
nents, while the w-component is computed as in the standard
trilinear interpolation. As a consequence, the flux through
the k = const faces remains unchanged. The expressions for
the two other pairs of faces are obtained by cyclic permuta-
tion.
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At the cell center, the velocity vector must be set to

u 1
2

1
2

1
2

= 1
8 ∑

i, j,k=0,1
ui jk +(−1)i+ j sx

sy
vi jk +(−1)i+k sx

sz
wi jk

v 1
2

1
2

1
2

= 1
8 ∑

i, j,k=0,1
vi jk +(−1) j+k sy

sz
wi jk +(−1) j+i sy

sx
ui jk

w 1
2

1
2

1
2

= 1
8 ∑

i, j,k=0,1
wi jk +(−1)k+i sz

sx
ui jk +(−1)k+ j sz

sy
vi jk

(5)
Again, these expressions are found as the unique solution of
a linear system.

Formulas (2), (4) and (5) for velocities at face centers and
cell centers are closely related to those derived by Tóth and
Roe [TR02]. They have the property that when a cubic cell is
subdivided into eight cubic subcells, the total flux is evenly
distributed to the eight subcells. But subdividing a cell with
zero flux does not provide zero divergence in the interior,
therefore this scheme is not applicable for our purpose. Tóth
and Roe’s expressions differ in the correction terms which
are scaled by 1

2 and 3
2 , respectively.

6. Results

6.1. Vortex Ring in Francis Draft Tube

Our first application example, which we used already in Sec-
tion 4, is a transient simulation of the flow in the draft tube
of a Francis turbine. After passing the bend and the divider,
the flow forms a large spanwise vortex as can be seen in Fig-
ure 11. This was found by extracting vortex core lines and
analyzing nearby critical points as described in Section 3.

Figure 11: Vortex ring in Francis draft tube with section
plane (blue), streamlines (yellow) and vortex core lines
(red).

For a selected time step, we compared the effect of di-
vergence cleaning and of two choices of the interpolation

Figure 12: Unstable manifold computed in trilinearly in-
terpolated field. Comparison of original data (white) and
divergence-cleaned data (colored).

Figure 13: Unstable manifold computed in divergence-
conservingly interpolated field. Comparison of original data
(white) and divergence-cleaned data (colored).

function. For the numerical integration, the fourth-fifth-order
Runge-Kutta-Fehlberg procedure from the Netlib library
was used in all cases. In Figure 12, the manifolds of the orig-
inal data (white) and the divergence-cleaned data (colored)
are shown. In both cases, standard trilinear interpolation was
used. Figure 13 shows the same manifolds, but computed us-
ing divergence conserving interpolation. It can be observed,
that the choice of the interpolation scheme has little impact
for short integration times. The two white curves are identi-
cal up to pixel resolution, and also the outer boundary of the
colored manifolds coincide. However, the long-time behav-
ior of the manifold is affected by the interpolation method.
With trilinear interpolation, one of the two islands of sta-
bility is filled up with streamlines being attracted to a peri-
odic orbit in its center. More important than the interpola-
tion scheme is the use of divergence cleaning. Even though
the CFD data represent an incompressible fluid, without a
divergence cleaning as a preprocessing, the vector field has
strong enough attracting and repelling behavior to let most
of the chaotic structure disappear. This is the reason why in
an earlier paper [PS05] a vortex ring was found (Figure 10)
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which exhibits some amount of folding although the pair of
2D manifolds did not intersect.

The recirculation region under examination exhibits a
temporally quite stable behavior. Its lifespan extends over
116 of total 301 time steps. At time step 90, a split event
occurs where the shape transforms into a figure eight shape
(in the section plane) and breaks apart, i.e. a double critical
point is created which then separates into two single ones.
At time step 94, the smaller of the two structures collapses,
and at time step 115 the larger collapses, too.

6.2. Vortex Ring in Simulation of a River Power Plant

While the extraction of the vortex ring was done in a fully
automatic way for more than 100 time steps in the previous
example, there are topologically more complex cases. In this
example, the flow in the intake of a river power plant was
simulated (see Figure 14) assuming a planar† water surface.

The selected vortex ring extends to the (free slip) wa-
ter surface where one of the two spiral saddles (C1 in Fig-
ure 15) is located. The unstable manifold of the latter coin-
cides with the stable manifold of a periodic orbit P of sad-
dle type which is also located at the water surface. In order
to prevent streamlines from leaving the domain, the vertical
velocity component at the water surface had to be set to ex-
actly zero, i.e. residual z-velocities from the simulation had
to be removed. Then, because W u(C1) converges to a peri-
odic orbit, the criterion of intersecting 2D manifolds is not
fulfilled, resulting in a failure of the automatic detection. We
circumvented this problem by giving the seed curve a small
downward offset. For a systematic approach, one could in
such a case proceed with the unstable manifold of the pe-
riodic orbit W u(P), which means, however, to examine two
cases, since in general the unstable manifold extends in two
directions.

The apparent join of pairs of lobes below C0 is an arti-
fact of the planar section. If a non-planar section following
the curved center line of the structure were taken, a picture
looking more like Figure 4 would have resulted.

7. Conclusion

We presented a method for detecting and visualizing vor-
tex rings and vortex breakdown bubbles in vector fields. The
assumptions made are that the recirculation region is char-
acterized by a pair of critical points of spiral saddle type,
and that these are connected by saddle connectors which
have a sufficient amount of spiraling. When applied to hy-
drodynamics CFD results, where such a configuration is
likely to produce chaotic dynamics, this is revealed by our
method. Once a vortex ring has been detected, a boundary

† In a newer simulation, the water-air interface was simulated, too,
resulting in a more realistic water surface

Figure 14: Overview of the flow in the river power plant.
Poincaré section shown as blue rectangle.

surface is computed by combining parts of the 2D (un-) sta-
ble manifolds of the two critical points. The position of the
turnstile on the boundary surface is chosen by minimizing
the size of its lobes. Furthermore, we provided a method
for divergence-conserving piece-wise linear interpolation of
cuboid cells. And finally, we analyzed the effect of using
divergence cleaning and/or divergence-conserving interpo-
lation on vortex-rings in two cases of industrial CFD data.
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