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Abstract
The high complexity of Transfer Function (TF) design is a major obstacle to widespread routine use of Direct
Volume Rendering, particularly in the case of medical imaging. Both manual and automatic TF design schemes
would benefit greatly from a fast and simple method for detection of tissue value ranges. To this end, we introduce
the α-histogram, an enhancement that amplifies ranges corresponding to spatially coherent materials. The prop-
erties of the α-histogram have been explored for synthetic data sets and then successfully used to detect vessels in
20 Magnetic Resonance angiographies, proving the potential of this approach as a fast and simple technique for
histogram enhancement in general and for TF construction in particular.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Genera-
tion; I.3.6 [Computer Graphics]: Methodology and Techniques; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism;

1. Introduction

Direct Volume Rendering (DVR) is a well established and
developed technique in scientific visualization. In medical
imaging, DVR is growing from a peripheral tool to a central
and crucial tool due to the rapidly increasing size of standard
data sets making slice-by-slice viewing difficult [And03].
One of the major remaining challenges for DVR is the high
complexity of Transfer Function (TF) design. The manual
effort required is often prohibitive for routine use.

Histograms are widely used to characterize data sets, for
example in TF design, thanks to their high information con-
tent combined with a simple form. In order to render a
data set, the value ranges of the interesting features must be
known. For uncalibrated capture techniques, such as Mag-
netic Resonance Imaging (MRI), this is not the case. Never-
theless, if the features would appear as clearly visible peaks
in the histogram both manual and automatic TF construction
would be simple. It often occurs, however, that the feature
peaks cannot be distinguished in the histogram. One reason
is that the background distribution may completely cover a

minor feature, see figure 1, another reason is that two mate-
rials may have overlapping intensity ranges.

In this paper we present a novel way to incorporate spa-
tial coherence into an enhanced histogram: the α-histogram.
The data set is divided into local regions for which indi-
vidual histograms are retrieved. These local histograms are
then raised to the power of α before summation and nor-
malization. Thus, value ranges with high spatial coherence,
i.e. spatially concentrated, will be amplified in the resulting
histogram, effectively enlarging peaks corresponding to dis-
tinct materials. In order to exploit the enhancements in the α-
histogram we propose an automatic peak detection scheme
based on an adaptive area measure.

The results show that the α-histogram is a fast and sim-
ple general-purpose histogram enhancement method, with
potential use in any application that processes or displays
a histogram. Furthermore, we have successfully used the α-
histogram in a scheme for automatic detection of tissue value
ranges in medical volumes, demonstrating higher accuracy
and robustness than alternative methods.
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Figure 1: Difficult TF construction. For this MR angiogra-
phy there is no clue to the value range of the vessels in the
full histogram. Thus, there is no guidance for selecting an
appropriate TF, which in this case would be number 3.

2. Related work

The challenge of simplifying TF construction has been ad-
dressed in many different approaches. One solution is to let
the user explore the TF space by iteratively selecting the
most appropriate visualization from a “gallery” of thumb-
nails [HHKP96]. Another approach is to base the TF on
materials defined by implicit high-dimensional attributes
[TLM03]. The attributes are derived by a neural network
trained by example regions defined by the user.

The Contour Spectrum method [BPS97] provides an au-
tomatic analysis guiding the user to select appropriate values
for isosurfacing. Semi-automatic TF generation for DVR of
boundary regions has also been proposed [KD98]. Display-
ing only material boundaries is, however, not sufficient in
medical visualization, primarily since tissue density is diag-
nostically important and secondly since the boundaries are
often highly distorted by noise.

Many tissue classification schemes are focused on a
particular examination type, e.g. MR brain images, while
general-purpose methods are more relevant to discuss here.
Nyúl and Udupa [NU99] proposed a standardization scheme
for the intensity scale of MR images, implemented for his-
tograms with a single main peak. Scale segments are linearly
transformed according to landmarks retrieved from the his-
togram. Another standardization scheme for MR brain im-
ages analyzes higher-order derivatives [Chr03]. Lundström
et al. [LLY05] introduced Partial Range Histograms (PRHs)
for tissue detection purposes, combining intensity ranges
with spatial regions. Their scheme divides the global his-
togram into separate tissue histograms and has been used
for TF adaptation in a clinical evaluation [PBL∗]. The α-
histogram is an alternative to PRHs in some situations, and
the two methods are compared in this paper.

Combinations of histograms with spatial relations, al-
though not directly relevant to this paper, have been used in
other research areas: content-based image retrieval [PZ96],
registration [NUS03], segmentation [ZBS01], and sub-voxel
classification [LFB98]. In an extension to 2D TFs for DVR,
a grouping of histogram points based on spatial coherence

has been proposed [RBS05]. A fundamental difference, both
from α-histograms and PRHs, is that features with overlap-
ping value ranges cannot be separated by this technique.

3. The α-histogram framework

The main limitation of any histogram is that all spatial rela-
tions in the data set are lost. The α-histogram, on the other
hand, exposes a highly valuable type of spatial information,
namely which value ranges correspond to spatially coherent
features. This is valuable since the goal of a TF is typically
to capture such features and suppress the other data. Thus,
the histogram is enhanced while its simple form is retained.

3.1. α-histogram definition

We define a histogram incorporating spatial coherence, the
α-histogram. It is constructed as a sum of local histogram
functions Hn(N,x), counting the instances of the value x in a
local neighborhood (eq. 1). N is the set of data values in the
neighborhood, Dx is the set of data values equalling x in the
data set D. |S| is the cardinality of set S.

Hn(N,x) = |N∩Dx| (1)

The first step is to divide the data set into spatial re-
gions N1, . . . ,Nk. We will define the α-histogram for a non-
overlapping neighborhood subdivision:

D =
k[

i=1
Ni and Ni∩N j = ∅, i 6= j

If the region contains coherent tissues there will be small
peaks for those value ranges in the local histogram. In con-
trast, the majority of regions containing only noise and inco-
herent material will not show these distinct peaks. The idea
is now to amplify the local tissue peaks by raising the his-
togram values to the power of α > 1. The α-histogram Hα(x)
is the sum of all the enhanced local histograms (eq. 2) in the
data set D. An important special case is to set α = ∞, this
is equal to a maximum operator. An initial normalization is
made by raising the summed histogram values to 1/α.

Hα(x) =
( k

∑
i=1

Hn(Ni,x)
α
)1/α

(2)

It is convenient to introduce a second normalization, making
the α-histogram have the same area as the original histogram
(eq. 3). In this way, displaying the histogram for increasing
α will result in growing peaks for coherent tissues at the ex-
pense of shrinking peaks of low importance. The benefits are
that the scale of the histogram display can be fixed and that
the change is easy to perceive visually.

H̃α(x) =
|D|

∑x Hα(x)
Hα(x) (3)

In general terms, the α-histogram is a modulated summation
of local histograms. As such, it relates to other summation
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techniques. The underlying idea is the same as for Root-
Mean-Square-Error (RMSE): outlier values get a higher im-
pact by squaring the values before summing them. The fi-
nal square root is a normalization, bringing back the original
scale. In RMSE averaging is applied, in contrast to the α-
histogram case where the sum is the wanted attribute.

An image quality measure is often a sum of partial errors
from different spatial regions and frequency bands. The tra-
ditional summation approach is known as Minkowski pool-
ing [WBSS04] (eq. 4, where l is the spatial index and m de-
notes the frequency band). The individual errors are raised to
a factor β before summation, and the result is normalized by
taking the β root. Hence, for each value x, the α-histogram
corresponds to a Minkowski pooling of the local histograms
with β = α.

E =
(
∑
l

∑
m
|el,m|β

)1/β

(4)

An important note is that the α-histogram makes no assump-
tions about the type of the data set. This paper mainly con-
cerns data sets with a structured three-dimensional grid, but
the framework is generally applicable.

3.2. Variations

There are a number of possible variations of the standard α-
histogram that can exploit a priori information on the data
set and the task at hand. Spatial coherence is represented
by the local histograms. At this stage any type of histogram
features can be enhanced through filtering. A typical task is
to find tissues at the high end of the intensity scale, which
can be achieved by selectively amplifying these ranges. A
similar effect can be achieved by increasing α for increasing
x. If border regions are of interest then local histograms with
more than one peak can be selectively amplified.

The type of neighborhoods to use for the local histograms
has a clear impact on the result, the standard solution with
non-overlapping cubical blocks is not mandatory. A feasible
extension would be to use overlapping regions with a spa-
tial weighting window that lets voxels near the region cen-
tre have larger impact on the local histogram. The shape of
the neighborhood also matters. If the sought-for tissues are
known to have a typical shape, an anisotropic neighborhood
of the same shape will be a better detector than an isotropic
one. The shape can also be automatically adapted to the local
characteristics of the data. A brute-force approach is to sum
amplified local histograms for anisotropic neighborhoods of
‘all’ directions, the neighborhood coinciding with the orien-
tation of a spatially coherent feature would still dominate if
α is large enough.

4. Peak detection

The α-histogram can be used simply as a guide in manual TF
design. The main goal of this paper is, however, to automat-

Figure 2: Complex peak shapes. If this histogram is to be
represented as two peaks, which would they be?

Figure 3: Definition of peak area. The base line is the solid
straight line, invalid base lines are dashed. The peak area is
shaded.

ically adapt TFs between data sets. If the typical values of
the interesting materials are known, the TF can be related to
these landmarks and easily be transformed for each new data
set. Therefore, an automatic peak detection scheme for his-
tograms is needed. The first challenge is that the α-histogram
is usually quite noisy. When smoothing the curve care must
be taken to only remove the unwanted irregularities without
affecting the real peaks, which may be very subtle. Avoiding
overly strong smoothing, an abundant number of peaks will
remain, requiring an assessment to sort out the relevant ones.
This assessment is not trivial, as seen in figure 2.

4.1. Peak importance

We define a peak as a histogram segment consisting of an
apex surrounded by two valleys. An apex is a point with
greater height than both its neighbors, the opposite is true
for a valley. It is intuitive to connect the importance of a
peak to its area. We choose to relate the area to an implicit
base line, oriented according to the peak shape. We define
the base line as starting at the highest valley with a down-
ward slope and touching exactly one more point on the his-
togram curve within the peak range, see figure 3. The area
is calculated by summing the height difference between the
base line and the histogram between the two touching points.

4.2. Peak analysis scheme

Our histogram peak analysis consists of three steps. First,
smoothing is selectively applied to each value representing a
minimal peak or crease (the middle of three directly adjacent
valley-apex-valley or apex-valley-apex points), repeated un-
til no such cases remain. Second, the whole histogram is sub-
ject to repeated smoothing. The stopping criterion is given as
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a maximum number of remaining peaks: np1, set to 20 in this
paper. The first selective smoothing step reduces the need of
general smoothing, in order to avoid removal of interesting,
subtle peaks. The smoothing operator is in both cases a sim-
ple binomial kernel: 0.25 · [1 2 1].

Finally, the remaining peaks are listed and a simplification
is performed, reducing them to a predefined number np2. The
peak with the least area (see above) is removed from the list.
A peak neighboring the removed one may be extended to
cover the removed peak if its area would increase. If both
neighbors would gain from an extension then the one having
the largest peak height is selected. In summary, the number
of peaks is decreased, keeping the most significant peaks.

4.3. Detection evaluation

In order to evaluate the results of the peak detection, accu-
racy and confidence measures are needed. We will use the
notations {x−,x0,x+} to describe a true peak, where x0 is
the position of the peak apex and the peak width is described
by x− and x+, defined as the 10th and 90th percentiles of
the peak histogram area. A detected peak, i.e. a peak ap-
proximation, is denoted {x∗−,x∗0 ,x∗+}, corresponding to the
valley-apex-valley values from the peak analysis.

Accuracy is measured through the peak precision error ep,
defined as the absolute difference between x∗0 and x0, rela-
tive to the true peak width (eq. 5). For confidence, the peak
area is a possible measure, but there are cases when it would
be misleading. An example is a wide, flat peak that would
have a large area but still provide a very uncertain predic-
tion. Instead we define peak confidence, cp, to be the relative
height difference of the peak apex H(x∗0 ) and the highest of
the two valleys H(x∗−) and H(x∗+), where H(x) denotes the
histogram function (eq. 6).

ep =
|x∗0 − x0|
x+− x−

(5)

cp =
H(x∗0 )−max

(
H(x∗−), H(x∗+)

)
H(x∗0 )

(6)

5. Results

The test results are divided into two parts. First, synthetic
data sets are used to explore the properties of the α-
histogram and its variations. These experiences are then ap-
plied to a clinical TF adaptation problem, where tissue detec-
tion is the key component. The standard α-histogram based
on blocks with 83 voxels is used, unless stated otherwise.

5.1. α-histogram properties

Initially, tests have been performed on two synthetic data
sets with controllable characteristics. The first data set is a
tube spiralling around a torus, intended to imitate a vessel,
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Figure 4: Synthetic data set imitating a vessel, designed
not to coincide with a Cartesian block structure. The back-
ground and the spiral have Gamma and Gaussian distribu-
tions, respectively. The spiral peak at value 100 is not visible,
even using a logarithmic scale as proposed in [PM04].

see figure 4. Since a block subdivision is performed in the
standard α-histogram, the spiral shape is designed not to be
aligned with any Cartesian grid. The radius, ρ, sets the width
of the ‘vessel’. The distributions of voxel values have been
chosen to mimic real angiography data sets. The vessel has
a Gaussian distribution (µ = 100, σ = 20). The background
has a Gamma distribution (µ = 30, σ = 10

√
3) resulting in a

single peak with no negative values but with large spread to
high positive values.

The second synthetic data set imitates two organs, see fig-
ure 5. The curved ‘yin-yang’ shape is selected, as before, to
be independent of the Cartesian blocking. The background
has value zero and the two ‘organs’ both have Gaussian dis-
tributions (σ = 30), the first is fixed at µy1 = 100, whereas
µy2 can be varied. Both the synthetic data sets have 1923 vox-
els, reconstructed for each test by assigning random voxel
values according to the given distributions. Presented mea-
sures are averages over 10 trials, whereas histograms are
from a single test. For these simulations a single measure
to describe the quality of the α-histograms is desirable. We
chose to use the peak confidence cp with the added restraint
that it is set to zero for peak detection failures (an apex off-
set larger than half a standard deviation of the true peak, or
a valley being directly adjacent to the apex).

A first round of tests explored the effect of α on the peak
detection (np2 = 2). As seen in figure 6, the spiral peak be-
comes more apparent as higher α is applied. The disadvan-
tage of higher α is the amplified noise. This noise makes the
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Figure 5: Synthetic data set imitating two organs. The ‘yin-
yang’ shape is chosen so as not to coincide with a Cartesian
block structure. The background is zero, the ‘organs’ have
separate Gaussian distributions.

peak detection confidence drop for high α. A similar exper-
iment was carried out on the synthetic organs, see figure 7.
Peak detection confidence increases with higher α but the
gain is most pronounced for difficult detection cases.

Apart from enabling peak detection, the α-histogram also
enhances the visual appearance. In the spiral data set, as in
many real data sets, the height of the background peak is
orders of magnitude larger than the others, hindering a good
overall view. Using, for example, logarithmic scale [PM04]
can help but the α-histogram has the effect of both evening
out the peak heights and promoting spatial coherence.

An important parameter in the block-based α-histogram
is the block size. In figure 8 different block sizes are applied
to spirals of different widths. Two conclusions can be drawn
from the results: primarily that the size should not be smaller
than 63 in order to obtain good effect from the spatial coher-
ence and, secondly, that features of the same scale as the
block size are favored by the α-histogram.

If there is a priori information that the tissue has larger ex-
tent in a certain dimension, the use of non-cubical blocks can
be an advantage. This has been tested using a spiral data set
where the spiral extends four times further in the z-direction
than in x and y. Results from anisotropic blocks being 3-
4 times larger in the z-direction were compared with those
from cubical blocks. The results, see figure 9, show that there
is some advantage to adapting the block shape to the tissue
characteristics, but the effect is not dramatic.
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Figure 6: Varying α, spiral data set. Top: For higher α the
peak amplification and the noise both increase. (ρ = 6) Bot-
tom: ‘Vessel’ peak detection. Detection improves for higher
α but noise reduces the confidence at very high α.
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Figure 8: Varying block size for spiral data sets, α = 10.
Blocks smaller than 63 yield less effect from spatial coher-
ence. Otherwise a block size similar to the size of the feature
in question is appropriate.
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Figure 9: Comparing anisotropic blocks to cubical blocks
for stretched versions of the spiral data set (α = 10). A block
shape adapted to tissue properties yields better detection.

5.2. TF adaptation

The α-histogram has been applied to TF adaptation for a
number of problematic clinical data sets. Primarily, 20 MR
angiographies of Abdominal Aortic Aneurysm (AAA) have
been tested, captured with several different protocols result-
ing in highly varying data set characteristics. The interesting
tissue is the contrast agent-filled vessels, for which the typ-
ical intensity value varies between 182 and 1393 across the
data sets. AAA images are typically used to prepare for sur-
gical procedures where stents replace parts of the aorta. It is
vital for the success of the operation to know the exact aorta
diameter, an error of over 2 mm is usually considered clini-
cally unacceptable. Inadequate TF parameters can cause di-
ameter measurement errors well above this limit [PDE∗04].

It is difficult to use the rendered images for a detailed
quantitative evaluation of the TF adaptation, the gold stan-
dard available for these images is not precise enough. In-
stead we opt to compare the detected peak directly to the
histogram of a manual segmentation of the vessels. As one
of the alternative methods (PRH) has been successfully clin-
ically evaluated [PBL∗], we believe that its peak detection
results set a good benchmark for the comparisons in this pa-
per. The ground truth segmentations were validated by an
experienced radiologist.

As a first reference, we have used a static peak apex pre-
dictor defined as the value corresponding to 98.1% of the
full histogram area. The true apex in average corresponds
to this percentile in these data sets. Intensity value 0 is dis-
carded, as it is often orders of magnitude more frequent than
the other values. Both the original histogram and a number
of α-histograms have been evaluated using the peak detec-
tion scheme from section 4.2. As the appropriate choice of
np2 may vary, we applied four different simplifications with
np2 = 1, . . . ,4, respectively. Among this total of 10 peak def-
initions, those having the apex within a valid range were con-
sidered and the one with highest confidence was selected. If
no peak was found within the range, the one closest to the
range was used. The valid range was defined as the points

Table 1: Peak detection results for 20 MR AAA angiogra-
phies. The block size is 83 for both α-histograms and PRHs.

ep ẽp cp

Percentile 0.21 0.17 -
Original histo 0.23 0.09 0.04
α-histo α = 4 0.11 0.02 0.19

α = 10 0.09 0.03 0.21
α =∞ 0.12 0.04 0.21

PRH ε = 0.6 0.07 0.01 (0.76)
ε = 0.7 0.14 0.08 (0.63)
ε = 0.8 0.12 0.03 (0.73)

corresponding to 96.5% and 99.2% of the histogram area,
which is the range of the true apices in these data sets.

Finally, we have employed the Partial Range Histogram
(PRH) method of our previous work, we refer to [LLY05]
for a full description. The aim of the PRH method is to
create a separate histogram for each tissue, in contrast to
the α-histogram that makes tissues stand out at the global
histogram level. In spite of the different approaches, both
methods can be used for peak detection. The main param-
eter of the PRH method is the range weight limit, ε. The
resulting number of PRH peaks, nPRH, is typically between
5 and 10 and can be simplified further. In these data sets
the vessel peak is known to be at the top of the intensity
scale. We create a number of possible top peaks by merging
1, . . . ,nPRH − 1 of the topmost peaks. Then peak selection
is performed according to the rules connected to the valid
range described above.

The overall results of the peak detection are given in ta-
ble 1. Accuracy is represented by precision error, both mean
(ep) and median (ẽp), and the robustness by the mean peak
confidence (cp). Compared to the percentile reference, peak
detection on the original histogram has lower error for a ma-
jority of cases, but the average error remains high.

The α-histograms provide clear improvement on peak
detection accuracy as well as robustness. The results are
consistent across all three values of α. The resulting α-
histograms for two of the most difficult cases are presented
in figure 10 and demonstrate that even if the peak apex detec-
tion is imprecise, the α-histogram can still be of great value
in emphasizing the tissue value range. Some examples of TF
adaptation based on α-histograms are given in figure 11.

As seen in table 1, the peak detection based on PRHs has
the same level of quality as the α-histograms. Note that the
peak confidence cp is of little interest for PRHs; it is always
very large since PRHs correspond to separated tissue peaks.
For this peak detection task the differences between the PRH
and α-histogram are minor, but in other situations the ben-
efits of each method are more apparent. The PRH method
makes a number of distinct predictions during the tissue de-
tection process regarding position and width of histogram

c© The Eurographics Association 2006.



C. Lundström, A. Ynnerman, P. Ljung, A. Persson & H. Knutsson / The α-histogram

0

2000

4000

6000

8000

10000

12000

800600400200
0

200

400

600

800

1000

N
um

be
ro

fv
ox

el
s

N
um

be
ro

fv
ox

el
s

(m
ag

n.
)

Voxel value

Orig (magn.)
Vessel (magn.)

Original
α = 10

Peak base

0

2000

4000

6000

8000

10000

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

N
um

be
ro

fv
ox

el
s

N
um

be
ro

fv
ox

el
s

(m
ag

n.
)

Voxel value

Orig (magn.)
Vessel (magn.)

Original
α = 10

Peak base

Figure 10: Resulting α-histograms for two challenging MR
angiography cases. Smoothing applied, α = 10. Top: Using
the α-histogram the peak is found with high accuracy and
confidence (ep = 0.03, cp = 0.20). Bottom: Even though the
detected peak apex is not quite accurate, the peak range is
readily found (ep = 0.30, cp = 0.01).

peaks. A slight error in such a prediction can propagate and
grow into a major error in the final result. An indication
of this weakness is the sensitivity to the choice of ε, in ta-
ble 1 manifested as greatly differing ẽp. In contrast, the α-
histogram is a robust general enhancement that defers the
concrete tissue detection to the user or other algorithms.

The major advantage of PRHs is that they separate the
tissue peak from the global histogram, making PRHs well
suited to detection of highly overlapping p eaks, as shown
by the example given in figure 12. This is an MR biliary
duct examination where three distinct peaks can be found:
liver, kidneys, and spleen. The α-histogram fails to clearly
make the kidney peak stand out, whereas the PRH method
correctly finds the position of all three peaks.

The sizes of the clinical data sets were 6-32 MB and an α-
histogram with α = 10 and block size 83 was calculated in
0.4-2.2 s on a 1.8 GHz Pentium M laptop. The PRH method
had similar performance: 0.4-2.9 s. These times are quite
acceptable, since the methods are typically applied in a pre-
processing step.

6. Conclusions

We have presented the α-histogram, a novel tool in the
continuing effort to facilitate TF design in DVR. The α-
histogram introduces an automatic enhancement of spatially
coherent value ranges, hence emphasizing distinct materi-
als in the data set. One efficient variant is based on non-
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Figure 11: Adapting TFs for MR angiographies. The width
of the aorta (the large central vessel) is to be measured at
high precision, the error should be less than 2 mm (≈ 2 pix-
els). Left column: A TF based on the average vessel intensity
value of the 20 data sets is unacceptable. In the top image
the aorta width is exaggerated, in the bottom image the aorta
is hardly visible. Right column: An adapted TF based on the
detected peak in the α-histogram (α = 10) correctly renders
the width of the aorta in both cases. In the graphs, a cross
denotes the peak and a circle denotes the TF reference point.
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Figure 12: Peak detection for MR biliary duct examination.
In contrast to the PRH method, the α-histogram fails to dis-
tinguish the kidney peak, since it is highly overlapping.

overlapping cubical block neighborhoods. Merely two pa-
rameters then exist, α and the block size, and the enhance-
ment is not sensitive to the choice of these parameters.

The typical intensity values for vessels in MR angiogra-
phies have been detected automatically with high accuracy
and confidence using the α-histogram. The enhancement can
be used both to reveal invisible histogram peaks and also
to increase the accuracy and confidence of distinguishable
peaks. Our conclusion is that the α-histogram is appropri-
ate as a general-purpose histogram enhancement, particu-
larly useful for automatic TF adaptation between data sets.

In our future work, we will use the α-histogram frame-
work, including the presented variations, to address other
specific clinical visualization problems. The combination of
α-histograms and PRHs is of particular interest.
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