
Eurographics/ IEEE-VGTC Symposium on Visualization (2006)
Thomas Ertl, Ken Joy, and Beatriz Santos (Editors)

Integrating Dynamic Deformations into Interactive Volume
Visualization

Tom Brunet K. Evan Nowak Michael Gleicher

Department of Computer Sciences
University of Wisconsin, Madison

Abstract
Non-linear geometric deformation (or warping) is a useful tool for workingwith volumes. Unfortunately, the com-
putational expense of performing the resampling needed to implement volume deformation has precluded its use
in interactive applications. In this paper, we show how non-linear deformations can be integrated into interactive
volume visualization allowing for dynamic deformations to be used along with interactive viewing, exploration,
and manipulation tools. We describe how hardware assisted volume rendering can be adapted to resample volume
deformations, leveraging programmable shaders to compute deformations and the local coordinate transforma-
tions required for shading effects. We describe how volume interaction techniques, such as ray picking and plane
slicing, can be used in concert with our deformation methods. Our methodsextend to simultaneous display of
multiple volumes enabling comparisons. We demonstrate dynamic volume deformation at interactive rates on
commodity hardware for interactive deformation control, animated deformations, and volume widgets.

Categories and Subject Descriptors(according to ACM CCS): I.3 [Computer Graphics]:

1. Introduction

3D Scalar Field (e.g. Volume) data is important and com-
mon in science and medicine. Applying non-linear geomet-
ric transformations to volume data is a valuable part of its
use, allowing for the correction of imaging deformations,
alignment of different objects, and modelling for animation.
Unfortunately, applying deformations to volumes requires a
3D resampling operation that is computationally expensive.
To interactively visualize a deformed volume, the deforma-
tions and resampling are typically precomputed, precluding
dynamic deformations. Applications where the deformations
change at interactive rates, such as interactive non-linear reg-
istration, real-time volume animation, and animated defor-
mation interaction techniques have been restricted.

This paper provides methods that integrate spatial trans-
formations into a range of interactive volume visualization
tools. The principle contribution is to show the effectiveness
of programmable graphics hardware for the rendering of de-
formed volumes and for encapsulating the deformation. De-
formations are computed per-pixel in fragment shaders. We
will show that placing the deformation computation in this

innermost loop of rendering has several benefits and can be
done at interactive rates.

The basic rendering of deformed volumes using fragment
shaders is straightforward, modulo some issues we will ad-
dress. A key advantage of the approach, however, is how
the deformation can be encapsulated in the shader, making it
easy to support a range of tools that are desirable in interac-
tive volume visualization such as arbitrary slicing. We also
contribute a novel technique for performing picking by ray
casting into the deformed volumes.

Previous work, such as [FHSR96] and [RSSSG01], has
used graphics hardware to provide interactive display of
deformed volumes. However, our new method provides a
greater range of volume visualization tools including styl-
ized shading, slicing and probing. Other prior work, such
as [GTB03] has shown the usefulness of dynamic deforma-
tions to provide interaction techniques, but provides a lim-
ited implementation. Our approach enables the integration
of these methods with other volume tools.

Following a discussion of relevant related work, we de-
scribe how volume deformations are realized as part of the
graphics-hardware-based volume visualization shading pro-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


Tom Brunet & K. Evan Nowak & Michael Gleicher / Integrating Dynamic Deformations into Interactive Volume Visualization

Figure 1: Visualization of an MRI of a mouse torso. The original volume (left) is tone shaded. (right) Volume deformed using a
Hierarchical B-Spline. Red circles denote source points, and blue circles denote target points.

cess. We specifically address the issues of representing the
deformation functions in fragment programs and evaluat-
ing the gradients required for shading effects. Section4 de-
scribes how slicing and ray picking can be provided for the
deformed volumes. Section5 discusses some applications
of dynamic deformations, including interactive deformation
and spatial volume widgets. We conclude with a discussion
of the benefits and issues in performing the deformation as
part of fragment shader programs.

2. Related Work

The importance of volumetric data sets has lead to an en-
tire field of visualization techniques for their display, see
[SML98] for a survey.

A key issue in the display of volume data sets is to pro-
vide visual cues for comprehensibility. Direct display meth-
ods rely on transfer functions that describe how rays passing
through the volume are affected by the values in the volume.
The gradient of the scalar field is often used in transfer func-
tions as an analog to the surface normal for lighting com-
putations [DCH88]. This allows direct volume rendering to
provide a variety of simulated lighting and stylized display
effects [ER00]. The volume display methods we present in
this paper are designed to allow this range of effects.

Displaying volumes directly at interactive rates was origi-
nally accomplished by special purpose hardware, such as the
Pixar Image Computer or the VolumePro card [PHK∗99].
Currently, most interactive direct volume rendering uses
standard graphics hardware to composite a set of texture
mapped polygons. This idea originated with Cullip and Neu-
mann [CN94] and Cabral et al. [CCF94], and has been ex-
tended over the years to make use of newer graphics hard-
ware features. See [EHK∗04] for a survey. Our work inte-
grates volume deformations into this ubiquitous approach.

Deformations are often useful in working with volume
data. An example of rendering deformed volumes through
precomputation is shown by [LGL95]. Methods for efficient
display of deformed volumes include [KY97] which pro-

vides a piece-wise linear approximation to deformation with
tesselated proxy geometry. [FHSR96] and [RSSSG01] pro-
vide additional tessellation approaches to interactively ren-
der deformations on commodity hardware. A comparison
with our approach is given in section6.1. Lastly, [KPH∗03]
discusses the use of a deformation control texture to add per-
turbation deformation effects to volume shading.

3. Rendering Deformed Volumes

Our approach renders deformed volumes directly. Rather
than first deforming the volume and rendering the deformed
volume, we integrate the deformation process into the vol-
ume rendering process. A schematic overview of the process
is illustrated in Figure2.

We denote the initial, undeformed volume asv(x,y,z).
The scalar function is represented as a 3D array of samples,
and points between are determined through trilinear inter-
polation. The coordinate system of this data isundeformed
object space, classically referred to astexture space. A de-
formation is defined by a mapping between points in the un-
deformed object space and their resulting positions in thede-
formed object space, classically referred to as simplyobject
space. We denote this mapping as the deformation function
d : R

3
→ R

3. For the purposes of rendering, we will find
that the inverse deformation is more relevant, so we denote
u = d−1. In most applications,u, not d is provided, in the
rare case it is not, scattered data interpolation can be used to
invert the deformation. The deformed volume is then

v′(x,y,z) = (v◦u)(x,y,z).

The basic idea of our approach to rendering deformed vol-
umes is that rather than pre-computingv′ and applying a
volume rendering to the result, we modify the volume ren-
dering process replacingv with v◦u. The approach simply
augments the accesses to the array of texture samples by
first applying the inverse deformation function to the coordi-
nates. After a brief review of the augmented volume render-
ing method in Section3.1, we describe the hurdles that we
face in adding deformations.

c© The Eurographics Association 2006.



Tom Brunet & K. Evan Nowak & Michael Gleicher / Integrating Dynamic Deformations into Interactive Volume Visualization

Oz

V
y

Tz

T
y

O
y

O
z

Oy

Image Plane

Sampling Planes

Deformation

Function

Tx,Ty,Tz = d-1(Ox, Oy, Oz)

Vz 

Figure 2: Overview of deformation rendering.Sampling planesare spaced uniformly in view space. Polygons are drawn in
each sampling plane. Their texture coordinates provide positions inobject spaceto be sampled. To render deformed volumes,
thedeformation functionis used to map between object space coordinates and volume texture coordinates.

3.1. Hardware Volume Rendering

A common approach for hardware rendering of volumes
places the volume in a 3D texture, see [EHK∗04] for de-
tails. Briefly, the integral of light attenuation over each ray
through the volume is approximated by sampling. The sam-
ples are generated by renderingproxy geometry, and accu-
mulated in the framebuffer with compositing operations.

To provide for correct sampling through the object space,
a set of parallel geometric elements are used for the proxy
geometry. Most often, these are view aligned planes. Un-
der perspective projection, the spacing of the samples is
non-uniform (Figure2). While these errors are often small
enough to be ignored, they can be addressed through the use
of non-planar proxy geometry or applying a per-pixel (e.g.
ray) correction factor. Our implementation does the latter.

Volume rendering is implemented by rendering polygons
in the view aligned planes in back to front order. Each poly-
gon is assigned texture coordinates such that its fragments
sample the appropriate location in object space.

3.2. Deformed Volume Rendering

The deformed volume rendering process is schematized in
Figure2. First, the undeformed volume data is placed in a
3D texture. The rendering process draws a series of polygons
that are aligned with the image plane. Each polygon is as-
signed texture coordinates that are its deformed object-space
coordinates. When the polygon is rasterized, each fragment’s
execution is provided its deformed object-space coordinates
and the volumetric texture as input parameters. To sample
the deformation, it must therefore convert the deformed ob-
ject space coordinates into undeformed object space, or tex-
ture space, coordinates by applying the inverse deformation
function before performing the texture lookup.

Rendering a deformed volume requires replacing all eval-
uations of the undeformed volume,v, with the deformed vol-
ume,v′, meaning that references tov are replaced byv◦u.
From an implementation point of view, for each fragment,
we apply the inverse deformation function to the deformed
object space coordinates and use the resulting undeformed
object space coordinates to sample the texture. That is, the
fragment program for an undeformed texture has the follow-
ing structure:

Vec3 uvw = textCoord;
float d = texture3D(texD, uvw);
Vec4 color = transfer(d);

the deformed rendering can be achieved simply by inserting
the inverse deformation into the evaluation:

Vec3 uvwo = textCoord;
Vec3 uvw = invDeform(uvwo);
float d = texture3D(texD, uvw);
Vec4 color = transfer(d);

The lookup into the volume texture performs a point sam-
pling which may lead to aliasing. This problem should be
addressed whether or not deformation is used. Any volume
texture sampling solution, such as a 3D analog to a mipmap,
applies to the deformed case as well. To correctly filter the
warp, the kernel radius must be determined for the spacing of
the sampling in texture space, not object space. Our present
implementation implements point sampling.

With the deformation function “encapsulated” inside of
the fragment program, other aspects of the volume render-
ing process are unchanged. The undeformed volume data is
still stored directly in the 3D texture. Any proxy geometry
can be used, although it is most sensible to use view-aligned
planes to avoid artifacts. Proxy geometry is provided with
object space locations as texture coordinates, just as before
deformations became part of the rendering process. The fact
that this object space isdeformedobject space is hidden as

c© The Eurographics Association 2006.



Tom Brunet & K. Evan Nowak & Michael Gleicher / Integrating Dynamic Deformations into Interactive Volume Visualization

the transformation between deformed and undeformed ob-
ject space in the fragment program.

Unfortunately, there are several hurdles that we must ad-
dress in order to realize such an approach:

1. Fragment programs have limited resources making some
deformation functions impractical to implement.

2. Shading needs the gradient of the deformed volume.
3. Given the large number of fragments that must be ren-

dered, the amount of computation might lead to perfor-
mance issues.

The following two sections consider how we address these
first two hurdles. The performance consideration is deferred
until Section6.2.

3.3. Deformation Functions

One difficulty in our method is that the deformation func-
tion must be encoded into the fragment program. While, in
principle, the fragment programs may be general purpose
computations, in practice the resources available to fragment
programs are more limited than those to the CPU. A further
practical limitation is that since these programs are executed
for every fragment rendered, they must be efficient.

The continued evolution of hardware and shading lan-
guages expands the set of functions that can be implemented
effectively as fragment programs. However, there may al-
ways be some functions that are too complex or computa-
tionally expensive to apply in the fragment programs. We
evaluate such functions using a data centric representation
of storing a table of samples and interpolating.

The idea of storing a sampled representation of the func-
tion u in a 3D texture was suggested in [RSSSG01]. Prior
to rendering, the inverse deformation function is evaluated
on the CPU for all points on a regular 3D grid. These sam-
ples are stored in a 3D texture that is accessed by the frag-
ment programs. Because texture access provides trilinear in-
terpolation, this approach effectively constructs an efficient
to evaluate, piecewise-linear approximation to the deforma-
tion function. Evaluation of the inverse deformation function
in the fragment programs requires only a single 3D texture
sampling operation, independent of the complexity of the
function itself. This deformation texture need not have the
same resolution as the volume data.

The use of a sampled deformation function has draw-
backs. For one, it computes a piecewise linear approximation
that may fail to capture desired smoothness or high frequen-
cies unless large numbers of samples are used (Figure3).
Second, the entire table must be evaluated densely, which
may be expensive. However, for many categories of func-
tions (such as polynomial splines), methods for computing
regular samples can be more efficient than computing inde-
pendent samples. Third, fragment programs often become
texture-lookup bound.

(a) 163 control texture (b) 323 control texture

(c) 643 control texture (d) Fragment deformation

Figure 3: Images of a solid brick inside of a2563 volume un-
der a sine deformation. The deformation is performed with
control texures of: a)163, b) 323, c) 643. d) performs the
deformation in the fragment shader.

With our current (circa 2005) hardware (an NVIDIA
GeForce 6800GT) and shading language technology
(GLSL), we find that simple deformations are best per-
formed directly in the shaders. For example, we implement
bends and twists in this manner. We use deformation tex-
tures to display Hierarchical B-Spline and Thin-Plate Spline
deformations that are computed on the CPU. In cases where
only the forward deformation function is available, we use
scattered data interpolation to approximate the inverse. This
computation is done on the CPU and applied using a defor-
mation texture.

3.4. Gradient Computations

Because the gradient is dependent on the deformation, we
cannot precompute the gradients that will be used for shad-
ing. We choose to compute the gradients ’on the fly’ in the
fragment shader, using a forward finite differences computa-
tion:

∇v(u(O)) ≈ (v(u(Ox +∆Ox,Oy,Oz))−v(u(O)), (1)

v(u(Ox,Oy +∆Oy,Oz))−v(u(O)),

v(u(Ox,Oy,Oz+∆Oz))−v(u(O)))

where O represents the object space coordinates. This
method allows us to sample a gradient in view space without
computing deformation derivatives.

The first-order finite differences poorly estimates gradi-
ents, often leading to visual artifacts (Figure4). To imple-
ment better kernels efficiently, the volume texture is pre-
filtered. Our implementation uses a Gaussian blur for the
prefilter. Both the original texture and the filtered version

c© The Eurographics Association 2006.



Tom Brunet & K. Evan Nowak & Michael Gleicher / Integrating Dynamic Deformations into Interactive Volume Visualization

(a) first finite differences (b) pre-filtered finite differences

Figure 4: A sphere with diffuse illumination illustrates is-
sues in gradient computation. (a) forward differences poorly
estimate gradients yielding a blocky appearance, this is
solved by pre-filtering the volume before gradient compu-
tation (b).

are supplied to the fragment shader, and the latter is used
for gradient computation. Because of its band-limitation, the
resolution of the pre-filtered volume can be reduced to re-
duce texture memory use.

4. Sampling Techniques

The encapsulation of the deformation into the fragment
shader in the previous section separates the process of gen-
erating the samples from warping. We have the flexibility to
use proxy geometry suited to the task. In the previous sec-
tion, view aligned planes generated a sampling appropriate
for direct volume rendering. In this section, we use the free-
dom in proxy geometry to implement sampling that achieves
other volume interaction methods.

Any proxy geometry can be used to generate the frag-
ments that sample the volume. This enables sampling along
arbitrary lines and planes. To ensure that these samples can
be read from the frame buffer, it is important that the line or
plane is view aligned. Our strategy for sampling an arbitrary
line or plane is to rotate the view so that it is parallel to the
image plane, render the element, and then read the results
from the frame buffer.

We note that other approaches for interactive volume de-
formations that rely on deforming the mesh of the proxy ge-
ometry (§6.1) would require more complex approaches to
realizing the alternate sampling strategies.

We discuss methods that exploit the freedom in proxy ge-
ometry to perform ray-casting and arbitrary slicing, and to
display multiple deformed volumes simultaneously.

4.1. Picking and Probing

One simple sampling technique involves the proxy geome-
try of a line. The use of a line as proxy geometry allows us
to do alinear probe, which is similar to that of a ray cast.

Figure 5: A rendering of a human head captured via CT
imaging (512x512x106). This rendering displays a clipping
plane with a sampling plane rendered both on the clipping
plane and in a detached viewport on the image plane.

We obtain linear probes by rotating object space to align the
desired line parallel to the image plane. We then rasterize
this line, directing fragment shader output and hence volume
sampling output to the back frame buffer, giving us a high-
resolution sampling of the deformed space. We can then
copy this line to main memory for use by user-interfaces.

Our method simplifies such linear probes since we only
need to draw a single line to obtain the ray cast information
through the deformed volume. Without encapsulating the de-
formation inside of the fragment shader, this line would need
to be divided into several lines to perform a piece-wise linear
approximation of the deformation.

The ability to compute a probe creates a number of user
interaction possibilities. For example, a user-interface called
ray picking may need to determine at what depth the first
deformed “surface” occurs under the mouse. A number of
different probes could be used to determine this informa-
tion. One such probe would scan the generated line for the
first non-zero alpha value. Another such probe might scan
the line for the first gradient with “large” magnitude. A third
probe could sum alpha values until they exceed one, imply-
ing infinite absorption of anything farther back.

4.2. Slicing

A second proxy geometry that is useful for user interfaces is
that of a plane. Though planes are used as proxy geometry
in the full volume rendering, they have another, commonly
sought after use.Slicing planesare ideal for removing depth
complexity when exploring volumes.

Our implementation can sample arbitrary planes by view-
aligning them and rendering to the back buffer. This can ei-
ther be displayed in a separate viewport, or applied as a tex-
tured polygon in object space. Both displays are illustrated
in Figure5.

c© The Eurographics Association 2006.



Tom Brunet & K. Evan Nowak & Michael Gleicher / Integrating Dynamic Deformations into Interactive Volume Visualization

Figure 6: A crude registration of a mouse torso captured via
MRI (256x256x192), shown in blue/grey, to a second mouse
captured via CT (256x256x385), shown in black/red. Both
datasets and their associated warp textures are passed to
the fragment shaders, where they are shaded and mixed.

To illustrate the usefulness of these slicing planes, con-
sider a volume obtained through CT imaging as shown in
Figure5. A slicing plane aligned along the deformed object
space axis can allow a scientist to compare the deformed
slice against a standard atlas of the head. Additionally, arbi-
trarily oriented slices can be examined and compared.

4.3. Multiple Volume Display

A third and unique benefit of arbitrary proxy geometries is
for the display of multiple deformed volumes. To correctly
sample space, a proxy geometry sample cannot overlap other
proxy geometry samples. This implies that in order to cor-
rectly render two volumes in the same space, their samples
must be taken and combined from the same proxy geometry.
Therefore, techniques that adaptively tessellate the proxy ge-
ometries dependent on the deformation would have to find an
adaptive tessellation that satisfies the deformations of each
volume.

Our method allows us to render multiple volumes using
standard proxy geometries, passing both texture volumes to
the fragment shaders. The fragment shaders then have the
additional freedom to compute their emissions and absorp-
tions based on different combination strategies: sum, differ-
ence, emitted color mixing, etc. As can be seen in Figure6,
these renderings can be visually complex and difficult to in-
terpret. Making use of simultaneous volume display is an
area for future work.

5. Uses of Dynamic Volume Deformation

The rendering and sampling techniques described in sections
3 and 4 provide the building blocks needed for a number
of applications. We will outline some features that we have
implemented that show the versatility of our approach.

5.1. Interactive Control of Volume Deformations

We have implemented deformations that are interactively
controlled by adjusting their parameters. The primary use

of this is landmark deformation where a set of user speci-
fied points are controlled. This may be used for performing
interactive registration [FRR96]

Landmark deformation functions use a set of point pairs
as parameters, where one point in each pair, the source, is in
undeformed object space, and the second point, the target, is
in deformed object space. The goal of these landmark based
deformation functions is to find a mapping that either exactly
or approximately maps between all sources and their cor-
responding targets. Two examples of deformations that can
be used as landmark deformation functions are Thin Plate
Splines and Hierarchical B-Splines.

To add meaningful point pairs, we need to be able to eas-
ily specify significant surface feature points. The ray picker
(§ 4.1) is well suited for this task. Using a ray picker, we
can allow the user to hold down the mouse and move a
point along the surface of the volume, even if it has been
deformed. This allows the user to specify a coordinate in
2D, and allows the system to infer the depth along the ray
that the user wants to select and with finer resolution than is
actually used to render the volume.

Once placed, control points can either be manipulated by
using the ray picker to drag the points along a specified sur-
face, or dragged in view aligned planes. Since a vast majority
of the work for displaying the deformed volume is offloaded
to the GPU, the CPU can be utilized more for solving the de-
formation. Therefore, the user can receive immediate feed-
back of how his or her actions are affecting the deformation
by observing the changes in volume deformation.

Ray picking can also be of use to a user interested in inter-
active registration. While viewing multiple volumes, source
points can be placed along the surface of one volume, and
target points can be placed along the surface of a second vol-
ume. This is possible since the ray picker can change shaders
and pick which volume is being interacted with.

5.2. Volume Animations

The ability to render and deform volumes at interactive rates
naturally leads to deformation based animations. Our explo-
ration of this area has been minimal, however, we have im-
plemented a pulsing, fish-eye like deformation as a proof of
concept. This particular animation causes a local deforma-
tion within a sphere of influence around the point of interest.
Since the human eye is attracted to movement, we envision
such a deformation as a user-interface tool that is useful for
drawing attention to a region of interest.

This particular animation is attractive because the defor-
mation function can be computed completely in the shader.
The application simply has to pass a few floating point pa-
rameters defining the deformation for that particular frame.
Therefore, the cost of animation over rendering is negligible.

c© The Eurographics Association 2006.



Tom Brunet & K. Evan Nowak & Michael Gleicher / Integrating Dynamic Deformations into Interactive Volume Visualization

Figure 7: A leafer widget from [GTB03] implemented as a
deformation.

5.3. Volume Widgets

We have implemented several volume widgets as discussed
in [GTB03], including the one shown in Figure7. We im-
plement these deformation directly in the shader. The dis-
continuities in the deformation functions that represent these
widgets require conditional branches that are inefficient on
some current hardware.

6. Discussion

In this section, we will address our third hurdle for defor-
mation rendering: performance. First, we will compare our
method with other hardware accelerated methods, and then
we will discuss the performance of our implementation.

6.1. Comparison with Per-Vertex Methods

Our approach provides interactive display of deformed vol-
umes by performing a per-fragment evaluation of the de-
formation function. The alternative is to apply the defor-
mation to the proxy geometry on a per-vertex basis. Ex-
amples of such an approach include [FHSR96], [KY97],
and [RSSSG01]. Here, we compare our per-fragment ap-
proach with these per-vertex approaches.

Per-vertex approaches rely on a tesselation of the proxy
geometry to provide the set of vertices to deform. If the
proxy geometry is to be view dependent, it must be re-
tesselated whenever the view changes. This makes methods
that render from multiple viewpoints (§4) difficult, particu-
larly if we are concerned with using the same sampling so
that multiple views can be used seamlessly (as in Figure5).
It also complicates the use of view-aligned proxy geometry.
Such geometry is advantageous as it uniformly samples the
object space, leading to more consistent transparent shading
effects.

Per-vertex methods rely on subdivision to reduce the num-
ber of deformation evaluations that need to be performed.
Since we are interested in dynamic deformations, this means
that changes in the deformation would require a new sub-
division, a new tessellation, and new deformation evalua-
tions. We can eliminate the subdivision consideration if we

Deformation Case 1 Case 2
Shader Shift 29.2 fps 8.5 fps
Shader Sine 29 fps 7.1 fps
Texture 21.7 fps 5.7 fps

Table 1: Performance summary, discussed in section6.2.
Case 1 represents a simple transfer function and Case 2 rep-
resents a gradient computation and diffuse shading.

Control Texture Size
Samp/Vox 163 323 643 FS

.5 7.12 7.12 6.57 12.25
1 3.71 3.71 3.55 6.57

Table 2: Frame rates in fps of control texture size vs. sam-
ple planes per voxel, using the mouse torso of Figure1, a
256x256x192 volume.

assume a fixed, uniform subdivision is used, which is sensi-
ble for evaluation a rapidly changing, unknown deformation.
We can also eliminate the tesselation consideration if we use
object-oriented geometry. Under these conditions, our meth-
ods are the most similar.

Our methods, therefore, have advantages in providing for
flexible proxy geometry that enables interaction techniques
and avoids recomputation when deformations change. In
terms of performance, our method offers a different set of
tradeoffs as we move more of the computation from the CPU
to the fragment shaders. Because fragment shaders execute
in parallel, they are more likely to provide performance in-
creases in future generations.

6.2. Performance and Accuracy

We evaluated the performance of our prototype implemen-
tation on a PC with a 3Ghz Intel Pentium 4 Processor and
an NVIDIA GeForce 6800GT graphics card. While our im-
plementation adjusts sampling rates to provide faster perfor-
mance at the expense of image quality, we fix the sampling
rate at the size of the smallest object-space voxel for these
performance measurements, except where noted otherwise.
All measurements are for the achieved system framerate in-
cluding any computation of the deformations.

The rendering rates on a realistic example (the
512x512x106 CT Head, Figure5) are summarized in Ta-
ble1. We evaluate two shading types and three deformations.
For rendering case 1, a density value is converted to a color
and alpha value based on a transfer function texture lookup.
For rendering case 2, we add our on-the-fly gradient com-
putation and a dot product is performed for diffuse shading.
The deformations we consider are a trivial translation and a
sine wave, both implemented in the shader, and a Hierarchi-
cal B-Spline that is evaluated and stored in a 163 texture.

The trivial translation defomation is interesting because

c© The Eurographics Association 2006.



Tom Brunet & K. Evan Nowak & Michael Gleicher / Integrating Dynamic Deformations into Interactive Volume Visualization

Control Texture Size
Samp/Vox 83 163 323

.5 9.56 6.19 1.63
1 5.15 3.96 1.41

Table 3: Frame rates in fps of control texture size vs. sample
planes per voxel, while changing the HBSpline deformation
of the 256x256x192 mouse torso of Figure1.

although it adds (almost) no computation to the shading pro-
cess, it does effect performance. Directly feeding the texture
coordinate to the texture lookup achieves 39 fps in case 1.
Performing a trivial computation on the coordinate first re-
duces the performance to 29.2 fps. This suggests that the un-
derlying graphics system provides some optimization for di-
rect texture lookups. Since we are unsure if this optimization
could be leveraged for deformations, we report the shifted
case in the table.

The drop in frame rate between case 1 and case 2, where
we access an additional texture four times, suggests that
our performance is bound by texture access. These texture
lookups may have poor memory coherence. Slowdowns in
addition to this increased shader complexity come from writ-
ing to the deformation texture, and from memory band-
width to the graphics card to update the deformation tex-
tures. Overall, we find that the applications described in sec-
tion 5 are interactive if we use the reduced number of sam-
pling planes during interaction.

To show the performance impact of control texture size
we use the dataset seen in Figure1. Performance for a sim-
ple deformation is shown in Table2. As expected, larger con-
trol textures slow rendering slightly, and the fragment shader
deformation, using no deformation texture lookup, is nearly
twice as fast.

When the evaluations of the deformation function become
more expensive, better sampling of the deformation func-
tions have more of a performance impact. Table3, we show
the frame rate while changing a control point, solving for
the new HBSpline deformation, storing the evaluations in
the control texture, and rendering the image.

Performance of our prototype shows that interactive view-
ing of volumes with dynamic deformations is practical on
current hardware. Our methods are well-posed to leverage
trends in graphics hardware.

Acknowledgments

This research was supported in part by NSF grants IIS-0416284 and
CCF-0540653. TB was supported by an NLM CIBM training grant
(NLM 5T15LM007359). We thank Jamie Weichert’s lab for provid-
ing us with the mouse volumes seen in Figure1 and6. The CT Head
in Figure5 was obtained from OpenQVis.

References

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. InProceedings of the 1994 symposium on Volume vi-
sualization, pp. 91–98.

[CN94] CULLIP T. J., NEUMANN U.: Accelerating Volume Re-
construction With 3D Texture Hardware. Tech. rep., Chapel Hill,
NC, USA, 1994.

[DCH88] DREBIN R. A., CARPENTERL., HANRAHAN P.: Vol-
ume rendering. InProceedings of SIGGRAPH 1988, pp. 65–74.

[EHK∗04] ENGEL K., HADWIGER M., KNISS J. M., LEFOHN

A. E., REZK-SALAMA C., WEISKOPF D.: Real-time volume
graphics. SIGGRAPH Course Notes, Course 28, 2004.

[ER00] EBERT D., RHEINGANS P.: Volume illustration: non-
photorealistic rendering of volume models. InProceedings of
the conference on Visualization 2000, pp. 195–202.

[FHSR96] FANG S., HUANG S., SRINIVASAN R., RAGHAVAN

R.: Deformable volume rendering by 3D texture mapping and
octree encoding. InProceedings of the 7th conference on Visual-
ization 1996, pp. 73–ff.

[FRR96] FANG S., RAGHAVAN R., RICHTSMEIER J.: Volume
morphing methods for landmark based 3d image deformation. In
SPIE International Symposium on Medical Imaging(1996).

[GTB03] GUFFIN M., TANCAU L., BALAKRISCHNAN R.: Using
deformations for browsing volumetric data. InProceedings of
IEEE Visualization 2003, pp. 401–408.

[KPH∗03] KNISS J., PREMOZE S., HANSEN C., SHIRLEY P.,
MCPHERSON A.: A model for volume lighting and modeling.
In IEEE Transactions on Visualization and Computer Graphics
2003, pp. 150–162.

[KY97] K URZION Y., YAGEL R.: Interactive space deformation
with hardware-assisted rendering.IEEE Computer Graphics Ap-
plications 17, 5 (1997), pp. 66–77.

[LGL95] L ERIOS A., GARFINKLE C. D., LEVOY M.: Feature-
based volume metamorphosis. InProceedings of SIGGRAPH
1995, pp. 449–456.

[PHK∗99] PFISTERH., HARDENBERGHJ., KNITTEL J., LAUER

H., SEILER L.: The volumepro real-time ray-casting system. In
Proceedings of SIGGRAPH 1999, pp. 251–260.

[RSSSG01] REZK-SALAMA C., SCHEUERING M., SOZA G.,
GREINER G.: Fast volumetric deformation on general
purpose hardware. InProceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware,
pp. 17–24.

[SML98] SCHROEDERW., MARTIN K. M., L ORENSENW. E.:
The visualization toolkit (2nd ed.): an object-oriented approach
to 3D graphics. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1998.

c© The Eurographics Association 2006.


